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E-waste comprises discarded low quality protected electronic appliances which annually accumulates million tons hazardous materials 

through environment. The protection is provided to control the unwanted voltages that usually generate in the associated electrical 

circuits by the multi-junction ceramic in the voltage dependent varistor. The ceramic’s microstructure consists of ZnO grains that are 

surrounded by the narrow boundaries of melted specific additives such as Bi2O3, TiO2 and Sb2O3. In fact, the boundaries manage the 

quality of the protection through the certain volume of intrinsic oxygen vacancies transformation which depends on the amounts of the 15 

additives. Since the amounts are the ceramic fabrication’s initial input variables, the optimization process is capable to improve the 

quality of the protection (non-linear coefficient) as output of the varistor devices. In this work, the fabrication was designed and then 

experimentally performed to calculate the non-linear coefficients of the produced varistors as actual responses. The responses were used 

to obtain the appropriate model for the fabrication by different semi-empirical methods. Afterward, the models predicted the optimized 

amounts of the additives which maximized the quality of the varistors. The predicted condition was fabricated as final varistors which 20 

electrically characterized to compare their nonlinear coefficients as the quality indicator. The comparison has demonstrated that the 

optimized amounts of Bi2O3 (0.5), TiO2 (0.47) and Sb2O3 (0.21) in mol % have provided the very high protective varistor with nonlinear 

coefficients 28.1. In conclusion, the optimization which has industrial scales up potential warranties the electronic protection that 

controls the global e-waste.  

 25 

Introduction   

Globally e-waste accumulates millions ton hazardous materials 

such as heavy metals including lead, mercury, cadmium, 

halogenated substances into water, soil and air 1. E-waste 

comprises discarded electronic appliances, of which anything 30 

with a plug even old refrigerators and motorized toothbrushes are 

disproportionately abundant because of their short lifespan 2. The 

electronics are often damaged of repeated exposure to large 

overvoltages which are generated by electrostatic discharge and 

electrical overstress such as lightning strikes, power outages 35 

tripped circuits, power transitions, power malfunctions, 

electromagnetic pulses and inductive spikes in the associated 

circuit 3-4. Whereas, the electronics are protected by voltage 

limiting devices such as voltage dependent low voltage varistors 

and back-to-back zener diodes that are placed at parallel position 40 

of the electronics in the associated electrical circuit 5. The 

problem is that the  diodes are degraded by repeating exposure in 

large overvoltages due to their low capacity and single p-n 

junction 6. On the other hand, the varistors tend to be more stable 

in AC and DC field over wide range of voltage, a few volts to 45 

tens kilovolts and current from micro-amperes to kilo-amperes.  

However, the varistors have not enough developed and present 

several drawbacks such as low non-linear properties, high 

leakage-current, high breakdown-voltage and high degradation 

for repeating exposure which come from the microstructure of 50 
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ceramic core used in the varistor 7-8. In the most common 

varistor, the microstructure consists of highly conductive n-type 

ZnO grains that are surrounded by the narrow boundaries of 

melted specific additives 9-10. The microstructure is fabricated by 

mixing the appropriate amount of ZnO and the additives (starting 5 

powder). Then the mixed powder pressed and sintered at the 

temperature under the melting point of ZnO 11-12. Accordingly, 

the melted additives occupy the ZnO grains boundaries as 

intergranular layers which navigate the non-linear property by 

using intrinsic oxygen vacancies transformation 5, 13-21. Therefore, 10 

the origin of the varistor action is attributed to composition of the 

intergranular layer that is depends on many operation such as 

type, amount and mixing method of the additives in the starting 

powders as well as the sintering process 19-21. The optimum 

sintering temperatures and holding time for Bi2O3 doped ZnO 15 

based low voltage varistor were reported from 1200 to 1280 and 

1 hour respectively 22. The stable performance throughout the 

intergranular layers requires homogenous in terms of its 

components which is provided by chemical mixing methods 

(solution coating) of the starting powders 23-24. The non-linearity 20 

as quality of the protection meanly depends on chemical 

compositions of the materials in intergranular layer which is 

come from the starting powders 25-26. For instance, Bi2O3 is used 

as former which is crucial parameter for varistor manufacturing, 

TiO2 prevents the vaporization of Bi2O3 to facilitate ZnO grain 25 

growth, and Sb2O3 stabilizes the electrical properties and 

diminishes the leakage current of the varistor during performance 
16, 27-31. Among the operators, follow up the compositions is very 

difficult because the layer formulation consists of several high 

pressure oxides 32. It means the amount of the compositions is 30 

changed during sintering process because of many reason such as 

component vaporization. Moreover, there are other complexities 

such as different reactions including formation and 

decomposition of many phases, kinetic of ZnO grain growth, 

densification of melted additives during the ceramic fabrication. 35 

On other hand, the additives are not completely independent 

therefore; it is very difficult to consider the effect of one additive 

as a variable on the non-linearity as response while other 

additives  are kept constant in the optimization process 33-34. 

Whereas, the multivariate semi-empirical methods such as 40 

response surface methodology (RSM) and artificial neural 

network (ANN) have been widely accepted to model and 

optimize the productive processes 35-37. The multivariate methods 

contemplate the effect of two initial ingredients (variables) on the 

final output product (response) simultaneously free of mentioned 45 

complexity 38. In addition, the semi-empirical methods have used 

the responses of the designed actual experiments for modeling 

which are applied to optimize the process 36-41. In this work, the 

fabrication of the ZnO-Bi2O3 based low voltage varistor were 

modeled and optimized by RSM and ANN. In the modeling, the 50 

amounts of the starting powders were selected as input variable 

while the non-linear coefficients of the fabricated varistors were 

the actual responses. The generated models of both RSM and 

ANN were validated by particular techniques then they were used 

to navigate the fabrication.  55 

Experimental setup 

Materials and methods 

In this work, ZnO (99.9%), Bi(NO3)3.5H2O (98%, Alfa Aesar), 

Ti(OC4H9)4 (96%, Alfa Aesar), Antimony acetate (99.99%, 

Aldrich), and absolute ethanol (Merck) were used to prepare 60 

starting powder. To prepare coated ZnO powder, the appropriate 

amount of Bi(NO3)3.5H2O, Antimony acetate and Ti(OC4H9)4 

were dissolved in 100 ml of the ethanol under continuous stirring 

for 1 h. Then, the appropriate amount of ZnO powder was slowly 

added to the solution at 80 oC to obtain the slurry. The slurry was 65 

changed to paste with continual heating and magnetic stirring. 

The paste was dried by an oven at 100 oC overnight. Thereafter, 

the dried paste was ground and characterized by Field Emission 

Scanning Electron Microscopy (FESEM) and thermo-gravimetric 

analysis (TGA) to indicate coating layer and determine the 70 

calcinations temperature respectively. The FESEM confirmed the 

coated ZnO in this stage (Fig. 1). The calcinations was conducted 

at 750 oC for 2 h in air with a heating and cooling rate 5 oC/min to 

convert coated hydroxide (Bi(OH)2, TiO2 and Sb(OH)2) to metal 

oxide (Bi2O3, TiO2 and Sb2O3) by a box furnace (CMTS model 75 

HTS 1400). To make the varistor, the proper amount of coated 

ZnO powders as starting powder was pressed into 10 mm 

diameter pellets at 200MPa using a uniaxial presser machine. The 

compacted pellet was sintered at 1260 oC in air for 1 h, also with 

heating and cooling rates of 5 oC/min 38. The both sides of 80 

sintered pellet as ceramic core of the varistor were painted by a 

silver electrode for DC current-voltage (I-V) characterization. 

The I-Vs were obtained by scanning the varistors from 0 to 100 

volts using a step size of 2.5 which was performed by a Keithley 

2400 sourcemeter. The obtained current density (J) and electrical 85 
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field (E), the I and V were divided by surface of the painted silver 

electrode (cm2) and thickness of the ceramic core (mm) 

respectively. The non-linear coefficient of the varistor which 

comes from I = KVα (α = alpha) was calculated according to 

equation (1), 5 
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where E1 (V/mm) and E2 (v/mm) were obtained at J1 = 0.1 

(mA/cm2) and J2 = 1 (mA/cm2), respectively 42. The alpha was 

used to fitting and learning processes of used semi-empirical 10 

methods to obtain the optimized varistor. The optimized varistor 

was characterized by X-ray diffraction (XRD; (PANanalytica, 

Philips-X’pert Pro PW3040/60) and field emission scanning 

electron microscopy (FESEM; JEOL JSM-7200) with energy 

dispersive X-ray analysis (EDX). The XRD was within the 2θ 15 

scan range of 20-80ofor the phase analysis. 

 

 

 

Fig. 1. The morphology of the used ZnO grain in the ceramic 20 

core of the low voltage varistor (a) ZnO powder before coating, 
(b) ZnO powder after coating and before calcination 
 

RSM experimental design 

RSM modeling as a semi-empirical method uses the actual 25 

responses which are obtained by particular experiment of design 

(EOD). In this case, the design was carried out by central 

composite design (CCD) that embedded in the Design-Expert 

software version 8.0.7.1, Stat-Ease Inc., USA [28-29]. In the 

design, the amounts of the additives (Bi2O3, TiO2, and Sb2O3) in 30 

the ceramic starting powder were considered as the input 

effective variables. The amounts of the variables were selected to 

be in the vicinity of their reported range 16, 43-47. Table 1 shows 

the variables in coded symbols as well as the actual values and 

ranges used in the design. Table 2 illustrates the design of 20 35 

samples which categorized as follows: factorial points (8 

samples), axial points (6 samples), and central points (6 samples). 

The central points are the replicated samples which were acquired 

to measure the experimental pure error. In the design, each raw 

shows the process of a varistor’s fabrication (Run) which 40 

explained in section 2.1 while the columns indicate the amount of 

the additives, the calculated and model predicted alpha of the 

fabricated varistor. Therefore, the process in section 2.1 was 

carried out for each run in the laboratory. The calculated alphas 

presented in Table 2 (the actual responses) were used for the 45 

RSM fitting process to find the appropriate model which applied 

for optimization of the varistor (section 3.1) 48-49. The fitting 

process proposed a provisional model which was deeply validated 

by analysis of variance (ANOVA). The model was used to track 

the optimum amount of the additives in the experimental design 50 

points as well as predict the desirable condition that maximizes 

the alpha of final varistor.  

 

 

 55 

Table 1. The effective variable in the ceramics staring powder and their used levels for experiment of interest 

 

Effective variables Level of the variables  

Coded Actual The lowest (-α) Low (-1) Center (0) High (+1) The highest (+α) Unit 

x1 Bi2O3 0.16 0.3 0.5 0.7 0.84 Mol% 
x2 TiO2 0.16 0.3 0.5 0.7 0.84 Mol% 
x3 Sb2O3 0.13 0.2 0.3 0.4 0.47 Mol % 
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Table 2. Experimental design of the varistor’s fabrication, the 
columns show the amounts of Bi2O3, TiO2, Sb2O3, actual and 
model predicted alpha while the rows are varistors as samples 
 

Run Bi2O3 

(mol %) 

TiO2 

(mol %) 

Sb2O3 

(mol %) 

Observed 

Alpha 

Predicted 

Alpha 

1 0.3 0.3 0.2 4.1 4.6 

2 0.7 0.3 0.2 4.3 4.7 

3 0.3 0.7 0.2 1.0 1.4 

4 0.7 0.7 0.2 5.5 5.3 

5 0.3 0.3 0.4 4.0 4.4 

6 0.7 0.3 0.4 3.5 3.3 

7 0.3 0.7 0.4 3.9 3.6 

8 0.7 0.7 0.4 6.6 6.3 

9 0.164 0.5 0.3 5.7 5.2 

10 0.836 0.5 0.3 7.2 7.5 

11 0.5 0.164 0.3 5.9 5.3 

12 0.5 0.836 0.3 4.8 5.1 

13 0.5 0.5 0.132 3.0 2.5 

14 0.5 0.5 0.468 2.9 3.1 

15 0.5 0.5 0.3 15.3 14.5 

16 0.5 0.5 0.3 13.6 14.5 

17 0.5 0.5 0.3 15.3 14.5 

18 0.5 0.5 0.3 13.6 14.5 

19 0.5 0.5 0.3 13.6 14.5 

20 0.5 0.5 0.3 15.3 14.5 

 5 

ANN learning  

The learning process is carried out to determine the structure of 

ANNs semi-empirical model methods by using training and 

testing data sets. Therefore, the performed experiments in Table 2 

were randomly split up into two sets as training and testing data 10 

sets using the option available in NeuralPower software version 

2.5 50-51. The ANN structure consists of input, hidden and output 

layers while the input layer is made of initial variables (additives) 

and output layer has only one node as response (alpha). Since the 

learning process determines the number of the node in the hidden 15 

layer by using the splitted data sets. The number of nodes in the 

hidden layer was obtained by trial and error learning calculation 

which was examined from 1 to ‘15’ nodes. The learning process 

was initially started with one node in the hidden layer to obtain a 

network (architecture) with 3 nodes input, 1 node in hidden and 1 20 

node in output layer by a quick propagation algorithm (QP). The 

nodes in the input and output layers are kept constant during the 

process while number of the nodes in the hidden layers were 

varied up to 15. The examination of each node is repeated for10 

times to avoid the random correlation due to the random 25 

initialization of the weights. Among the repeated examination, 

the architecture with the lowest Root mean squared error (RMSE) 

is selected for each node. Therefore, 15 architectures are obtained 

at the end of the learning process for QP algorithm. As a result of 

the learning process, the architecture with minimum RMSE is 30 

selected as a final topology for calculation of the coefficient of 

determination (R2) and the percentage of absolute average 

deviation (AAD) (E.q. 2 and 3), 
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where ‘n’ is the number of points, ‘yi’ is the predicted value, ‘ydi’ 

is the actual value, and ‘ym’ is the average of the actual values. 40 

Therefore, the appropriate topologies were determined by 

minimum RMSE and ADD while the R2 was at maximum value. 

The model was used to obtain the importance and optimum 

narrow level of the additives in the initial powder. In addition, the 

model predicted the optimum values of the additives to achieve 45 

the maximum alpha value.  

The semi-empirical methods 

A corner of RSM  

RSM creates a functional relationship between variable-variable 

and variables-response(s) by using approximated low-degree 50 

polynomial models that consist of the variables and their 

coefficients. Equation 4 shows the second-order polynomial 

which RSM commonly uses for optimization process,  
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where Y is the response of interest, β0 is a constant term, βi is the 55 

coefficient of the linear terms, βii demonstrates the quadratic term 

coefficient, and βij is the coefficient of the interaction terms. All 

of the coefficients are unknown. The xi and xj are control 

variables and “ɛ” is a random experimental error. The β’s are 

estimated by a fitting process that uses the actual experimental 60 

responses. In the fitting process, the responses are fitted to the 
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polynomial (Eq.(4)) by sequential model sums of squares 

(SMSS). SMSS compares the sufficiency of linear, two-factor 

interaction (2FI), quadratic, and cubic models using the statistical 

significance of adding new model terms, step-by-step in 

increasing order 52. The comparison is presented by statistical 5 

evidence such as the F-value, predicted residual sum of squares 

(PRESS), adjusted R-squared (RAdj), predicted R-squared (Rpred), 

and probability value (P-value). The PRESS is the sum of the 

squares of a model’s prediction errors. The minimum value of the 

P-value and PRESS as well as the maximum value of RAdj, RPred, 10 

and F-value are considered to determine the provisional model of 

the process 48, 53. The provisional model is usually suggested by 

the software and is studied in detail using analysis of variance 

(ANOVA) 54. The ANOVA indicates the significance of each 

term of the model, including the intercept, linear, interaction, and 15 

square terms. In fact, the adequacy of the model is certified by 

ANOVA and then the model is used to navigate the process. The 

model is able to track the optimum amount of the variables in the 

experimental design points by canonical and three-dimensional 

(3D) plots as the surface response. Moreover, the model is 20 

capable of predicting the desirable condition that maximizes the 

yield of the productive process.  

 

ANN description  

ANNs are semi-empirical modeling methods which use the actual 25 

processing condition and corresponding responses to govern a 

network to avoid of complexity. The network consists of different 

layers such as input, hidden and output which are made of several 

connected units (nodes). The nodes are simple artificial neurons 

which mimics a biological neural network make. The nodes of 30 

input layer are the effective variables and in output layer is the 

responses. In the hidden layer, the number of nodes is determined 

by learning process 55-56. In the network, the nodes are connected 

by multilayer normal feed-forward or feed-back connection 

formula 57.  To qualify the network, the input layer acts as 35 

distributor and sends data via the weights to the nodes of second 

layer (hidden layer) 58. The weighted data is saved as processing 

nodes in the hidden layer and then transferred to the output layer 

by particular transferred function 59-60. Therefore, the qualified 

data are passed into the input layer, propagated to hidden layer 40 

and then transfers into the output layer of the network by iterative 

procedure 61. The iteration is an act of repeating a process to 

approach a desire result. After appeared the first input-output 

iteration result, the second period is processed and so on. The 

network changes the weights in order to reduce the difference 45 

between actual and network’s predicted responses at each 

iteration. The results of iteration are used as starting point of next 

iteration. For example, when the results of last iteration become 

almost equal to the results of previous iteration, the process will 

be terminated. The iteration process is continued by self-50 

similarity method (Eq.5)61.  

 

!�"� � # [%� 
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where ‘m’ is an empirical data pairs of independent and 55 

dependent variables such as (xi, xi) and f(xi, β) is the model 

curve. In self-similarity process, the β parameter of f(xi, β) is 

optimized by minimizing the root mean squared error (RMSE). 

As a result, the main aim of the learning process is to find the 

weights for minimizing the RMSE which is obtained from 60 

difference between network prediction and actual responses 

(Eq. 6). 
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where ‘n’ is number of the points, yi is the predicted values and 65 

ydi is the actual values.  

Results and discussion  

In this work the fabrication of ZnO-Bi2O3-TiO2-Sb2O3 ceramic 

that is used as core of low voltage varistors was modeled and 

optimized to improve the protectiveness of electrical devices and 70 

consequently e-waste reduction. The modeling processes were 

carried out by semi-empirical methods such as RSM and ANN. In 

the processes the initial additives in the varistor’s ceramic core 

starting powder including Bi2O3, TiO2 and Sb2O3 were input 

variables while the non-linear property of the fabricated varistors 75 

(alpha) was output. The obtained models of the used methods 

were validated by different techniques then they were used to 

navigate the fabrication which included optimization of the input 

variables to maximize the output as well as determined the 

importance of the input variables. As final conclusion, the models 80 

predicted the optimum varistors which experimentally were 

fabricated. The electrical characteristic of the varistor were 

compared to select the final optimized varistor.  
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RSM modeling and validation 

According to the experimental design (Table 2), twenty varistors 

were fabricated and their I-V characteristics were measured to 

calculate actual alpha which is presented by Fig. 1. As shown, the 5 

maximum alpha belonged to the middle of the selected levels of 

the additives that shows the levels were properly selected. To 

obtain a suitable model, the collected data in Table 2 as 

experimental design including the amount of the additives and 

observed alpha were used as input variables and output response 10 

for fitting process respectively by RSM. First, the fitting process 

were carried out for 2FI, linear, quadratic, and cubic models to 

obtain Lack of Fit indicators and the standard deviation (Std. 

Dev.), RAdj, RPred,  and RPred (Table 3). Then the results of each 

model were compared to suggest the provisional model for 15 

deeply validation (Table 4). As Table 4 indicates the quadratic 

model was merit to suggest while the cubic model was aliased. 

As a result, the quadratic model with Std. Dev. (0.8), Radj (0.973),  

Rpred (0.951), and R2 (0.986) was selected as the provisional 

model to deeply validation.  20 

 

 

Fig. 2. The obtained actual alpha for 20 varistors in the 

experimental design while the run numbers 15 to 20 are 

replication which are in middle of the selected levels  25 

 

Table 3. The fitting results of the 2FI, linear, quadratic and cubic models, Std.Dev. is standard deviation  

 

Source  Lack of Fit indicator Model Summary Statistics 

  F-Value p-value Std.Dev. RAdj RPred   R2 PRESS 

Linear 46.9 0.0003 5.3 0.0 -0.2 -0.3 617.3 

2FI 63.0 0.0001 5.8 0.0 -0.4 -1.5 1146.5 

Quadratic 0.5 0.7789 0.8 1.0 1.0 1.0 22.5 

Cubic 0.2 0.6830 0.9 1.0 1.0 0.9 42.2 

 

30 

Table 4. The sequential model sum of squares comparison for 2FI, linear, quadratic and cubic models to suggest the provisional 

 

Source F-Value p-value Remark 

2FI vs. Linear 0.1 0.9578   

Quadratic vs. 2FI 225.8 < 0.0001 Suggested 

Cubic vs. Quadratic 0.6 0.6519 Aliased 

 

The selected provisional model which is a mathematic equation 

(E.q. 6) has presented the relationship between the inimical 35 

additives as input variables as well as the variables and final 

output (alpha) using estimated coefficients and linking signs (±). 

 

� � 	
55.244 + 68.436�� + 60.736�� + 242.182�6 +
23.130���� 
 14.612���6 + 29.810���6 
 72.143��� 
40 

81.49��� 
 413.012�6�                                                         (6) 

 

where Y is alpha; x1, x2, and x3 are linear parameters, x1
2, x2

2, x3
2 

are the quadratic terms; and x1x2, x1x3, and x2x3 are the interaction 

factors which were introduced by Table 1. The next number to 45 

the items are fitting estimated coefficients which are the weights 

of the terms while the linked signs (+,-) determine the synergic 

and antagonistic behavior of the parameters in the model.  

The deeply validation of the provisional model was carried out by 

analysis of variance (ANOVA) which has depicted in Table 5. As 50 

0
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shown, the general model fit and lack of fit were correctly 

significant and not-significant respectively. As the detail of 

validation, the term’s partial sum of squares has confirmed the 

significance of x1, x1x2, x1
2, x2

2, and x3
2 in the model while x2, x3, 

x1x3, and x2x3 were not significant, which means they can be 5 

removed from the model. Therefore, the modified model could be 

presented by: 

 

� � 	
55.244 + 68.436�� + 23.130���� 
 72.143��� 

81.49��� 
 413.012�6�                                                         (7) 10 

 

where the linear term of x1 (Bi2O3) and the interaction term of 

x1x2 (Bi2O3 × TiO2) have  a synergic effect on alpha, while the 

quadratic terms have an antagonistic effect on the response. 

Moreover, the importance of the terms is exhibited by the 15 

coefficients and their priority were appeared like 

x3
2>x2

2>x1
2>x1x2>x1. As result of the validation, the quadratic 

model has been recognized as outstanding final model which 

used to navigate the ceramic fabrication process. 

 20 

Table 5. The model analysis of variance for model fit and lack 

of fit as well as the importance of the terms in the provisional 

model 

 

Source F-Value p-value Remark 

Model Fit 78.27 < 0.0001 significant  

Model Lack of 

Fit 0.48 0.7789 not significant 

x1 10.22 0.0095 significant  

x2 0.05 0.8335 not significant 

x3 0.82 0.3852 not significant 

x1x2 10.62 0.0086 significant  

x1x3 1.06 0.3275 not significant 

x2x3 4.41 0.0621 not significant 

x12 185.58 < 0.0001 significant  

x22 239.73 < 0.0001 significant  

x12 380.48 < 0.0001 significant  

Lack of Fit 0.48 0.7789 not significant 

 25 

Model application  

Levels optimization 

The validated model optimized the input variables (Bi2O3, TiO2, 

and Sb2O3) in range of the experimental design to obtain a 

varistor with maximum alpha. The optimization was carried out 30 

by mathematical derivation of the validated model (E.q (7)) and 

graphic three dimensional plots (3D plots) that produced the 

points and response surface for the additives as well as alpha 

respectively. The optimized points were obtained by equations 

(8) to (10) which only one parameter is varied 36-37.   35 
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where the variables x1, x2, and x3 in the equations were introduced 

by Table 2. The calculation point method is very simple however 

its experimental validation test has presented a large error.  40 

On the other hand, the response surface method has presented the 

effect of two variables (additives) on the output (alpha) in a 3D 

plot (Fig. 3) while the other parameter is kept constant. In this 

case, there are 3 variables such as TiO2, Bi2O3, and Sb2O3 which 

indicated three 3D plots in Fig. 3(a), 3(b) and 3(c). Fig. 3(a) 45 

shows the simultaneous effect of TiO2 and Bi2O3 on the alpha at 

constant amount of Sb2O3. As observed, the increasing amounts 

of TiO2 and Bi2O3 up to 0.5 mol%, made the synergic effect on 

the alpha, while the amounts antagonistically operated to reduce 

the alpha beyond the optimum (0.5 mol%). Therefore, the 50 

optimum has been presented by a small surface as response 

instead of a point that reduced the error of the experimental 

validation of the varistor. Fig. 3(b) shows the interaction effect of 

Sb2O3 and Bi2O3 on the alpha at a constant amount of TiO2 which 

depicted the alpha was increased up to 0.5 and 0.3 mol% of 55 

Bi2O3and Sb2O3, respectively. However, at the excess amounts of 

the additives, the alpha was decreased. Moreover, Fig. 3(c) 

demonstrates the effects of TiO2 and Sb2O3 at a constant amount 

of Bi2O3. As shown in the both 3D plots, the maximum value of 

the alpha appeared at 0.3 mol% Sb2O3 and the amounts of Bi2O3 60 

and TiO2 were confirmed as indicated in Fig. 2(a). The amount of 

Sb2O3 was synergically affected from 0.2 to 0.3 mol% on the 

alpha and then it operated as antagonistic effect up to 0.4 mol%. 

The synergic effect of Sb2O3 may be due to  densification of the 

ceramic matrix during the sintering process 62. However, their 65 

antagonistic effect beyond optimum might be due to 

homogeneous segregation of the additives at this concentration 47, 

63. As a result, the optimum has determined the very narrow level 

Page 8 of 16RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

8  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

of Bi2O3, TiO2 and Sb2O3 and quite small surface response around 

14.52 for the alpha. 

 

 

 5 

Fig.3. The graphical presentation of the maximized alpha response surface and optimized amounts of TiO2, Bi2O3 and Sb2O3 as 

additive in the starting powder of the ceramic core that used in ZnO low voltage varistors, (a) The effect of TiO2 and Bi2O3 on the 
alpha at constant amount of Sb2O3, (b) effect of Sb2O3 and Bi2O3 on the alpha at constant amount of TiO2 (c) effect of TiO2 and Sb2O3 on 
the alpha at constant amount of Bi2O3 

 10 

The model prediction  

The model was able to predict a varistor with maximum non-

linearity coefficient (alpha) at high desirability value by using 

numerical particular condition which selected by experimenter. 

The desirability is an objective function that uses mathematical 15 

methods 64, where the range of the desirability starts from zero for 

out of the limited area and goes to one at the goal. The 

desirability of this prediction was 0.92 that was very close to the 

goal. The selected options of the particular condition were ‘in 

range’, ‘minimum’ and maximum for ‘amount of the additives’, 20 

‘standard error’ and ‘alpha’ respectively. The options were 

facilitated by the default of used software. The model predicted 

values for Bi2O3, TiO2 and Sb2O3 were 0.52, 0.5 and 0.3 mol% at 
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standard error, 0.328, and alpha, 14.52. The suggested values of 

the additive were used to fabricate the ceramic core in the 

laboratory for further experimental validation.  The both side of 

the ceramic were painted by silver electrode and used as final 

varistor to electrical characterization. Fig. 9 has been presented 5 

the results of the characterization which used to calculate the 

alpha at J1 = 0.1 (mA/cm2) and J2 = 1 (mA/cm2). The alpha was 

15.3 for E1= 7.4 (V/mm) and E2 =  8.6 (V/mm). 

 

ANN modeling and validation 10 

The ANN modeling has determined the network structure of the 

ceramic fabrication by designation the hidden layer artificial node 

number. The node number was obtained by trial and error 

learning calculations which were examined from one to 20 nodes. 

The calculations were initially started with one node in the hidden 15 

layer to obtain the architecture with 3 input nodes, 1 node in 

hidden and 1 node in output layer by a QP algorithm. The nodes 

in the input and output layers were kept constant during the 

process while number of the nodes in the hidden layers were 

varied up to 20. The examination of each node is repeated for10 20 

times to avoid the random correlation due to the random 

initialization of the weights. Among the repeated examination 

node number, the architecture with the lowest RMSE was 

selected to compare with other architectures. As Fig. 4 shows, the 

RMSE of 20 architectures were plotted versus their hidden layer 25 

node number at the end of the learning process. As a result of the 

learning process, the architecture with minimum RMSE is 

selected as a final topology which was validated by R2 and AAD 

calculation. 

 30 

Fig.4. The RMSE of the learned hidden layer of the obtained 

topologies, the smallest RMSE belonged to the topology that 
has 15 node in its hidden layer (QP-3-15-1) 

The AAD calculation of the selected topology (QP-3-15-1) was 

1.57 and 6.87 for training and testing data sets respectively which 35 

exhibited the reasonable minimum absolute average deviation. In 

addition, the scatter plots of actual alpha versus model predicted 

alpha of the varistors in the training and testing data sets to 

exhibit the R2 of the QP-3-15-1 topologies (Fig. 5). As shown, the 

predicted values was so well fitted to the actual values for 40 

training data set (R2 = 0.991) as well as testing date (0.974) sets 

which confirmed the validity of the topology (QP-3-15-1). 

Therefore, the QP-3-15-1 topology was considered as efficient 

final model for navigation of the ceramic fabrication (Fig. 6). In 

the model, the input variables such as Bi2O3, TiO2 and Sb2O3 are 45 

connected to the calculated hidden nodes layer by multilayer 

normal feed-forward and then connect to alpha in output layer. 

The bias shifts the space of the nonlinearity properties. Therefore, 

the model has been applied to obtain the importance and 

optimized level of the additives in the starting power of the 50 

ceramic as well as predict the optimum values of the additives in 

the ceramic’s starting powder to achieve the maximum non-

linearity (alpha) for the varistor. 

 

 55 

 
 

Fig. 6. The fabrication model structure of the ceramic core in 

ZnO based low voltage varistor, the model consists of 3 
variables in input layer, 15 nodes in hidden layer and 1 response 60 

in output layer (QP-3-15-1), bias shifts the space of the non-
linearity properties  
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Fig. 5. The scatter plots of the actual and predicted alpha of the training and testing data set to visualize the R2 of selected 

topology (QP-3-15-1) 

 

Importance of the effective variables 5 

 
Importance shows the relative effect (%) of the initial additives in 

starting powder of the ceramic core as input variables on the non-

linearity of the varistor as response (Alpha). Therefore, the 

importance determines the effectiveness of the inputs as well as 10 

confirms or rejects the initial suppose for effective variables. In 

this case, the selected ANN model (Q-3-15-1) has determined the 

relative importance of Bi2O3, TiO2 and Sb2O3 in starting power of 

the ceramic at optimum condition (Fig. 7). As shown, the relative 

importance was 9 % (Sb2O3), 33 % (TiO2) and 22 % (Bi2O3). As 15 

a result, the selected additives variables were confirmed as 

effective input for the ceramic fabrication and none of them was 

neglect able in this work.  

 

 20 

Fig. 7. The relative importance of Sb2O3 (36.76 %), Bi2O3 

(35.55 %), and TiO2 (27.69 %), as the used additives in starting 

powder of ceramic core for ZnO based low voltage varistor  

 

Model applications 25 

Level optimization 

The wide levels of the additives in the starting power were 

selected according to previous works which were carried out by 

traditional methods such as one variable at a time 45. Therefore, 

the levels were re-designed and optimized by the validated model 30 

(QP-3-15-1). For this purpose, the model simulated the effect of 

two additives on the alpha simultaneously without further 

requirement of mathematic function and equation knowledge 

while other factor was kept constant. The simulated effects have 

27.69%

35.55%

36.76%

0% 10% 20% 30% 40%

TiO2

Bi2O3

Sb2O3
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been presented as three dimensional plots (3D plots) by Fig. 8 

which demonstrate the surface of the additives’ effect on the 

alpha. Therefore, the optimized narrow levels of the additives 

were Bi2O3 (0.606 – 0.836), TiO2 (0.293 – 0.836) and Sb2O3 

(0.154 – 0.301) in mol% at optimum condition. The levels were 5 

used to predict the optimum point value of the additives that 

maximized the alpha.  

 
 

Fig. 8. The 3D plots of simultaneous effect of two additives on the alpha, the red surface response is the desirable alpha and blue 10 

color shows the lowest values of the alpha, (a) the effect of Sb2O3 and Bi2O3, (b) the effect of Sb2O3 and TiO2 and (c) the effect of Bi2O3 
and TiO2 
 

Model prediction 

 15 

The model was used to predict the optimum condition in the 

optimized levels for fabrication of 3 varistors (Table 6). The table 

shows the optimum point values of the additives and the related 

alpha for each suggested varistors. The fabricated processes 

including preparation of the starting powder, pressing, sintering 20 

and electroding were carried out for the three varistors in the 

laboratory to validate the model prediction. The electrical 

characterization of the varistors was carried out to calculate the 

alpha (E.q 1) which indicated in table 6. As shown, the actual 

alphas were very close to the model prediction which confirmed 25 

the model predictability. Therefore, varistor 1 was selected as 

optimized case for electrical (E-J) and structural characterization 

including FESEM, EDX and XRD.    

 

 30 
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Table 6. The model predicted varistors that consists of the values of the additives in ceramics starting powder, the rows show the 
optimum amounts of the additives and the columns indicate the composition in the ceramic core of each varistors, the predicted alpha 
was suggested by model and the actual alpha is experimental result 
 

Additives and alpha  Varistor 1 Varistor 2 Varistor 3 

Bi2O3 0.50 0.4611 0.4611 

TiO2 0.47 0.468 0.437 

Sb2O3 0.21 0.256 0.262 

Predicted Alpha 27.24 27.21 26.90 

Actual Alpha 28.10 27.74 26.44 

 5 

The models navigation  

 
In this work, the variables were initially used in wide levels, 

identical importance and without any considered points. 

Therefore, the RSM (E.q. 6) and ANN models (Fig. 6) were used 10 

to determine the optimum levels, optimum points and the 

importance of the effective variables which is presented by Table. 

7. As shown, there is a big difference between the values of the 

obtained alpha from RSM and ANN predicted varistors which are 

15.3 and 28.1 respectively. It might be due to the selected levels 15 

and consequently the used point values of the Sb2O3 in the 

ceramic starting powder. The Sb2O3 controls the growth of the 

ZnO grains which is necessary for low voltage varistors by 

decreasing the mobility of grain boundaries by making a fine Sb-

rich film on the surface of the ZnO grains 65. Moreover, the high 20 

models importance Sb2O3 confirmed that the alpha was very 

sensitive to the amount of while RSM’s model (Eq. 6) has 

depicted the antagonistic effect of the additive on the alpha. As a 

final result of the modeling processes, ANN predicted varistor 

was selected to characterize the microstructure of the ceramic 25 

core by using XRD, FESEM and EDX.  

 

 

Table 7. The results of application RSM and ANN validated models for additives of ceramic starting powder as input effective 

variables and non-linear properties of final optimized varistors  30 

 

Model 

Bi2O3  TiO2  Sb2O3  

Alpha 

Level 

(Mol%) 

Point 

(Mol%) 

Imp. 

 (%) 

Level 

(Mol%) 

Point 

(Mol%) 

Imp. 

 (%) 

Level 

(Mol%) 

Point 

(Mol%) 

Imp. 

 (%) 

RSM 0.4 - 0.7 0.52  23 0.4 – 0.6 0.5 30 0.2 - 0.35 0.3  47 15.3 

ANN 0.61 – 0.84 0.50 36.55 0.29 – 0.84 0.47 27.69 0.15 – 0.30 0.21 36.76 28.1 

 

Starting powder of the final varistor 

The starting powder of the final varistor ceramic core was 

prepared according to above methods (section 2.1). Fig. 9 shows 35 

the FESEM morphology of the starting powder which was 

calcined to produce the coated metal oxides over the ZnO grains. 

As Fig. 9 (a) indicated, the distribution of the coated additives has 

presented great homogeneity which confirmed the ability of the 

solution coating method for the fabrication. Moreover, the most 40 

frequent coated additives particles sizes were within 40 to 50 nm 

(Fig. 9b), as obtained from 100 particles in different images of 

the calcined powder.    

 

Fig. 9. The FESEM morphology of the calcined starting 45 

powder of the final varistor ceramic core, (a) the coated 
additives over ZnO grains, (b) the particles size of the coated 
additives  
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Fig. 10. Illustrates the limited area EDX spectra of the starting 

powder to element analyze. As shown, the elements of Zn, Bi, Ti, 

and O were detected in the selected area of the powder while 

antimony (Sb) was not detected whereas it was detected by XRD 

(Fig not show). 5 

 

Fig. 10. The EDX histogram of the staring powder of final 

varistor ceramic core, the C peak is related to carbon type that 
used as based of the sample  
 10 

The ceramic core of the final varistor 

 
To prepare the ceramic core of the final varistor, the appropriate 

of staring powder was pressed into particular pellet then sintered 

at 1260oC for one hour. The sintered pellet as ceramic core was 15 

characterized using FESEM, EDX, and XRD. Fig. 11 

demonstrates the FESEM morphology of the ceramic core 

microstructure. Fig. 11(a) illustrates the homogenized ZnO grains 

size which may be due to the appropriate distribution of the 

additives in the initial powder 66. The size frequency of the ZnO 20 

grains has presented by Fig. 11(b) which is in the range of 7 to 26 

µm. As observed, the maximum frequency of the sizes was 

concentrated between 13 and14 µm that demonstrated the 

excellent enhancement of the grain size in the optimized 

comparison of the starting powder.  25 

 

 

Fig. 11. The microstructure of the ceramic core in the low 

voltage varistor, (a) FESEM micrographs, (b) ZnO grains size 
distribution 30 

 

The element analysis of the ceramic core has been investigated 

XRD pattern that reported according to the reference code such as 

00-005-0664, 00-008-0258, 00-034-0097, and 00-025-1164 (Fig. 

12). The XRD detected antimony element which has not detected 35 

by EDX analysis of the starting powder. 

 

Fig.12. The XRD pattern of the ceramic core used in the 

optimized varistor 

 40 

Conclusions 

In this work, the fabrication of the used ceramic in voltage 

dependent varistor was designed and then experimentally 

performed to calculate its non-linear coefficients as output actual 

responses. The responses were used to obtain the appropriate 45 

model for the fabrication by RSM and ANN semi-empirical 

methods. The obtained models were carefully validated by 

mathematical, statistical and experimental evidences. Then the 

models were used to determine the importance of the effective 

additives, confirmed the selected levels of the initial additives in 50 

experimental design and the optimum points of the additives 

which were able to maximize the quality of the varistors. 

Thereafter, the collected results of the two models were compared 

to select the final varistor. As a result of the comparison, the 

highest quality protection, 28.1, was provided by the varistor 55 

which made of Bi2O3 (0.5 mol %), TiO2 (0.47 mol %) and Sb2O3 

(0.21 mol %). Therefore, the modeling and optimization 

successfully predicted the quit high protective varistor free of 

mathematical and physical complexity which has industrial scale 

up potential to produce high protected electronics which control 60 

the global e-waste.  
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