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Low band gap (Eg) conjugated polymer photovoltaic donor materials have been a 

hot research subject in the field of polyme solar cells (PSCs) in recent years, owing to 

their distinguished optical and optoelectronic response to visible and NIR light.
 1 

Compared to poly(3-hexylthiophene) (P3HT) which is the most representative 

polymer donor material, more photons can be absorbed from the low band gap 

polymers and transferred into effective currents. Thus developing low band gap 

polymers has become an effective strategy to realize highly efficient PSCs.
2 

The low 
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bandgap conjugated polymers can be obtained by copolymerization of 

electron-donating unit (D) and electron-accepting unit (A),
 3,4

 attaching electron-rich 

or electron-deficient functional substitutuents, or using quinoid resonance structure.
2 

However, lowering Eg often results in high-lying HOMO energy level of the 

conjugated polymers,
5
 which will make the polymer unstable against oxidation and 

lead to lower open circuit voltage (Voc) of the PSCs based on the polymer as donor. 

Therefore, in the molecular design of the photovoltaic donor polymers, it should be 

considered to decrease the HOMO and LUMO energy levels with remaining low Eg.  

   Isoindigo, known since antiquity, is industrially used as dyestuff,
6
 and now it 

is also found important photovoltaic effect.
7 

As shown in Scheme 1, isoindigo 

bears two symmetrical oxindole motif and can be regarded as a compound with 

trans stilbene hydrocarbon backbone linked by two lactame rings. The two lactame 

rings affiliated to adjacent aryl rings in isoindigo ensure its planar molecular 

structure. Recently, it has been reported that isoindigo is obviously a strong 

electron-accepting unit.
7
 Therefore, isoindigo could be a promising acceptor unit 

in D-A copolymers with low bandgap and lower LUMO energy level.
7(d)-7(j)

 In the 

other hand, benzo[2,1-b:3,4-b′]dithiophene (BDP) as a derivative of 

benzo[1,2-b:4,5-b']dithiophene (BDT) is modified by a benzo-annellation. From 

molecular simulations and experiments results in some papers, the HOMO levels 

of homopolymers of BDP and BDT are -5.70 eV and -5.16 eV, respectively.
 8

 

Obviously, the former exhibits a lower HOMO level than that of the former, which 

suggests that the a new polymer containing BDP unit can show a lower-lying 
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HOMO than those similar structure based BDT polymers. Meanwhile, BDP 

containing polymers have showed high photovoltaic performances.
 8-10

  

 

 

Scheme 1 Molecular model of isoindigo (IID) unit. 

 

Based on these considerations, in this work we synthesized a new low band 

gap D-A copolymer of poly(benzo[2,1-b:3,4-b′]dithiophene-alt-isoindigo) 

(PBDP-IID) with BDP as the donor unit and isoindigo as a aceptor unit. PBDP-IID 

possesses a low Eg of 1.57 eV and a lower HOMO energy level of -5.44 eV. The 

PSCs based PBDP-IID as donor demonstrated a power conversion efficiency of 

5.07% with a high open circuit voltage (Voc) of 0.95 V. To our knowledge, the Voc 

of 0.95 V is the highest value among the PSCs based on the narrow bandgap 

polymer donors with Eg < 1.6 eV.  

The synthetic route of PBDP-IID is shown in Scheme 2. In acidic condition, 

6-bromoisatin (1) and 6-bromooxindole (2) was condensed to form 

1,1′-dihydro-6,6’-dibromoisoindigo (3) as brown solid power with 90% yield. 

Then alkyl side chains was employed to increase the solubility of isoindigo. The 

monomer of isoindigo was copolymerized with the monomer of BDP unit by 

typical Stille coupling reaction to obtain deep dark green solid power PBDP-IID 
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with a 64% yield.  

  

 

Scheme 2 Synthetic route of PBDP-IID: i)  acetic acid, conc. hydrochloric acid, 

reflux, 9h; ii) 2-ethylhexyl bromide, 12h, DMF, K2CO3 100
o
C, 10h, argon; iii) 

Pd(PPh3)4, Toluene, reflux, 20 h. 

The polymer of PBDP-IID is readily dissolved in common solvents such as 

chloroform and THF. The corresponding weight average molecular weight (Mw) of 

PBDP-IID is 37.6K, with a polydispersity index (PDI) of 2.3. Thermal stability of 

the polymer was investigated with thermogravimetric analysis (TGA). (see 

supporting information). The TGA result reveals that, in the air, the onset 

temperature with 5% weight-loss (Td) of PBDP-IID is 379
o
C. This indicates that it 

has good thermal stability against oxygen, which is very important in device 

fabrication process and other kinds of applications. 

Figure 1 shows the absorption spectra of PBDP-IID in dilute chloroform 

solutions (s) and solid thin films (f). The absorption spectrum in dilute chloroform 

shows two absorption bands, which are common characters for D-A type low band 
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gap polymers. The absorption band located at 300-500 nm should be attributed to 

the π-π* transition of the conjugated polymer main chains and the longer 

wavelength absorption band located at 500-800 nm are caused by intramolecular 

charge transfer (ICT) interaction between electron-rich BDP and electron-deficient 

IID units. The main absorption peak and onset of PBDP-IID appeared at 678 nm 

and 769 nm, respectively. In solid film state, the absorption spectrum of PBDP-IID 

shows red shift in some degree. The main absorption peak is red shifted to 691 nm 

and absorption edge extended to 792 nm due to more aggregated configurations 

formed in film than in solution. The optical bandgaps (Eg
opt

 ) calculated from the 

absorption edge of the PBDP-IID film is 1.57 eV, which confirms that the low 

band gap conjugated polymer is indeed realized by incorporating new isoindigo 

acceptor unit in the D-A copolymers. 
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Figure 1  Normalized UV-Vis absorption spectra of PBDP-IID in dilute CHCl3 

solutions (s) and in solid films (f).  
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Electrochemical cyclic voltammetry has been widely employed to investigate 

the redox behavior and to estimate the HOMO and LUMO energy levels of a 

conjugated polymer.
 
Figure 2 shows the cyclic voltammogram of PBDP-IID. 

Clearly, PBDP-IID shows reversible p-doping/dedoping and n-doping/dedoping 

processes in the positive and negative scanning potential range. The onset 

oxidation potential (Eox) is 0.73 V vs Ag/Ag
+
 and the onset reduction potential 

(Eox) is -0.94 V vs Ag/Ag
+
, respectively. The corresponding HOMO and LUMO 

values are calculated accroding to the equations LUMO = -e(Ered + 4.71) (eV) and 

HOMO = -e(Eox + 4.71) (eV). 
11

(where the units of Eox and Ered are V vs Ag/Ag
+
). 

The corresponding HOMO and LUMO values are -5.44 eV and -3.77 eV, 

respectively. The electrochemical band gap (Eg
ec

), taken as the difference between 

the onsets of oxidation and reduction potentials, is equal to 1.67 eV for PBDP-IID. 

The deeper HOMO level of PBDP-IID is favorable for realizing high open-circuit 

voltage (Voc) of the PSCs based on the polymer as donor. 
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Figure 2 Cyclic voltammograms of the PBDP-IID film on a platinum electrode in 

acetonitrile solution containing 0.1 mol/L Bu4NPF6 at a scan rate of 20 mV/s. 
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Figure 3 J-V curves of the polymer solar cells based on PBDP-IID/PC70BM under 

illumination of AM1.5, 100 mW/cm
2
. 

 

To evaluate the effect of the strong electron-deficient IID unit in the 

copolymer with BDP unit on the photovoltaic properties, polymer solar cells 

(PSCs) were fabricated with a structure of ITO / PEDOT:PSS / PBDP-IID 

/PC70BM /Ca/Al. The active layers were spin-coated from o-dichlorobenzene 

solutions with different PBDP-IID/PC70BM weight ratios of 1:1, 1:2 and 1:3, 

respectively. The devices were completed by evaporating Ca/Al metal electrodes 

with an area of 4 mm
2
 as defined by masks. Figure 3 shows J-V curves of the 
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devices under illumination of AM 1.5G (100 mW/cm
2
) and the device performance 

parameters are listed in Table 1. The photovoltaic performance of PBDP-IID 

exhibited a remarkable high Voc of above 0.9 V for such low band gap of 1.57 eV. 

The Jsc increases from 6.77 mA to 9.21 mA and to 7.81 mA when the 

PBDP-IID/PC70BM weight ratio changes from 1:1 to 1:2 and to 1:3, but FF 

changed little at about 55%. A higher power conversion efficiency (PCE) of 5.07% 

was obtained under the condition of 1:2 weight ratio. The results indicate more 

accepotor content in the active layer could lead to better balance between electrons 

and holes transfer process. Additional, the J-V curves of with different incident 

light intensity (from 100 to 1 mW/cm
2
) are measured and it was found Jsc is linear 

with illuminated light intensity and there is no obvious change for Voc in the 

devices. The FF appears maximum at 70mW/cm
2
 but ultimately the optimized 

PCE reaches its maximum of 5.07% at 100 mW/cm
2
. Meanwhile, Figure 4 shows 

the EQE curves of the PSC based on a blend of PBDP-IID/PCBM with a optimized 

weight ratio, which matches well the absorption range of the active layer blend. 

Table 1. Photovoltaic properties of the PSCs based on the PBDP-IID: PC70BM . 

Weight 

ratio 

Thickness 

(nm) 
Voc ( V) 

Jsc 

(mA/cm
2
) 

FF(%) PCE (%) 

1 : 1 95 0.91 6.77 54 3.33 

1 : 2 100 0.95 9.21 58 5.07 

1 : 3 92 0.97 7.81 56 4.24 
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Figure 4 EQE curves of the PSCs with a structure of ITO/PEDOT:PSS/ 

PBDP-IID: PC70BM(1:2, w/w)/Ca/Al. 

 

It is very interesting to note that an impressive high Voc of 0.95 V was 

obtained for the PSC based on this rather low band gap (<1.6 eV) polymer donor. 

The high Voc origination could be discussed from the energy level chart shown in 

Figure 5. Considering a charge separation drive force of about 0.2~0.3 eV for the 

exciton dissociation from the LUMO offset of PBDP-IID and PC70BM , there is 

only 1.44 eV left between the HOMO of PBDP-IID and the LUMO of PC70BM.  

According to the theory equation: Voc = |E
donor 

HOMO| - |E
acceptor 

LUMO|-0.3V, 
12

 

little energy loss during the charge transfer and lead to a very high Voc of 0.95 V. 

Obviously, the high Voc originates from the low-lying HOMO of the PBDP-IID 

donor material.  
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Figure 5 Energy level chart of PBDP-IID and PC70BM. 

 

Morphology study 

Surface morphology of the blend films of polymers/PC70BM with different weight 

ratios were investigated by the atomic force microscope (AFM). As shown in Figure 

6(a) and 6(c), there is very large domain sizes between D/A interfacial areas, which 

makes the surface morphology rather roughness. In Figure 6(b), on the contrary, the 

domain sizes becomes smaller and surface becomes smoother than that in Figure 6(a) 

and 6(c). From our measurement results, root-meansquare(RMS) of these films are 

6.6 nm, 2.1 nm and 3.1 nm for AFM height images with different weight ratio of 1:1, 

1:2 and 1:3, respectively, which coincides above conclusions. These very different 

morphologies imply that the different weight ratio for polymer/PCBM blends affect 

the interactions between D/A interfacial areas and at a ratio of 1:2 condition the 

morphology has been better optimized. Therefore, it is reasonable to get the highest 
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short circuit current and PCE from a blend of 1:2 weight ratio for PBDP-IID based 

devices.  

 

 

Figure 6 AFM height images (2×2µm
2
) of the active layers from Polymer:PC70BM 

with different weight ratio of (a) 1:1; (b) 1:2; (c) 1:3. 

 

In summary, a new low band gap D-A copolymer of PBDP-IID containing 

BDP donor unit and IID acceptor unit was synthesized for the application as donor 

materials in PSCs. The polymer showed a low optical band gap of 1.57 eV and 

possess a low-lying HOMO energy level of -5.44 eV. The PSCs made from blends 

of this polymer and PC70BM exhibited an efficient PCE of 5.07% a high Voc of 

0.95 V, which is the highest value reported so far for the PSCs based on the 

polymer donors with a band gap below 1.6 eV. The low-lying HOMO energy level 

of PBDP-IID plays a main role in determining this high Voc. The results indicate 

that the isoindigo-based D-A copolymer could possess a narrow bandgap as well 

as low-lying HOMO level. Therefore it shows a promising potential for the PSCs 

with tandem structures.   
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Graphic entry: 

 

 

A novel optical band gap of 1.57 eV isoindigo(IID)-containing polymer of 

PBDP-IID was synthesized and the HOMO of the polymer descends to -5.44 eV 

due to strong electron-deficient isoindigo unit. Bulk heterojunction solar cells 

made from PBDP-IID exhibited a high Voc of 0.95 V, which shows the highest 

value among the PSCs based on the narrow bandgap polymer donors with Eg < 

1.6 eV. 
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