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Tunable p-type doping of Si nanostructures for near 
infrared light photodetector application 

Feng-Xia Liang,a Deng-Yue Zhang, Yi-feng Zou,b Han Hu, Teng-Fei Zhang,b Yu-
Cheng Wu,a, * Lin-Bao Luob,*  

In this study, we present a simple oxide assisted p-type doping of Si nanostructures by 
evaporating a mixed powder composed of SiB6 and SiO. It was found that Si nanoribbons (Si 
NRs) which can be obtained at high SiB6 content, will give way to Si nanowires (Si NWs) 
when the content of SiB6 in the mixed powder was reduced. According to our transport 
measurement of field effect transistors (FETs) assembled on individual Si nanostructures, the 
as-prepared Si nanostructures with different boron doping levels all exhibit typical p-type 
conduction characteristics. Additionally, the electrical conductivity of the Si nanostructures 
can be tuned over 7 orders of magnitude from 8.98×102 Scm-1 for the highly doped sample to 
3.36×10-5 Scm-1 for lightly doped sample. Based on monolayer graphene and the as-prepared 
Si nanostructures, we also assembled a nano-photodetector which exhibits ultra-sensitivity to 
850 nm near infrared light (NIR) illumination with ultra-sensitivity and nanosecond response 
speed (τrise/τfall: 181/233 ns). The generality of the above results suggest that the Si 
nanostructures are promising building blocks for future electronic and optoelectronic devices 
application. 
 

 

 

 

 

 

 

 
Introduction 
Silicon (Si) with an indirect narrow band-gap (~1.12 eV), has been 
central to numerous technological innovations for decades and 
remains to be the irreplaceable materials for semiconductor 
industry.1, 2 In comparison with their thin film and bulk counterparts, 
one dimensional (1-D) silicon nanostructures with large surface-to-
volume ratio including nanoribbons (NR),3 nanowires (NWs),4 and 
nanotubes (NTs) have exhibited various unique properties in terms 
of light harvesting and carrier transport.5, 6 By this token, Si 
nanostructures have been lately widely used as building blocks for 
constructing various electronic and optoelectronic devices, such as 
field effect transistors (FETs),7, 8 near infrared light (NIR) 
photodetectors,9, 10 solar cells, 11, 12, 13 lithium ion batteries,14, 15 
thermoelectric devices,16, 17 chemical or biological sensors,18, 19 and 
so on. 
Needless to say, the fabrication of 1-D Si nanostructures with 
controlled diameter, length and electronic properties are essential to 
the above nano-devices application. Thus far, significant efforts have 
been devoted to the development of facile and controlled methods 
for SiNW fabrication in recent years. In principle, there are two 
basic methodologies for Si nanostructures, i.e., the top-down (metal-
catalysed chemical etching,20 and reactive ion etching,21 etc.) and 

bottom-up approaches (oxide-assisted growth (OAG),22 vapour-
liquid-solid (VLS) growth,23 and solid-liquid-solid (SLS).24). In 
order to tune the electrical properties of Si nanostructures, people 
normally employed conventional doping method, namely, 
intentionally incorporating impurity atoms into the host lattice of 
silicon crystal to control the density of the free charge carriers 
available in the semiconductor nanostructures, which determines the 
operation of the Si based nano-devices mentioned above. Take p-
type doping for example, Cui et al initiated the first p-type silicon 
NWs by developing a laser-assisted catalytic growth method.25 
During growth process, boron atoms were incorporated into the Si 
nanostructures by using diborane (B2H6) in the reactant flow. 
According to their electrical analysis, the boron doped Si NWs had 
good crystal structure, with tunable electrical property. What is 
more, Lew found that trimethylboron (TMB) can also be used as 
efficient p-type dopant source.26 It was found that the as-fabricated 
SiNWs were predominantly single crystal, with controlled boron 
concentrations. In spite of these efforts, it is undeniable that these 
gaseous dopants either in the form of B2H6, and B(CH3)3 are 
extremely toxic and flammable, which is environmentally 
unfriendly. As a result, their further application was greatly 
restricted. Herein, we present a new synthetic approach to the 
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Conclusions 

In this work, we reported on a synthetic approach to silicon 
nanostructures with controlled boron doping levels by a thermal 
evaporation of a mixed powder of SiB6 and SiO. It is revealed 
that the morphology of the product is mainly determined by the 
content of the SiB6 in the mixed powder. Field effect transistors 
(FETs) analysis shows that the as-prepared Si nanostructures all 
exhibit typical p-type conduction behaviour. The hole mobility 
and concentration can be readily tailored by the adjusting the 
content of SiB6. It is also found that by tuning the content of the 
SiB6 in the mixed powder, the electrical conductivity of the Si 
nanostructures can be tuned over 7 orders of magnitude from 
8.98×102 Scm-1 for the highly doped sample to 3.36×10-5 Scm-1 
to lightly doped sample. What is more, we observed that the 
Schottky junction composed of monolayer graphene/individual 
Si nanostructures exhibit ultra-sensitivity to 850 nm NIR 
irradiation with excellent spectral response, and fast response 
speed (τrise/τfall: 181/233 ns). We believe the present Si 
nanostructures with controlled electrical property will have 
potential application for future electronic and optoelectronic 
devices. 
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