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Abstract 

Modified strontium titanates have received much attention recently for their potential as 

anode material in solid oxide fuel cells (SOFC). Their inherent redox stability and superior 

tolerance to sulphur poisoning and coking as compared to Ni based cermet anodes could 

improve durability of SOFC systems dramatically. Various substitution strategies can be 

deployed to optimise materials properties in these strontium titanates, such as electronic 

conductivity, electrocatalytic activity, chemical stability and sinterability, and thus 

mechanical strength. Substitution strategies not only cover choice and amount of substituent, 

but also perovskite defect chemistry, distinguishing between A-site deficiency (A1-xBO3) and 

cation-stoichiometry (ABO3+δ). Literature suggests distinct differences in the materials 

properties between the latter two compositional approaches. After discussing the defect 

chemistry of modified strontium titanates, this paper reviews three different A-site deficient 

donor (La, Y, Nb) substituted strontium titanates for their electrical behaviour and fuel cell 

performance. Promising performances in both electrolyte as well as anode supported cell 

designs have been obtained, when using hydrogen as fuel. Performances are retained after 

numerous redox cycles. Long term stability in sulphur and carbon containing fuels still needs 

to be explored in greater detail.  
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1. Introduction 

Due to their ability to directly convert chemical energy into electricity solid oxide fuel 

cells (SOFC) offer an efficient alternative to combustion technology
1
. Their high operating 

temperatures offers the option of utilising exhaust heat in gas turbines or for combined 

heat/electricity generation
2
. Additionally, the high operating temperatures make SOFC fuel 

flexible, with fuels ranging from hydrogen to various gaseous as well as liquid hydrocarbons 

(e.g. methane, butane, ethanol, LPG, etc.)
3
. The good scalability, from stacks producing a few 

kW up to several MW, makes this technology very flexible in terms of its applications, 

ranging from decentralised domestic electricity and heat generation to power plant scale 

energy production
2, 4, 5

.  

Due to their excellent performance in hydrogen fuel, Ni/YSZ cermets are the state-of-the-

art anodes for both electrolyte as well as anode supported cell designs. However, they still 

suffer from some drawbacks, such as Ni agglomeration at high temperatures
6
, coking when 

using hydrocarbon fuels under low steam to carbon ratios
7
, sulphur poisoning

8, 9
, and 

especially instability upon redox cycling (cyclic reduction and oxidation)
10

. These provide the 

motivation for developing an alternative, more robust anode. In this light, ceramic anodes 

have received increased interest, as they are expected to be less prone to the typical issues 

associated with Ni based anodes. Perovskite materials containing transition metals (e.g. Ti, 

Nb, V, Co, Mn, Mo, etc.) are of particular interest due to the availability of multiple oxidation 

states, higher tolerance to coking and poisoning, and good dimensional stability upon redox 

cycling
11

. These types of materials have inherently limited electronic conductivity however, 

which is a major drawback. Currently it is believed that the minimum requirement for 
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electronic conductivity in SOFC anode materials should be at least 10-100 S/cm; this may 

have to be even higher when using an anode supported cell design
12, 13

.  

Within the vast family of perovskite materials, SrTiO3-based compounds have attracted 

particular attention over the past years, due to their decent n-type conductivity and good 

stability in various atmospheres. This work aims to review the latest developments in material 

design of such SrTiO3 based anodes, with special emphasis on substitution with lanthanum 

(LST), yttrium (YST) and niobium (STN), covering important topics such as defect 

chemistry, electrical properties, as well as their performance as potential SOFC anode 

materials.  

 

2. Defect chemistry of modified SrTiO3 

The effectiveness of ceramic electrodes in SOFC depends on an intricate interplay 

between the material’s crystal structure and defect chemistry. Especially materials containing 

transition metals are of interest, since the availability of multiple oxidation states can facilitate 

bulk transport properties, and provide mechanisms for electrocatalytic processes. For 

example, under reducing atmospheres the transition metal ions change to lower oxidation 

states, effectively creating electronic carriers to pass current. Also, the formation of oxygen 

vacancies on reduction is likely to yield an increase in the oxide ion conductivity according to 

equation (1), in Kröger-Vink notation: 

 

' 1
22

2 ( )O OO e V O g× ••→ + +←   (1) 

 

Perovskite materials have received much attention as potential anodes for SOFC, due to 

their adaptable defect chemistry through compositional tailoring. In particular aliovalent 

substitution, i.e. exchange of ABO3 cations with similar sized cations of different valence, is 

an effective way to introduce defects, control defect concentrations and hence tailor anode 

functionality. For instance, A-site vacancies can be introduced by substitution of A-site ions 

with cations of higher valence (donors) giving compounds of stoichiometry of A(1-x-y)A′xBO3, 

while the substitution of A-site ions with lower valence cations (acceptors) could be used to 

introduce oxygen vacancies, giving compounds of stoichiometry A(1-x)A′xBO(3-δ) if the B-site 

valence remains constant
14

. Alternatively, acceptor or donor-substitution can also be 

performed on the B-site, with the most important criterion for a possible substitution of A- or 

B-site ions by dopants being the ionic radius of the considered species.  
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Strontium titanate (SrTiO3) is an excellent example of a perovskite exhibiting a wide 

range of defect chemistry that can illustrate the influence of different factors on conductivity. 

Due to the reducibility of Ti
4+

 to Ti
3+

 it exhibits n-type semiconducting behaviour in reducing 

atmospheres. Introducing donor and/or acceptor defects has shown to be an effective way of 

modifying the oxygen and cation content in the perovskite structure, thereby altering the 

material’s conductivity behaviour under various atmospheres
15, 16

.  

To fully appreciate the various defect chemistries in modified SrTiO3 and their effect on 

the material’s electrical properties, it is important to first discuss the effect of donor and 

acceptor substitution under oxidising conditions.  

 

Cation and oxygen stoichiometric SrTiO3 

Due to different defect chemistries achievable in strontium titanates, ambiguities arise in 

literature as to the nature of the non-stoichiometry, since this is not always evident from the 

composition alone. For this reason, Savaniu and Irvine have proposed a new oxide 

nomenclature to describe these perovskite phase compositions
17

. The oxides are represented 

using normal case capital letters corresponding to the present cations, the oxide composition 

being normalized to one cation per formula unit, e.g. LaO1.5→L, SrO→S, TiO2→T, 

NbO2.5→N, etc. The deviation from the ABO3 stoichiometry is marked as a final subscript, 

for example A- for A-site deficiency, O+ for oxygen excess and so on.  

Many reports and reviews on modified SrTiO3 focus on cation-stoichiometric perovskites. 

This is an important distinction (as compared to A-site deficient perovskites), which is 

sometimes overlooked in literature. Acceptor (A) or donor-(D) substitution may affect the 

oxygen stoichiometry according to equations (2) and (3) (substitution arbitrarily chosen on B- 

and A-site, respectively). It has been argued that interstitial oxygen is highly unlikely in the 

densely packed perovskite lattice
15

. Therefore the excess oxygen is rather expected to be 

accommodated in secondary SrO phases or oxygen rich extended defects
18-20

. In turn it has 

generally been accepted that equation (4) is more correct in these materials, whereby the 

positive charge of the donor is compensated by strontium vacancies.  

 

3 ''SrTiO

Ti OAO A V ••→ +  (2) 

3 ''

2 3 2
SrTiO

Sr iD O D O•→ +  (3) 

3 ''

2 3 2
SrTiO

Sr SrD O D V•→ +  (4) 
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McColm and Irvine noticed that acceptor substitution on the B-site in fact results in a 

decrease in conductivity under reducing atmosphere
16

. However, a marked improvement of 

the p-type conductivity under oxidising conditions was noticed, suggesting that holes are the 

predominant compensation under these conditions. This can be explained by equation (5), 

where intrinsic oxygen vacancies (created due to equation (2)) are filled with ambient oxygen 

generating a pair of holes. It seems therefore that donor-substitution of SrTiO3 is the preferred 

strategy for making superior SOFC anode materials with good electrical properties under 

reducing conditions.  

 

1
22

2O OV O O h•• × •→+ +←  (5) 

 

 

Cation-stoichiometric titanates with nominal oxygen excess (e.g. LSTO+) are of 

remarkable interest due to their very high electronic conductivity, the presence of extended 

defects rich in oxygen and high stability in reducing conditions
18, 21

. The presence of extra 

oxygen beyond the normal stoichiometry increases the ease and amount of reduction of Ti
4+

 

to Ti
3+

, in turn increasing the conductivity. The oxygen excess plays a critical role in both the 

structural and electrochemical properties, although this is often ignored in the literature. On 

consideration of strontium titanate solid state chemistry, it is likely that for compositions such 

as LaxSr1-xTiO3+δ, δ is generally positive and will only be nil or negative under very reducing 

conditions, probably more reducing than the actual fuel cell operating conditions. 

Flandermeyer et al.
22

 calculated, using thermogravimetric measurements, that up to an extra 

x/2 moles of oxygen can be accommodated by LaxSr1-xTiO3+δ formula. It has been shown that 

the presence of disordered oxygen-rich defects affects to a great extent the redox 

characteristics of an oxide as indicated by very significant changes in conductivity under 

certain conditions
18, 23

. The conductivity data indicate that oxygen excess compositions are 

more conductive than the ones presenting oxygen deficiency, at the same oxygen partial 

pressure
24, 25

.  

 

Alternative to being cation-stoichiometric, strontium titanates which are stoichiometric in 

oxygen have been developed
26

. Here A-site cation vacancies are purposely introduced into the 

material’s composition, which will now adopt the general formula XySr1-3/2yTiO3, with X 

being a trivalent cation. Once again, strontium vacancies are the main compensating 

mechanism for the introduced donor, according to equation (4). However, due to the large 
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concentration of ''

SrV , the formation of intrinsic Schottky defects is now being reduced, 

pushing equation (6) to the left and reducing OV
••   . At any given oxygen partial pressure, 

equation (1) now shifts to the right, facilitating oxygen removal from the perovskite lattice 

associated with the generation of free electrons.  

 

''

O A O AO A AO V V× × ••→+ + +←             
(6) 

 

Titanium reduction 

To produce highly conductive anode materials based on modified SrTiO3, elevated 

temperatures and reducing atmospheres are required, either during the material preparation or 

prior to testing. A comprehensive review of the defect chemistry of cation-stoichiometric 

donor-substituted strontium titanates has been given by Moos & Härdtl
27

. Figure 1 shows the 

conductivity behaviour for this type of donor-substituted SrTiO3 versus pO2 for two different 

temperatures, T1 and T2. As mentioned earlier, in cation-stoichiometric donor-modified 

SrTiO3, the extra positive charge of the donor is either compensated by oxygen excess, or by 

A-site cation vacancies ( ''

SrV ). This donor compensation mechanism means that under mildly 

reducing conditions, Ti reduction is compensated by lowering of the oxygen excess or 

concentration of strontium vacancies, probably according to equation (7). The SrO in this 

equation is likely to originate from a Ruddlesden-Popper phase or grain terminations.  

 

2'' ' 1
22

2 ( )
H

Sr SrSrO V Sr e O g×→+ + +←  
(7) 

 

It can easily be derived that under these conditions a pO2
−1/4

 dependence of the 

conductivity is to be expected. At intermediate pO2 values, extrinsic donor concentration, 

D
•    dominates and conductivity is now dependent only on the donor concentration and the 

temperature-dependent mobility, but not on pO2. This region is therefore often called the 

‘‘plateau region’’, or the region of electronic compensation.  

It is only at very low pO2 values, where oxygen vacancies become the predominant ionic 

defect (equation (1)), giving rise to a pO2
−1/6

 dependence of the conductivity. In terms of 

lattice oxygen stoichiometry, at high pO2 there will be excess oxygen, i.e. A’1-xA”xBO3+δ, 

with δ > 0; in the plateau region the perovskite will be oxygen stoichiometric, i.e. δ = 0; only 
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at very low pO2 will δ become negative. Depending on composition and substituents, the pO2 

at which δ is negative may even be beyond SOFC operating conditions.  

 

Figure 1: Log–log plots of the conductivity of modified SrTiO3 versus oxygen partial pressure (pO2) 

representing donor-modified SrTiO3, with slopes of -1/6, 0, and -1/4 in the low, intermediate, and high pO2 

ranges, respectively
27. (Copyright © 2005, John Wiley and Sons) 

 

In other words, for cation-stoichiometric donor substituted SrTiO3, titanium reduction is 

either compensated by a change in strontium vacancy concentration in oxidising atmospheres, 

or by the formation of oxygen vacancies under very reducing conditions. The substitution 

strategy and donor concentration determines the initial strontium vacancy concentration, 

effectively enhancing the reducibility of titanium, thereby increasing the charge carrier 

concentration.  

 

The situation is expected to be different for A-site deficient donor substituted strontium 

titanates, owing to a different oxygen stoichiometry. Since there is no oxygen excess, titanium 

reduction should primarily be compensated through equation (1), i.e. the formation of oxygen 

vacancies and the pO2
-1/4

 dependence of conductivity should therefore be absent. Slater et al. 

26
 indeed describe a pO2

-1/6
 conductivity behaviour for A-site deficient La substituted SrTiO3. 

Plateau regions have been reported for A-site deficient Nb modified SrTiO3, but this could be 

due to slow reduction kinetics in dense samples
28

.  

  

One of the drawbacks of using A-site deficient strontium titanates is the large driving 

force for phase segregation of TiO2 under reducing conditions
29

. Although this behaviour 

seems mainly driven by non-stoichiometry, several authors observed segregation during 

sintering and cooling of cation-stoichiometric compounds as well
30,31, 32

.
 
This may be ascribed 

to formation of space-charge potentials in individual grains as function of differences in 
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individual defect formation energies
33

. Whereas extrinsic acceptor dopants tend to segregate 

at grain boundaries already under oxidising conditions, donor dopants have recently also been 

found to show this behaviour when sintered under reducing atmospheres
33, 34

. Results 

particularly suggest formation of a double space-charge layer, which results in an increased 

B/A-cation ratio ±10 nm around the grain boundaries. 

 

It is furthermore found by several people, that A-site deficient donor substituted titanates 

have superior sintering characteristics and thus mechanical strength over their cation-

stoichiometric counterparts
35, 36

. This is most likely due to the formation of SrO rich phases in 

cation-stoichiometric titanates, hindering grain growth. Instabilities on reduction – oxidation 

(redox) cycles have also been found for cation-stoichiometric titanates, which can also be 

related to the formation/dissolution of these secondary phases.  

 

 

As the cation mobility is very low in strontium titanates 
27, 37

 structural and compositional 

changes in the bulk phases during short-term repeated oxidation-reduction cycles are expected 

to be negligible. In contrast, grain boundary phases seem much more sensitive to variations of 

the pO2, as their conductivity seems closely related to the more mobile oxygen vacancies, and 

accumulated B-site acceptors. Hence, to some extent, it may only be possible to form the 

desired bulk structure at high temperature during sintering, and then regard it as “frozen”. 

From a processing point of view, the Sr-deficiency is desirable as it improves mechanical 

properties of the material by reducing the formation of “SrO” phases
35

. This should also help 

avoiding formation of insulating SrZrO3 phases. However, A-site deficiency does lead to 

increased possibility of TiO2 segregation into grain boundaries during sintering, especially 

under reducing atmospheres as stated earlier. Moreover, Burnat et al. recently published a 

report clearly showing Ti diffusion into common zirconia based electrolyte, when A-site 

deficient La substituted strontium titanates are used
38

. Here diffusion seems much more 

pronounced in samples fired in air however, whereas firing under reducing conditions seems 

an effective way to limit this diffusion phenomenon. Similar behaviour was found for heavily 

A-site deficient Y-substituted SrTiO3
39

.  

 

 

The focus in the following sections is on three materials which are all donor substituted A-

site deficient perovskites, i.e. La, Y and Nb modified SrTiO3. Despite the fact that La and Y 
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substitute on the perovskite A-site, whilst Nb modifies the B-site, their defect chemistry 

should be equivalent. Some comparisons will however be drawn with compositions that are 

cation stoichiometric to illustrate the effect of different defect chemistry on especially 

electrical properties and redox stability.  

 

3. Electrical properties of modified strontium titanates 

As reported by several authors
19, 40, 41

, the conductivity of strontium titanate based 

materials strongly depends on the thermal history of the sample. Studies on the defect 

chemistry of substituted SrTiO3 (with La, Nb or Y as typical substituent) demonstrate that the 

charge compensation mode strongly depends on the oxygen partial pressure. The effects of 

changing oxygen partial pressure upon unmodified and differently modified strontium 

titanates are shown in Figure 2, in which we can observe the p-type behaviour of the 

unmodified sample and the extended p-type behaviour of the acceptor modified sample at 

higher pO2, as well as the very high n-type conductivity of the A-site deficient sample at 

lower pO2 values
16, 26

.  

 

Figure 2: Conductivity variation for SrTiO3 in different substitution scenarios. Solid line: A-site deficient 

donor substituted; Squares: unmodified; Diamonds: acceptor substituted
16, 17

. With kind permission from 

Springer Science and Business Media (original caption: SrTiO3 and SrTi0.95Mg0.05O2.95: conductivity 

variation with oxygen partial pressure at 930°C) 

 

Since the thermal and atmospheric history of (modified) SrTiO3 samples has such a large 

influence on the measured materials properties and in particular the electrical properties, 

attention to sample preparation is critical. The importance of firing conditions is often 

overlooked in literature. For A-site deficient LST, YST and STN sintered in air, changes in 

electrical conductivity as function of the oxygen partial pressure have been observed to occur 

only very slowly at temperatures below approximately 1000°C
17, 42, 28, 43

; this has been 
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ascribed to the afore mentioned slow cation diffusion in the crystal lattice. In spite of 

somewhat contrasting reports in the literature on this matter, it may therefore be expected that 

once an electrical conductivity has been established through pre-reduction of dense air 

sintered samples, this conductivity will stay virtually unchanged with redox cycling at 

temperatures below 1000°C
44

. The behaviour of porous samples may however differ from 

this, as diffusion lengths in the bulk will be smaller and changes in the bulk conductivity 

might be observed with changing pO2. In situ reduction is certainly desirable from a 

processing point of view, as it eliminates a potentially expensive preparation step. In this 

review, we therefore present results on both pre-reduced samples as well as samples reduced 

in situ at SOFC temperatures, along with their redox behaviour. Also both dense and porous 

samples will be discussed, the latter being more relevant for SOFC anode applications. 

 

Electrical properties of pre-reduced donor-modified SrTiO3 

Firstly, to show the effect of reductive sintering, the electrical properties of Y substituted 

SrTiO3 (YST) will be discussed. The samples discussed have been sintered under reducing 

conditions (4% H2 / 96% argon, at 1400°C) in order to try and ‘freeze’ in the metallic bulk 

properties
39, 45, 46

. Subsequently, the electrical properties of pre-reduced Nb and La substituted 

SrTiO3 will be presented, including the effect of redox cycling.  

 

Y substituted SrTiO3  

Figure 3 shows the impact of composition (and hence defect chemistry) on the electrical 

conductivity of a series of YST materials. The substitution level of yttrium was set to be 7 

at%, as the limitation of yttrium solubility is about 8 at%
26

, whereas the strontium amount 

was changed from 87 to 99 at. %. In the series, Sr87 – Sr91 are A-site deficient samples, Sr93 

is a cation-stoichiometric sample, and Sr95 – Sr99 are B-site deficient samples. For all A-site 

deficient samples, the conductivities are around 100 S/cm at 800 °C and exhibit metallic-type 

behaviour. In contrast, the B-site deficient samples show very low conductivities (down to 

0.01 S/cm at 800 °C), and exhibit semiconducting behaviour. The conductivity of the cation-

stoichiometric sample (Sr93) lies in-between.  
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Figure 3: Temperature dependence of the electrical conductivity in Ar/4% H2/3% H2O for samples with 

the general formula Sr1-xY0.07TiO3-δ ranging from x= 0.13 to x = 0.01 (Sr87 to Sr99) sintered in Ar/4% H2 

at 1400 °C for 5 h. Reprinted from Solid State Ionics, 192, Q. L. Ma, F. Tietz and D. Stover, 

Nonstoichiometric Y-substituted SrTiO3 materials as anodes for solid oxide fuel cells, p. 535-539, 2011, 

with permission from Elsevier
46

.
 
 

 

According to Mott’s theory
47

, if the concentration of electrons in the conduction band – 

which means the concentration of Ti
3+

 in the present materials – exceeds a critical value, a 

transition from semiconducting to metal-like behaviour may take place.
 
A-site deficient 

samples are expected to have a higher number of charge carriers (Ti
3+

) through equations (1) 

and (6). On the atomic scale, A-site deficiency will weaken the bond strength of the adjacent 

TiO6 octahedra, which facilitates the reduction of Ti
40

. This may well be the main reason for 

the low conductivity and semiconducting behaviours of B-site deficient samples. And quite 

clearly, A-site deficient samples can reach the conductivity requirement for anode supports in 

SOFC. 

 

In order to compensate for the low ionic conductivity of YST materials, YSZ can be added 

to form a composite, similarly to what is routinely done on Ni/YSZ cermets. However, Ti has 

been found in the YSZ electrolyte after co-sintering with an anode substrate made of 

Sr0.89Y0.07TixO3-δ (YST)
39, 45

. It is known that Ti additions to YSZ increase unwanted 

electronic conduction in the electrolyte
48, 49

, which will be discussed in next paragraphs. And 

moreover, the electrical properties of YST in the YST-YSZ anode functional layer are also 

different from those of pure YST. Because of the Ti diffusion into the electrolyte, the 

stoichiometry of YST in YST-YSZ may change from A-site deficiency to B-site deficiency, 

which will result in a decrease of conductivity, as previously mentioned. Based on this 

assumption, YST samples with additional TiO2 were also prepared. Figure 4 shows the 
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conductivity of Sr0.89Y0.07TixO3-δ/YSZ mixtures (2:1 in volume ratio, YSTx-YSZ, x = 1.00 – 

1.20) in humidified (3% H2O) 4% H2 / 96% argon atmospheres. As can be seen, the 

conductivity increases with increasing x value in YSTx-YSZ up to x=1.10, and this 

composition was found suitable for an anode functional layer for YST-based SOFC.  

 

Figure 4: Electrical conductivity in Ar/4% H2/3% H2O of samples with the general formula 

Sr0.89Y0.07TixO3-δ with 1.0 < x < 1.2, and mixed with YSZ in volume ratio 2:1. Reprinted from Journal of 

Power Sources, 195, Q. Ma, F. Tietz, D. Sebold and D. Stover, Y-substituted SrTiO3–YSZ composites as 

anode materials for solid oxide fuel cells: Interaction between YST and YSZ, p. 1920-1925, 2010, with 

permission from Elsevier
39

.  

 

Nb substituted SrTiO3 

Electrical testing of dense bulk specimens of STN94 (Sr0.94Ti0.9Nb0.1O3) sintered under 

reducing conditions (1400°C, 12 h, 9% H2 / 91% Ar) shows relative independence of the 

conductivity with pO2, as shown in Figure 5. Although it may seem that it agrees well with 

the model of the electrical conductivity for cation-stoichiometric Nb substituted SrTiO3
44

, it 

really confirms the slow redox kinetics inside the grains in donor-modified SrTiO3. This may 

relate to low oxygen mobility in this particular composition, causing equation (1) to occur 

very slowly. The sample in Figure 5 was allowed to equilibrate for ~30h prior to each 

measurement.  
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Figure 5: Measured points of electrical conductivity for bulk STN94, overlaid with schematic graphs from 

modeling results
28

. 

 

First measurements on pre-reduced porous electrode backbones were mainly conducted at 

1000°C, and at oxygen partial pressures in the range of 0.21 - 10
-18

 atm at this temperature. 

The backbones were applied onto pre-sintered YSZ, sintered at 1250°C in air and afterwards 

re-reduced at 1250°C for 3 hours in 9% H2 / 91% argon. During testing, samples were kept at 

each pO2-step for > 30h in order to allow the sample to equilibrate. The measurements started 

in the most reducing environment (wet H2, pO2 ≈ 10
-18

 atm). The pO2 was then increased 

stepwise up to air, and then back to reducing environment.  The results are shown in Figure 6. 

 

 

Figure 6: Conductivity of printed STN94 electrodes with different layer thicknesses at 1000 °C and 

different pO2. Each data point was recorded after at least 30h equilibration time at 1000 °C. 

-20 -16 -12 -8 -4 0
0.1

1

10

100

At high pO
2
  (>0.001 atm) the conductivity is mainly 

from the conductivity of the YSZ substrate

 

 

slope -1/6

σ
 (

S
/c

m
)

log (pO
2
)

 15 µm

 50 µm

Page 13 of 30 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

 

At low pO2, the conductivity values of the porous samples correlate fairly well with the 

conductivity measured on dense samples, though not being corrected for porosity. However, 

where conductivity of the dense samples seemed independent of pO2, conductivity of porous 

samples show a slope close to -1/6 as expected for A-site deficiency, as shown by the lines in 

Figure 6. Although only indicative, conductivity does not seem to fully recover on re-

reduction of the samples, as also observed previously by Kolodiazhny and Petric
19

. This 

hypothesis is further supported by the conductivity measurements performed on porous 

STN94 samples that received different reduction profiles. One set of samples was pre-reduced 

at 1250°C for 4h in 9% H2/91% argon, whereas another set was reduced in situ, during testing 

at 850°C. Conductivity started at ~60 S/cm and ~10 S/cm for the pre-reduced and the in situ 

reduced samples, respectively, and seems to respond with changing oxygen partial pressure 

fairly uniformly among the two tested sets. None of the samples regain the initial conductivity 

on re-reduction, with the pre-reduced material suffering the largest degree of degradation, as 

both sets ended up at 6-8 S/cm when brought again to low pO2 from atmospheric conditions. 

Inspection by SEM did not reveal any post-test changes of the STN94 microstructures.  

 

The effect of defect chemistry on redox properties is shown by a direct comparison 

between STN94 (Sr0.94Ti0.9Nb0.1O3) and STN99 (Sr0.99Ti0.9Nb0.1O3), the latter of which has a 

much decreased A-site deficiency. STN99 samples, sintered under reducing atmosphere, 

showed an even stronger dependence on the environmental and thermal history, as may be 

deduced from conductivity results in Figure 7, where STN99 powders were calcined in air 

(1300°C / 4h) and sintered in 9 % H2 / 91% argon (1450°C/ 10h) under identical conditions, 

but where one of the powders was reduced at 1300°C (10h) prior to sintering. The STN94 

powder was also sintered similarly, under reducing conditions. All samples were sintered to 

near full density. The fact that STN94 after sintering in reducing atmosphere reaches 

conductivity levels close to STN99 samples is interesting from a point of how fast equilibrium 

establishes in STN-materials on sintering, as different conductivity values might have been 

expected considering the powder stoichiometry. 
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Figure 7: DC conductivity behaviour of STN99 and STN94, all sintered to nearly full density at 1450

o
C for 

10 h in reducing atmosphere (9%H2/91%Ar). “STN99 Pre-reduced” was furthermore calcined under 

reducing conditions. 

 

Measuring DC-conductivity on sintered STN99 based half-cells shows a surprisingly low 

redox-stability, as conductivity drops almost two decades on redox-cycling from the initial 

value of ~100 S/cm at 850°C. In line with all the pre-reduced STN compounds, the STN99 

half-cell showed metallic conductivity, however with a lower transition temperature. The 

maximum conductivity at 850°C in highly reducing conditions was about 100 S/cm. This 

conductivity decreased drastically with increasing pO2 reaching less than 0.01 S/cm at pO2 = 

10
-5

 atm. Upon a new decrease in the pO2, regaining of conductivity was rather slow, and the 

maximum obtained at 10
-24

 atm was ~ 2.5 S/cm. After the test, the cell was partly cracked, but 

conductivity readings did not show discontinuity, and the cracking may not completely 

destroy the mechanical integrity of the sample. Due to the near cation-stoichiometry in 

STN99, cracking may have resulted from the formation of secondary SrO phases on 

oxidation, such as Ruddlesden Popper phases incorporated into the perovskite structure, and 

subsequent segregation of Nb and Ti-oxide on on reduction
19

.  

The conductivity as a function of pO2 was also measured for a STN99 porous single layer, 

sintered at 1300°C for 4 h in 9 % H2 / 91% argon at 850°C, and a value of 140 S/cm was 

obtained at 10
-20

 atm. The pO2 was then cycled between 10
-19

 atm. and 10
-12

 atm., where the 

conductivity reverted almost to its initial level. However, after subjecting the sample to a pO2 

value of ~10
-5

 atm., the STN99 layer was unable to regain the original conductivity initially 

exhibited at 10
-20

 atm. Internal cracking was also seen for this sample.  
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La substituted SrTiO3 

Pre-reduced LSTA- (1050 – 1100°C, pO2 ~ 10
-19

 atm.) is reported to have good 

conductivity, with La0.2Sr0.7TiO3 exhibiting values of 20 – 25 S/cm at 900°C in 5% H2/ 95% 

argon
17

. Similar values are obtained when increasing the A-site deficiency to 20%, i.e. 

La0.4Sr0.4TiO3
36

. For this composition, Neagu showed that increasing the pre-reduction 

temperature from 1100°C to 1400°C, causes an increase in conductivity from 20 S/cm to 

~100 S/cm at 880°C and pO2 = 10
-20

. Redox cycling of pre-reduced samples at 900°C seems 

to impose a permanent loss of their conductivity by ~50%. Small improvements in the 

electrical properties of this composition were obtained when substituting Sr with Ca
50

. This 

improvement is believed to be due to a decrease in the unit cell parameters, which enhances 

Ti orbital overlap and thus conductivity. A change to lower symmetry at higher x leads to 

tilting of the TiO6 octahedra, in turn causing deterioration in the orbital overlap. Figure 8 

shows the conductivity for dense samples with varying x at 900°C and pO2 = 10
-19

 atm. A 

maximum in the conductivity of 28 S/cm (900°C, pO2 ~ 10
-19

 atm.) was obtained for x = 0.45 

in La0.2Sr1-xCaxTiO3.  

 

 
Figure 8: Electrical conductivity for pre-reduced dense samples of La0.2Sr1-xCaxTiO3 at 900°C and pO2 = 

10
-19

 atm (Reproduced from Ref. 
50

) 

 

During SOFC operation it should be expected that redox cycles to near atmospheric 

conditions occur on several occasions during a system’s lifespan. The above results show that 
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pre-reduction of donor-modified SrTiO3 samples only guarantees superior conductivity values 

when the samples are kept within a narrow pO2 range, i.e. ~ 10
-20

 – 10
-10

 atm. These 

conductivity values cannot be recovered when the samples have been exposed to air (pO2 = 

0.2 atm). 

 

Electrical properties of in situ reduced donor-modified SrTiO3 

In this section, a brief overview will be given for the properties of materials which have 

been reduced in situ. Because of the limited reduction kinetics of modified strontium titanates 

at SOFC operating conditions (800 – 900°C), few papers actually report conductivity values 

obtained in this way. Some examples of A-site deficient La substituted SrTiO3 will be 

discussed and a brief comparison with pre-reduced conductivity values will also be given to 

show the effect of thermal history, which may help understand the large range of reported 

conductivities and apparent discrepancies found in literature.  

 

The conductivity of dense in situ reduced LaxSr1-3x/2TiO3 samples, where x = 0.2 – 0.6, 

was studied in detail by Slater et al.
26

. Highest conductivities of 7 S/cm were reported for x = 

0.6 at 930°C and pO2 = 10
-20

 atm. after equilibrating for 24 hours. Similar values are reported 

by Neagu and Irvine
36

 on porous samples (62% TD), with x = 0.4. Despite the porosity, 

equilibration is still slow and takes more than 20 hours. Savaniu and Irvine report 

conductivity values of ~ 3 S/cm for both dense and porous La0.2Sr0.7TiO3 samples, in identical 

atmosphere and after similar equilibration times
17

. Pre-reduction of these samples at 1050 – 

1100°C (in 5% H2 / 95% argon), increases their conductivity by nearly an order of magnitude, 

i.e. 20 – 25 S/cm.  

 

Both Slater and Savaniu report an approximate pO2
-1/6

 dependency of the conductivity at 

pO2 < 10
-15

 atm., suggesting an oxygen vacancy compensated mechanism, according to 

equation (1).  This is to be expected in A-site deficient strontium titanates as explained in the 

defect chemistry section. The formation of oxygen vacancies might furthermore be beneficial 

for its application as SOFC anode material, as it may create some oxygen ion mobility, thus 

increasing the thickness of the active anode for fuel oxidation.  

 

Neagu and Irvine also showed that substitution on the B-site with gallium (La0.4Sr0.4Ti1-

xGaxO3-x/2, x < 0.15), improves both the conductivity in oxidising as well as reducing 

conditions. It is suggested that Ga enhances the reduction of Ti, due to weakening of the BO 
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bonds. This also leads to greatly improved reduction kinetics at any given temperature. 

However, some Ga loss was observed with time, due to the volatility in the form of Ga2O and 

GaOH species. Figure 9 shows the variation of conductivity of La0.4Sr0.4Ti1-xGaxO3-x/2 with 

time at 880°C and pO2 = 10
-18

 atm.  

 

 
Figure 9: Conductivity of in situ reduced La0.4Sr0.4Ti1-xGaxO3-x/2 at 880°C and pO2 = 10

-18
 atm

51
. Reprinted 

with permission from “D. Neagu and J. T. S. Irvine, Chemistry of Materials, 2011, 23, 1607-1617”. 

Copyright 2011 American Chemical Society.  

 

In situ reduction at 850°C in 5% H2 / 95% argon of porous La0.2Sr1-xCaxTiO3 electrodes 

with x = 0.45 has resulted in conductivity values in excess of 5 S/cm
52

. As mentioned earlier, 

pre-reduction of dense samples at 1050°C results in conductivity values of 28 S/cm at 900°C. 

Yaqub et al. performed redox cycles on in situ (880°C, 5% H2 / 95% argon) reduced porous 

bars with the same composition (La0.20Sr0.25Ca0.45TiO3)
53

. The porosity and lack of pre-

reduction results in a drop of conductivity of approximately an order of magnitude, but 

constant conductivity values are obtained on redox cycling between pO2 = 10
-17

 – 0.21 atm., 

with no sign of sample degradation or mechanical failure. The authors further noticed a 

marked increase in the redox kinetics, when impregnating the bars with ceria. Whilst un-

impregnated bars required ~3 hours of reduction to attain reasonable conductivity values, 

upon ceria impregnation this time reduced by about 50%.  
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4. Fuel cell performance of A-site deficient La, Y and Nb 
substituted SrTiO3 

This review is concluded with a short overview of the use of said titanate materials in 

SOFC anodes. Where available, the effect of A-site deficiency on important stability aspects, 

such as redox cycling and mechanical robustness, will be described.   

 

LSTA- based anodes  

A comprehensive review was recently written on the fuel cell performance of many La 

substituted SrTiO3 based anode materials by Zhou et al.
54

. Here we limit ourselves to the 

performance of some A-site deficient lanthanum substituted strontium titanates.  

Savaniu and Irvine showed promising fuel cell results for both electrolyte and anode 

supported cell (ESC and ASC, respectively) designs comprising La0.2Sr0.7TiO3 (LSTA-) 

anodes
17

. Using LSTA- as the anode backbone impregnated with nanosized metal (oxide) 

catalysts (CeO2 and Cu), they achieved good performance using humidified hydrogen at 

temperatures as low as 600°C. Power densities in excess of 0.4 W/cm
2
 were obtained at 

750°C in an anode supported cell configuration, as shown in Figure 10. They noticed that for 

both cell designs, performance was limited by ohmic losses, originating from both the 

electrolyte as well as electrodes. Figure 11 shows the impedance spectra for the anode 

supported cell at different temperatures. To achieve these performances at relatively low 

temperatures for SOFC, the anodes had been pre-reduced prior to the experiments. The anode 

performance is furthermore comparable to those of infiltrated YSZ scaffolds with an LSTO- 

(cation-stoichiometric La substituted SrTiO3) current collecting layer
55

 and to composite 

anodes in which  (LSTO-) has been impregnated into a porous YSZ scaffold with further 

enhancement from infiltrated CeO2 and Pd
56

.  

Similarly promising results have been found using a Ca substituted A-site deficient 

La0.2Sr0.7TiO3 as anode backbone in an electrolyte supported cell, impregnated with a 

combination of ceria and nickel catalysts. A stable area specific resistance of 0.37 Ωcm
2
 was 

achieved after 20 redox cycles and 250 hours of operation at 900°C in H2 with 8% H2O, 

showing excellent redox stability. Power densities in excess of 0.5 W/cm
2
 could be obtained 

for these cells
52

. This shows the promise for this type of material as a potential conductive 

backbone, whilst modification by infiltration can provide the necessary electrocatalytic 

activity.  
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Figure 10: Fuel cell performance of anode supported LSTA- cell at different temperatures in pure 

humidified H2 (2.3% H2O) and pure O2  (1 - 750 °°°°C, 2 - 700 °°°°C, 3 - 650 °°°°C, 4 - 600 °°°°C) c
17

)   

 

 
Figure 11: Impedance spectra for fuel cell comprising anode supported LSTA- impregnated with ceria and 

copper. Tests performed in humidified (2.3% H2O) pure H2 and pure O2 (Reproduced from Ref. 
17

) 

 

YSTA- based anodes  

Forschungzentrum Juelich has developed an anode supported cell based on YSTA-, 

demonstrating the mechanical robustness of A-site deficient titanates. Figure 12 shows the 

cross section of such a cell
57

.  The anode supports with electrolyte layer ,  undergo a final 

firing step under reducing conditions
58

. About 3 wt % NiO is subsequently impregnated into 

the anode structure to provide catalytic activity for the fuel oxidation reaction.  
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Figure 12: Cross section of YST-ASC composed of YST/YST1.10–YSZ/YSZ/PVD-CGO/LSC. Reprinted 

from Electrochemistry Communications, 12, Q. L. Ma, F. Tietz, A. Leonide and E. Ivers-Tiffee, Anode-

supported planar SOFC with high performance and redox stability, p. 1326-1328, 2010, with permission 

from Elsevier
57

. 

 

Analysis of the electrolyte by Energy Dispersive Spectroscopy confirms the likelihood of 

Ti diffusion from the YSTA- into zirconia, although this may be exaggerated due to the 

addition of 10 wt% TiO2 to the anode support. A gradient of the Ti content from 4.5 to 12.5 

at% in the electrolyte layer was noticed, decreasing from the anode side to cathode side, 

suggesting possible electronic conduction in the co-sintered electrolyte.  

The performance of the YSTA- ASC was characterized electrochemically by means of 

current voltage (I/U), and impedance measurements. Typical I/U characteristics recorded at 

different temperatures is shown in Figure 13. At 800°C, a typical operation temperature for 

SOFC systems, an OCV of 1.09 V is obtained, very close to the theoretical value and 

indicating that the Ti content in the electrolyte layer, especially for the region close to cathode 

with only 4-5 at.% of Ti, does not cause significant electronic conduction. At the same 

temperature, a current density of 1.22 A/cm
2
 at 0.7 V is achieved, which corresponds to a 

power density of 0.85 W/cm
2
. The actual data for all the tested cells so far varied from 1.0 to 

1.5 A/cm
2
 at 0.7 V and 800°C. Although compared with the state-of-the-art cells the 

performance of YST-based cells is still lower (see Table 1), it has already reached the level of 

practical use and has a valid prospect for commercial application.  
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Figure 13: Current-voltage curves of an YST ASC for temperatures ranging from 600 to 850°C. 

Reprinted from Electrochemistry Communications, 12, Q. L. Ma, F. Tietz, A. Leonide and E. Ivers-Tiffee, 

Anode-supported planar SOFC with high performance and redox stability, p. 1326-1328, 2010, with 

permission from Elsevier
57

 

 

Table 1: Power densities (at voltage output of 0.7 V, in mW/cm
2
) vs. temperature of the reported YST-

ASC
57

 and a state-of-the-art Anode Supported Cells
59

. 

Temperature YST-ASC SoA-ASC
 

800 °C 855 1314 

750 °C 551 931 

700 °C 294 600 

650 °C 145 356 

600 °C 62 193 

 

 

Figure 14: OCV (open circles) and current density at 0.7 V (closed circles) as a function of the number of 

redox cycles (10 minutes in H2 and 10 minutes in air) at 750 °C as well as current density at 0.7 V (closed 
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squares) as a function of the number of redox cycles at 800 °C applying 2 h in H2 and 10 minutes in air. 

Reprinted from Electrochemistry Communications, 12, Q. L. Ma, F. Tietz, A. Leonide and E. Ivers-Tiffee, 

Anode-supported planar SOFC with high performance and redox stability, p. 1326-1328, 2010, with 

permission from Elsevier
57

.  

 

Figure 14 shows the changes of OCV and performance at 0.7 V, of the cell as a function of 

the numbers of redox cycles. Impressively, after 200 redox cycles, the OCV only decreased 

by 1.3%, indicating the high robustness and stability of the cell. In contrast, state-of-the-art 

SOFCs based on Ni cermets usually collapsed, or had apparent losses of OCV after just one 

redox cycle
9
. However, the performance of the cell decreased by 35% after 200 redox cycles. 

The reason is most likely the gradual loss of electrical conductivity after each redox cycle 

either due to an irreversible decrease of charge carriers, or due to the slow kinetics between 

the reduced and oxidized state of YST materials. As previously mentioned, the conductivity 

of YST sintered in reducing atmosphere, as well as other SrTiO3 based materials, depends 

significantly on the oxygen partial pressure during testing. The values are nearly 100 S/cm 

after sintering at 1400°C in H2 / argon, but only about 0.01 S/cm in air, both measured at 

800°C. If the atmosphere is changed from air back to argon/H2, the conductivity can be 

restored to some extent, but this may take considerably longer than the cycles used in this 

study. It is very likely that the 10 minutes interval for reduction during the redox cycle is not 

long enough for recovery of the conductivity after the oxidizing period (also 10 minutes). 

Hence, this results in a continuous performance decrease with continued redox cycling. This 

may be further investigated by redox tests with longer periods of reduction. Figure 14 also 

shows the change of performance of a different cell, at 0.7 V and 800°C, as a function of the 

numbers of redox cycles. For this test the reducing time during the cycles was prolonged to 2 

hours, and the oxidizing period remained 10 minutes. As anticipated, there is no apparent 

decrease in performance after 50 redox cycles. More studies will be required however to 

establish whether any adverse changes in the electrical properties occur on longer oxidation 

periods. Nevertheless, performance values for cells based on YST anode are remarkably high, 

and among the best yet reported for cells with a ceramic anode (see Table 2).  

 

STNA- based anodes  

Fuel cell tests on STNA- based anodes have so far been limited and mainly involve 

symmetrical cell testing in single (wet) hydrogen atmospheres. A first generation of these 

symmetrical cells comprised STN94 (single phase or composite with YSZ, w/w 1:1) 

electrodes spray deposited onto 8-YSZ electrolyte substrates. After sintering in air at 1250°C, 

the anodes with thicknesses of 15 – 30 µm were infiltrated with 20 – 30 wt% Ce0.8Gd0.2O1.9 
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(CGO). The resulting crystallite size of the infiltrate was found to vary strongly with 

calcination temperature, namely 5 nm, 14 nm and 40 nm at 350°C, 650°C and 850°C, 

respectively
28, 60

. Promising results were obtained by measuring the cells’ electrical 

impedance. Negligible series resistances were found when using Pt current collection and 

polarisation resistances were comparable with state-of-the-art Ni/YSZ anodes. The impedance 

spectra at various temperatures are shown in Figure 15. In addition, the CGO infiltrated 

electrode was shown to be redox stable and even slightly activated by redox cycling at 650 – 

850°C. 

 

Figure 15: Impedance spectra for STN94 infiltrated with CGO at various temperatures in humidified (3% 

H2O) hydrogen. Spectra have been corrected for Rs 
60

 (Reproduced with permission from ECS 

Transactions, 2008, 13, 181 - 194. Copyright 2008, The Electrochemical Society) 

 

A combination of Ni and CGO was also infiltrated into STN94 electrodes. Here the nickel 

was applied on already deposited CGO. Symmetrical cell measurements at open circuit 

voltage (OCV) in a one-atmosphere set-up showed an electrochemical activity comparable to 

the current state-of-the-art Ni/YSZ fuel electrode in SOFC applications, i.e. ~ 0.12 Ωcm² at 

850°C. Due to an apparently low activation energy of the electrode (around 0.5 – 0.7 eV), 

high performance was achieved  at lower temperatures, where the best electrode, a Ni/CGO 

infiltrated electrode, showed a polarisation resistance of 0.22 Ωcm
2
, in H2 with ~3% steam at 

650 °C
61

. A micrograph of a CGO infiltrated STN94 electrode is shown in Figure 16.  
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A Ni/CGO infiltrated electrode supported by a STN99 backbone sintered for 4 hours at 

1320°C in 9% H2 / 91% argon was subjected to a single redox cycle of 91 hours to evaluate 

the electrode degradation behaviour at 800°C, under high steam concentration (85 %). Its 

series resistance, Rs, increased by 37% and polarisation resistance, Rp, by 36%, which 

corresponds to degradation rates at ~400% per 1000h for these conditions. The electrodes 

were re-reduced after the exposure to steam and although the summit frequencies visualised 

through a Bode plot of EIS-data returned to their original values and some recovery took 

place, neither Rs nor Rp returned to their original values, leaving a permanent degradation of 

20 % and 19 % for Rs and Rp values, respectively. Longer exposure to reducing conditions 

may lead to more recovery, but it still indicates that the performance of the Ni/CGO electrode 

is sensitive to the steam concentration, which may be linked to the fact that protons associate 

with the oxygen sub-lattice in CGO.  

 

22 O O OH O V O OH•• × •→+ + ←  (8) 

 

The DC-conductivity measurements mentioned earlier showed that a 200µm-thick 

STN99-backbone of similar size will change resistance (Rs) between 2.7 mΩ and 16 mΩ, 

when subjected to p(O2)-variations from 10
-20

 to ~10
-15

 bar, which corresponds to the 3% 

steam and 85% steam, respectively, at 800°C. The change is practically reversible in this 

range of oxygen partial pressures and may account for some of the Rs variations observed. 

 

 

 

Figure 16: SEM micrograph of CGO-electrode after impregnation from an ethanol-based solution and 

pre-calcination at 350°C on STN-YSZ composite backbone
62

  

 

Page 25 of 30 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

 

Very promising results have recently been obtained by infiltrating STN94 backbones with 

a combination of CGO and ruthentium
63

. Negligible degradation was observed in Rs and Rp 

when testing for 200 hours in high steam atmosphere (50% H2O, 50% H2) at 850°C. In 

comparison, the Ni/CGO infiltrate combination gave rise to a threefold increase in Rp in these 

conditions within the same time.  

5. Summary 

A-site deficient strontium titanates have the potential to replace nickel based cermet 

anodes in both electrolyte and anode supported cells. Their electronic conductivity under 

reducing conditions seems sufficient to provide adequate current collection. Their 

electrocatalytic activity towards fuel oxidation however is very limited, which necessitates the 

use of infiltrated nanosized catalysts. This approach has so far produced very promising fuel 

cell performances, with the addition of redox stability at low steam concentrations due to the 

absence of a structural nickel phase. Some of the fuel cell performances of A-site deficient 

strontium titanates have been summarised in Table 2. Literature reports on other ceramic 

anodes have been listed as well for comparison. It can be seen that strontium titanates show 

promising power outputs and seem to be redox stable. Literature reports on their long term 

stability is still scant however, so their durability in various configurations remains to be 

tested. Strontium titanates have also been reported to be sulphur tolerant, at least up to 

reasonable concentrations
8, 64

, but suitable catalysts will still have to be found that show a 

similar tolerance towards sulphur poisoning.  

 

 
Table 2: Reported single cell test results based on redox-stable anode materials. All cells tests were 

performed with H2 as fuel and air as oxidant. 

Cell type Dimension Anode Performance 

(maximum power 

density) 

Redox 

testing 

Ref. 

ESC 20 mm diameter, 

0.6 mm 8-YSZ 

electrolyte 

(La0.75Sr0.25)0.9Cr0.5Mn0.5O3 0.30 W/cm
2
 at 

850°C 

No test 
65

 

ESC 20 mm diameter, 

160 µm 6ScSZ  

electrolyte 

Ceria and Ni infiltrated 

La0.20Sr0.25Ca0.45TiO3 

>0.5 W/cm
2
 at 

900°C 

20 cycles 
52

 

CSC ~20 mm diameter Ceria and Ru-infiltrated 

Sr0.88Y0.08TiO3/YSZ 

0.51 W/cm2 at 

800°C
 
 

No test 66 

CSC ~1 cm
2
, 0.4 mm 

thickness 

Ceria and Pd-infiltrated 

La0.3Sr0.7TiO3/YSZ  

0.43 W/cm
2
 at 

800°C 

No test 
67

 

ASC 20 mm diameter Ceria and Cu infiltrated 

La0.2Sr0.7TiO3 

>0.4 W/cm2 at 

750°C 

No test 17 
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ASC ~15 mm diameter, 

0.8 mm thickness 

La0.2Sr0.8TiO3 support, NiO-

Ce0.8Sm0.2O2/NiO-YSZ 

anode 

0.85 W/cm2 at 

800°C 

7 cycles  68 

ASC 5 cm x 5 cm, 1.5 

mm thickness 

Ni infiltrated YST/ YST1.10 

– YSZ 

>1 W/cm
2
 at 

800°C 

200 cycles 
57
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