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Abstract 

Aerosol assisted chemical vapour deposition (AACVD) was employed to synthesise 

highly transparent and conductive ZnO, fluorine or aluminium doped and aluminium-

fluorine co-doped ZnO thin films on glass substrates at 450 oC. All films were 

characterised by X-ray diffraction (XRD), wavelength dispersive X-ray spectroscopy 

(WDX), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy 

(SEM) and UV/Vis/Near IR spectroscopy. The films were 300-350 nm thick, 

crystalline and displayed high transparency at 550 nm (80-90%). The co-doped film 

consisted of 1 at.% fluorine and 2 at.% aluminium, exhibiting a charge carrier 

concentration and a charge carrier mobility of 3.47 x 1020 cm-3 and 9.7 cm2 V-1 s-1, 

respectively. The band gap of the co-doped film was found to be 3.7 eV and the 

plasma edge crossover was ca. 1800 nm. This film had a highly structured 

morphology in comparison to the un-doped and single doped ZnO films for 

transparent conducting oxide applications.  
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Introduction 

 

Transparent conducting oxides (TCO) have applications in optoelectronic devices 

such as flat panels, solar cells and light emitting diodes (LEDs).1,2 TCO’s are best 

described as having a transmittance above 80% in the visible spectrum 

characterised by a bandgap of greater than 3.1 eV and an electrical resistivity of no 

more than 10-3 Ω cm;3 hence they are optically transparent materials with high 

electrical conductivity. The electrical conductivity is a consequence of the number of 

available charge carriers (preferably 1020 cm-3 or higher) and their mobility.3,4 To be 

transparent and conductive would normally be contradictory since transparency 

requires a wide bandgap which would otherwise hinder the formation of charge 

carriers thus a compromise of the two is required. A number of factors affect the 

bandgap of semiconductors including the addition of a dopant.5 Doping increases the 

carrier concentration in order to achieve greater conductivity. It can also widen or 

narrow the bandgap particularly at high doping concentrations.6,7 However, over 

doping is not desirable as it has a detrimental effect on conductivity as a result of 

deterioration in the film structure leading to a reduction in the mobility of the free 

electrons.8,9  

 

The most widely used commercial TCO films have been made using indium or tin 

based oxides.3  Tin doped Indium oxide (ITO) is the most commonly produced TCO 

followed by fluorine doped tin oxide (FTO).10 However, indium is in limited supply 

and relatively expensive, and the price of tin has risen rapidly in the past few years.11  

Thus, there is a need to find alternative materials that can be employed in 

optoelectronic devices. Zinc oxide films have been recognised as suitable 

alternatives based on the low cost, greater earth abundance and comparable 

optoelectronic properties.12,13,14 

 

Zinc oxide with a wurtzite structure is a wide bandgap semiconductor (3.3 eV).12  The 

incorporation of dopants into the ZnO lattice is known to alter its properties15 for 

example fluorine is known to improve electrical conductivity.13 Fluorine is 

incorporated into the lattice by substituting an O2- site with F- (O2-: 1.24 Å; F-: 1.17 Å) 

resulting in one more free electron making fluorine a suitable dopant for n-type 
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conductivity.16 The incorporation of group III elements into the ZnO lattice has also 

received much attention.17,18,19,20,21  Aluminium doped ZnO films involve Al3+ (0.54 Å) 

occupying a Zn2+ (0.74 Å) site leading to a reduction in the lattice parameter. Gallium 

doped ZnO films are known to have better electrical properties as the ionic radius of 

Ga3+ is similar to that of Zn2+, minimizing deformation.13,22  However, the drawback of 

gallium is its relatively low durability in high humidity atmosphere and a higher cost 

implication in commercial production.17 Co-doping with aluminium has the potential 

to minimise the lattice distortion and lead to TCO ZnO materials with enhanced 

figures of merit.13 

 

A variety of methods have been used to deposit ZnO thin films including chemical 

vapour deposition (CVD), sputtering, sol-gel and spray pyrolysis.13,23 This paper 

focuses on thin films of ZnO, F:ZnO, Al:ZnO and uniquely Al:F:ZnO deposited via 

Aerosol Assisted CVD using a dual source system. AACVD has advantages over 

conventional CVD in that the precursors do not have to be volatile or thermally 

stable, depositions can take place at atmospheric pressure and it provides a 

potentially low cost method for the mass production of thin films.24,25 We report that 

co-doping ZnO films enhances the electrical conductivity and optical properties of the 

resultant films. Furthermore, and quite surprisingly, it was found that low levels of 

doping imparted microstructures that were near ideal for TCO applications in silicon 

solar cells.    
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Experimental Details 

 

The following chemicals were purchased from Sigma-Aldrich: diethyl zinc (1.1 M in 

toluene), trimethyl aluminium (2.0 M in toluene) and ammonium fluoride (98%). 

Toluene was purchased from Fisher Scientific and stored under alumina columns 

and dried with Anhydrous Engineering equipment. Methanol (MeOH; 99.99% Fischer 

Scientific) was dried by distillation over magnesium turnings before use. Nitrogen 

gas (≥99.9%) was used as-supplied from BOC. The glass substrate was standard 

float glass, with a 50 nm thick SiO2 barrier layer, supplied by Pilkington NSG.  

 

Caution! All experiments should be carried out in a fume hood. ZnEt2 and AlMe3 are 

pyrophoric and hence the CVD of these chemicals can potentially be toxic and 

corrosive.  

 

The depositions were carried out in an in-house built CVD rig (supplementary 

information). The deposition of the ZnO film was achieved by transferring dry toluene 

(25 mL) to diethyl zinc (1.82 mL) into one Drechsel bottle and dry methanol (40 mL) 

into the second bottle. Nitrogen gas was bubbled through the solutions and aerosols 

were generated using Vicks ultrasonic humidifiers (Eq. 1). Films doped with fluorine 

were produced by adding ammonium fluoride (0.0075 g) to the Drechsel bottle 

containing methanol (Eq. 2) but when doping with aluminium, trimethyl aluminium 

(1.5 mL) was added to the same bottle as the diethyl zinc (Eq. 3). When co-doping, 

both dopants were used in the respective Drechsel bottles at the same time (Eq. 4).  

The deposition was started by heating the bottom substrate to 450 oC under a low 

flow rate of nitrogen gas, monitored and controlled using a flow rate meter.  The 

aerosols of both precursor solutions were then diverted through the Y-junction where 

they mixed before entering the baffle at a fixed flow rate (1.0 L min-1). Once the 

precursor solutions were completely used up, nitrogen gas, at a reduced flow rate, 

was passed through into the chamber until the film reached room temperature.  The 

plate was then removed for analysis. 
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Film analysis 

 

X-ray diffraction (XRD) measurements were obtained using a modified Bruker-Axs 

D8 diffractometer with parallel beam optics equipped with a PSD LynxEye silicon 

strip detector to collect diffracted X-ray photons. X-rays were generated using a Cu 

source with Cu Kα1 and Cu Kα2 radiation of wavelengths 1.54056 and 1.54439 Å, 

respectively, emitted with an intensity ratio of 2:1, a voltage of 40 kV, and current of 

30 mA. The incident beam angle was kept at 1°, and the angular range of the 

patterns collected was 10° < 2θ < 66° with a step size of 0.05° counted at 0.5 s/step. 

The patterns were analysed for crystallinity and preferred orientation. Peak positions 

were compared to patterns from the Inorganic Crystal Structure Database (ICDS). 

The lattice parameters were calculated from powder X-ray diffraction data using the 

software GSAS and EXPGUI via the Le Bail method. 

 

Wavelength dispersive X-ray (WDX) analysis was carried out on a Phillips ESEM. 

The Zn, Al and F atom% was derived from Zn-Kα line (8638 eV), Al-Kα (1487 eV) 

and F-Kα (6768 eV) respectively. 

 

X-ray photoelectron spectroscopy (XPS) analysis of the films were carried out using 

a Thermo Scientific K-Alpha spectrometer  fitted with a monochromatic Al-Kα source 

to identify chemical constituents by depth profiling. The peaks were modelled using 

CasaXPS software with binding energies adjusted to adventitious carbon (284.5 eV) 

in order to compensate for the effects of charging.  Survey scans were collected in 

the range 0−1500 eV (binding energy) at a pass energy of 40 eV.     

 

Scanning electron microscopy (SEM) was performed to determine the film 

morphology from the top-down configuration using a JEOL JSM-6301F Field 

Emission instrument with accelerating voltages ranging from 3-5 keV on Au-coated 

samples.  

 

UV/Vis/Near IR transmittance and reflectance spectra were produced using the 

Perkin Elmer Precisely Lambda 950 spectrometer using an air background and 

recorded between 320-2500 nm.  
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Film thicknesses were measured using the Filmetrics F20 machine operating in 

reflectance mode in air against an as-supplied FTO standard. Hall Effect 

measurements were carried out on an Ecopia HMS-3000 set up in the Van der Pauw 

configuration to determine the sheet resistance, free carrier concentration (N) and 

mobility (µ). Samples of 1 cm2 were prepared and silver paint (Agar Scientific) was 

used to form ohmic contacts which were tested on the in-built software prior to 

measurement. The samples were then subjected to an input current of 1 mA and a 

calibrated magnetic field of 0.58 T.  
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Results and Discussion 

  

Thin films of ZnO, fluorine doped ZnO, aluminium doped ZnO and aluminium-fluorine 

co-doped ZnO were deposited on glass substrates at 450 oC using AACVD. The un-

doped ZnO films were produced from the CVD reaction of diethylzinc (delivered in a 

toluene aerosol) with a methanol aerosol (oxygen source) and the doped/co-doped 

films were accomplished by the addition of ammonium fluoride (in a methanol 

aerosol) or/and trimethylaluminium (in a toluene aerosol) to the diethylzinc solution. 

These commercially available precursors break down cleanly and lead to stable films 

with reduced carbon contamination.26 The films were highly transparent and 

conductive with uniform coverage. Furthermore, the films were very adherent 

passing the scotch tape test.  

 

 

 

XRD showed that all the films were single phase ZnO with reflections at 31.8, 34.5, 

36.3, 47.5, 56.6 and 62.9 2θ degrees corresponding to the (100), (002), (101), (102), 

(110) and (212) planes, respectively (Fig. 1.). Preferred orientation was determined 

through texture coefficient calculations.27 The calculations showed the un-doped 

ZnO and co-doped Al:F:ZnO films to have preferred orientations in the (100), (101) 

and (110) planes. Upon doping with fluorine, only the (101) and (110) planes had 

preferred orientations whereas doping with aluminium the (002) plane was preferred. 

This work showed that the texture coefficient could be directly controlled by the 

dopant. The Al:ZnO film gave the XRD pattern with the most noise which is 

presumed to be due to the film being slightly thinner than the others (Table 2). The 

preferred orientation of ZnO is commonly reported as being the (002) plane but there 

are also papers that have found the (101) plane to be preferred. This difference has 
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been attributed to several factors.12,19 ,28,29,30 Waugh et al.12 found that increasing the 

temperature from 400 oC to 450 oC changed the preferred orientation from (101) to 

(002). However, Walters and Parkin found that AACVD deposited ZnO films (using 

zinc acetylacetonate in methanol) at 400 oC and 500 oC both had a dominant (002) 

peak.28 In contrast, a study by Nolan et al.29 who also used AACVD to deposit ZnO 

films (using zinc acetate in methanol) at 425 oC found the principal peak was (101). 

Although not tested, the differences between the AACVD studies could be attributed 

to differences in the precursors used and deposition rates. The method of deposition 

also has a role to play in the most preferred crystalline orientation for example spray 

pyrolysis studies19,30 have found that at lower temperatures the (002) plane peak is 

prominent. The average crystallite sizes of the films were calculated using the 

Scherrer equation and found to be within the range 16-22 nm.31 No apparent 

correlation was found between crystallite size and dopant.  

 
Fig. 1. XRD patterns for the undoped and doped ZnO films grown using AACVD at 450 oC. 

 

Table 1. Unit cell parameters and dopant concentrations in the doped ZnO films. 

Film a /Å c /Å 
Unit cell 

volume / Å3 
Volume 

contraction / % 
[F] 

/at.% 
[Al] 

/at.% 
ZnO 3.2510(2) 5.2145(10) 47.730(9)    

F:ZnO 3.2487(4) 5.209(1) 47.617(9) 0.24 1  
Al:ZnO 3.2475(9) 5.207(1) 47.56(2) 0.36  1 

Al:F:ZnO 3.2421(3) 5.202(1) 47.36(1) 0.78 1 2 
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Table 1 shows the unit cell parameters of the ZnO films.  The unit cell volume of the 

undoped ZnO film had expanded by 0.23% compared with the standard which can 

be attributed to strain caused by the amorphous substrate.32 The addition of dopants 

resulted in a minor contraction compared with the ZnO film which would be expected 

as both dopants have smaller ionic radii.  The contraction was relatively greater 

when doping with Al as the difference in the ionic radii between Al3+ and Zn2+ (0.54 Å 

and 0.74 Å, respectively) is greater than the difference between F- and O2- (1.17 Å 

and 1.24 Å, respectively).   

 

Wavelength dispersive X-ray was used to quantify the amounts of dopant being 

incorporated into the films. This analysis technique reflects the average of the bulk 

material as the X-rays penetrate several microns deep into the film. Al and F were 

present at 1 at.% in the Al- or F-doped ZnO films and at 2 at.% and 1 at.% in the co-

doped Al:F:ZnO film, respectively (Table 1). Films produced using higher doping 

concentrations of Al have been previously shown to form layers of Al2O3 on the 

surface.21  The actual concentrations are dependent on the method and temperature 

of deposition, including the atmospheric conditions.21,33 

 

X-ray photoelectron spectroscopy was performed on the surface of the un-doped 

and doped ZnO films to determine the oxidation state of Zn. The un-doped ZnO films 

showed a Zn 2p3/2 peak at 1021.5 eV corresponding to Zn2+. This matched well with 

a ZnO standard powder (Zn 2p3/2 peak at 1021.3 eV) and literature findings (1021.2 

eV).34 The Al:ZnO films also showed the Zn 2p3/2 peak, observed at 1021.1 eV, 

matching well with the standard and literature.34 The F:ZnO film and the Al:F:ZnO 

films however showed a slightly shifted Zn 2p3/2 peak at 1020.9 and 1021.0 eV 

respectively, possibly due to the presence of F in the ZnO matrix. Depth profiling of 

the films showed that the Al was not surface segregated (Fig. 2).  The aluminium 

was found to initially increase but then remain relatively consistent throughout the 

bulk of the film. 
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Fig. 2. XPS depth profiling of the co-doped Al:F:ZnO film showing the aluminium content as a function 

of etch time.  

 

The morphology of the un-doped and doped ZnO films were studied using SEM. The 

pure ZnO film (Fig. 3a.) had a dense morphology with large features present in the 

areas analysed. Upon doping with fluorine the morphology remains compact and 

dense with small spherical particles. The addition of Al dopant changes the surface 

of the films dramatically to consist of protruding plate like features that are roughly 

200 nm long (Fig. 3c and d).     
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Fig. 3. SEM images showing the morphologies of the films grown via AACVD at 450 oC using 

diethylzinc, methanol, ammonium fluoride and trimethylaluminium: (a) ZnO (b) F:ZnO (c) Al:ZnO (d) 

Al:F:ZnO. 

  

Table 2.  Hall effect measurements. 

d, film thickness; n, charge carrier concentration; µ, charge carrier mobility; ρ, bulk resistivity; Rsh, sheet 

resistance 

 

Hall effect measurements were carried out at room temperature using the van der 

Pauw technique (Table 2). These films were identified as n-type from the negative 

Hall coefficients.  The charge carrier concentration increased with F or Al dopant 

which is expected as both dopants are donors and contribute electrons when 

substituted.  Co-doping further increases the carrier concentration. As expected, 

there was a reduction in carrier mobility with doping.  The F concentration in the co-

doped film remained the same but the Al doubled to 2 at.%; this level of doping has 

been shown to produce the optimum conductivity when Al:ZnO films were deposited 

Film d/nm n/x 1020 cm-3 µ/cm2 V-1 s-1 ρ/x10-3 Ωcm Rsh/ Ω/� 
ZnO 350 1.25 23.1 2.16 61.7 

F:ZnO 350 3.02 12.5 1.66 47.3 
Al:ZnO 300 2.48 11.7 2.15 71.7 

Al:F:ZnO 350 3.47 9.7 1.85 52.8 

Page 11 of 15 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



12 
 

by other methods.35  Although the co-doped film had a slightly higher sheet 

resistance compared with the F:ZnO film, the optical properties were significantly 

enhanced (see below).  

 

The transmission and reflectance properties of the films were investigated using 

visible/near IR spectrometry. (Fig. 4.) Optical band gap values were calculated via 

the Tauc plot method.36  Un-doped ZnO had the expected value of 3.3 eV. F:ZnO 

and Al:ZnO had a bandgap of 3.6 eV whereas the band gap of the co-doped 

Al:F:ZnO film was marginally greater at 3.7 eV.  The increase in the band gap is 

attributed to the Moss-Burstein effect and is due to the Fermi level moving into the 

conduction band caused by an increase in carrier concentration.37  The electrons can 

only be excited to levels above the Fermi level because all the states below this are 

occupied.  Hence, the band gap increases. 

 

 
Fig. 4. The transmittance (—) and reflectance (—) properties of the films grown via AACVD using 
diethylzinc, methanol, ammonium fluoride and trimethylaluminium: (a) ZnO, (b) F:ZnO, (c) Al:ZnO, (d) 
Al:F:ZnO.  
 
The ZnO films show a high transparency of ~80% at 550 nm in air. This is enhanced 

to upto ~85% when the films are doped. However, no correlation was found between 
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film thickness and optical properties. The reflectance properties of the ZnO and 

Al:ZnO films were as expected for a low e-material, reaching a maximum of ~20% at 

2500 nm. Doping the films with fluorine or co-doping with aluminium and fluorine 

increased the reflectance properties to ~50%; this is comparable with commercial 

products such as F-doped SnO2.
38 The plasma edge of the Al:F:ZnO film had the 

greatest red shift (~1850 nm) which is due to the relatively larger concentration of the 

charge carriers.  The wavelength of the crossover is in the range that is suitable for a 

heat mirror as it enables the transmission of both visible and infrared radiation that 

would allow solar energy gain for heating purposes in cold climates.39 

 

Conclusions 

 

AACVD grown thin films of F and Al doped and co doped ZnO films were highly 

transparent with excellent electrical conductivities. The study found that co-doping of 

ZnO with 1 at.% and 2 at.% of F and Al respectively resulted in a sheet resistance of 

52.8  Ω/�. Co-doping also resulted in the films having a structured and scattering 

morphology that is ideal for photovoltaic devices. The plasma edge was shifted to 

lower wavelengths making it highly suitable for applications such as a heat mirror. 

Currently, work is underway to further improve electrical properties by efforts to 

increase the charge carrier concentration and thus increase electrical conductivities 

by using alternative dopant precursors. Attempts are also being made to shift the 

plasma edge to lower wavelengths to improve the films’ heat mirror properties.   
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