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The simulation scheme considers an idealized system in order to focus on two 

important processes: the aggregation and the diffusion of dimeric molecules. For 

filamentous dimers, the closed-packed configuration of aggregated clusters observed in 

experiments allows the simulations of the aggregation on 2D hexagonal lattices where 

each dimer resides in two neighboring lattice sites. The dimmers are permitted to diffuse 

on the 2D hexagonal lattices through either the movement of one of its monomer or the 

translational motion of the whole dimer. The association and dissociation are assumed to 

proceed through the monomer movement, not the dimer translation. 
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Abstract 

In cells, several important biomacromolecules form oligomers through a dimer addition mechanism. 

Rate equations based on mean field approximations are usually employed to describe the assembly 

process. However, such equations often require multiple assumptions that mask some detailed changes 

of the biomolecular configurations during aggregations. Here, we present a Kinetic Monte Carlo 

simulation scheme to account for the diffusion and rotation of dimers on two-dimensional hexagonal 

lattices while naturally including the stochastic features. We investigate the effects of the interaction 

energy between dimers, the diffusion coefficient and the concentration of dimers on the aggregation by 

dimer addition mechanism. Our simulations identified unusual double-S shape evolutions of aggregation 

kinetics, which are probably associated with the formation of metastable clusters.   
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Introduction 

Protein aggregation is critical for many physiology processes while undesired clustering of proteins 

is usually associated with many diseases. For example, aggregation of amyloid fibrils leads to 

Alzheimer’s disease and type II diabetes; 
1, 2

 Over-assembly of myosin II results in reduced fidelity of 

cytokinesis. 
3, 4

 The aggregation of monomeric proteins and particles has been investigated for many 

years. Scaling laws have been identified for the dynamics of both diffusion-limited and reaction-limited 

clustering of spherical particles. 
5-7

 Over the past few years, a significant amount of effort has been paid 

to the investigations of the assembly of non-spherical particles and colloids with a variety of shapes, 

including biomacromolecules such as myosin II, driven by general and more fundamental principles. 
8
 

However, the kinetics of these assemblies displayed unusual features and the understanding of the 

kinetics is still far from complete. Specifically, these particles and colloids have complex surfaces for 

interactions and some of the assemblies do not from through monomer addition but rather through some 

uncommon mechanisms, such as dimer addition.  

Among these non-spherical particles and colloids, biomacromolecules such as myosin II, keratin and 

vimentin are particularly of interest for biomedical researchers as these proteins govern the mechanical 

properties of cells. 
9-12

 More importantly, these proteins assemble into oligomers using a dimer addition 

mechanism  that that remains poorly understood largely because of the difficulty in acquiring structure 

and detailed kinetic information about such large ensembles (Fig. S1). 
13-19

 It is believed that the dimer 

addition mechanism produces oligomers of size 2i (i=1, 2, 3…) since the basic building blocks are 

dimers. In the past few decades, several attempts have been made to model the kinetics of assembly of 

proteins through the dimer addition scheme by solving differential equations where reaction-limit was 

implicitly assumed. 
20-22

 These equations were used to analyze experimentally observed oligomer 

fractions in the assembly assays by fitting the reaction rates to experimental data and provided many 

insights. For instance, the sensitivity analysis of the parameters used in these equations allows the 

detection of the most sensitive reactions as well as the critical cluster size for aggregations. 
21, 22

 Despite 

the great progress reported in previous studies, several limitations are inherently associated with this 

kind of analysis. One limitation of this type of analysis is that it only works for the situations of highly 

concentrated biomacromolecules where diffusion processes are faster than reactions because the 

molecules are able to collide with each other without traveling long distances. However, some 

experiments indeed were conducted in the low concentration range where the time for collision through 

diffusion was on the order close to that of the assembly reactions. Therefore, it is questionable whether 
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such an analysis can be readily applied to the experimental data obtained from the low concentration 

assays. Another limitation of this type analysis is that it ignores the stochastic nature of assembly 

reactions, i.e., the system noise due to thermal fluctuations and configuration complexity associated 

which is inherent with multi-dimensionality. Moreover, boundary conditions that cannot be directly 

obtained from experiments have to be artificially added during the analysis. 
21-23

  

Growing attention paid to the nanometer-scale phenomena suggests that stochastic methods should 

be developed to dissect the details of the assembly reactions that occur through the dimer addition 

mechanism while most current theoretical methods for the aggregation of biomacromolecules lack the 

abilities to resolve the issues mentioned above. Among many numerical simulation methods, the kinetic 

Monte Carlo (KMC) scheme is able to overcome many of these challenges and can complete the 

simulations in a reasonable amount of time. Additionally, KMC simulations can cover the whole 

dynamics spectrum from the diffusion-limited extreme to the reaction-limit extreme. In physics and 

materials science, the KMC simulation method has been commonly used as a powerful simulation tool 

for understanding nucleation and growth phenomena at nano and atomic scales. Numerical simulations 

have been conducted with the KMC method to investigate the effects of concentration, electric potential, 

and temperature on the nucleation and aggregation processes. 
5, 24-31

 Moreover, various Monte Carlo 

simulations have been used to study the aggregation of polymers and biomacromolecules. 
19, 32-38

 In 

these studies, the values of empirical model parameters were obtained by fitting the experimental results. 

Yet, KMC simulations based on dimer addition mechanism have not been reported. 

Filamentous proteins, such as myosin II, keratin and vimentin form closed-packed aggregations in 

cells through the dimer addition mechanism. Myosins form thick filaments by stacking their tail 

domains.
14, 16

 Keratins and vimentins assemble into bundles through head-to-tail association.
39, 40

 As the 

length of these filamentous proteins (several hundred nanometers) is much larger than the size of their 

diameters (a few nanometers), the assembly process by the interaction between lateral surfaces can be 

considered as a two-dimensional (2D) problem where the normal direction of the 2D plane is parallel to 

the axis of the filamentous proteins.
41

 Considering the closed-packed configurations, we aim to 

investigate the aggregation of filamentous proteins through dimer addition that can be simplified on 2D 

hexagonal lattices. 

In this work, a coarse-grained KMC approach has been used to simulate the dynamics of the 

aggregation of filamentous biomacromolecules through a dimer addition mechanism. The kinetics of the 

aggregations were investigated on 2D hexagonal lattices by varying the interaction energy between 
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dimers, the diffusion coefficient, and the concentration of dimers. The statistical outputs of the kinetics 

revealed the emergence of unstable clusters during aggregations.  The increased interaction energy and 

diffusion coefficient led to reduced cluster size whereas high concentration of molecules favored the 

formation of larger clusters. The KMC scheme presented here could be used for the investigations of 

more complex cases. 

 

Coarse-grained KMC simulations 

The simulation scheme considers an idealized system in order to focus on two important processes: 

the aggregation and the diffusion of dimeric molecules. For filamentous dimers, only the lateral 

interactions are considered such that the aggregation of the dimers can be simplified into a 2D problem. 

Specifically, the closed-packed configuration of aggregated clusters observed in experiments allows the 

simulations of the aggregation on 2D hexagonal lattices where each dimer resides in two neighboring 

lattice sites. 

The dimers are permitted to diffuse on the 2D hexagonal lattices through either the movement of one 

of its monomer or the translational motion of the whole dimer as shown in Fig. 1a. The diffusion rate of 

the latter is assumed to be half of the former. Namely, dim2 diff

mono

diff rr = where the superscripts “mono” and 

“dim” refer to monomer and dimer, respectively. The reasoning is based on the Stokes-Einstein relation 

where the moving speed of an object is inversely proportional to its effective size perpendicular to its 

moving direction.  During monomer movement, the monomer can only hop into two possible 

neighboring sites since the other monomer in the same dimer is fixed. As to the translation motion of the 

dimer, there are four possible positions it can move into. During aggregation, a dimer is considered to 

join an existing cluster once one of its monomer takes over one of the neighboring lattice sites of that 

cluster through monomer movement as well as dimer translation (Fig. 1b). For simplicity, there is no 

specific energy barrier for the association of a dimer to an oligomeric cluster. On the other hand, the 

disassociation (detachment) of a dimer from a cluster is assumed to occur only through monomer 

movement but not dimer translation because the corresponding energy barrier is at least doubled and the 

algorithm is more complex. The activation energy for disassociation is assumed to be proportional to the 

number of near-neighbor bonds that have to be broken, an assumption used in a wide variety of models 

in chemical and physical systems. The off-rate (detachment rate) associated with monomer movement is  
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







−Γ= ∑ TkEr B

i

eroffoff intexp ,        (1) 

where Γoff is the frequency of detachment events, Einter is the interaction energy between monomers in 

different dimers, i loops over the neighboring monomers and kB is the Boltzmann constant. As a dimer 

gains more nearest neighbors, it becomes more energetically unlikely for the dimer to dissociate. Since 

the energy barrier for dimer translation is much higher than that of monomer movement, an off-rate due 

to dimer translation similar to that in Eq. 1 is much smaller than the off-rate associated with monomer 

movement. 

In the system, 2N particles representing N dimers are randomly seeded in a 2D rectangular window 

of size L×L. Two-dimensional periodic boundary conditions are applied to avoid any boundary effects. 

Depending on the neighboring environment, dimers can undergo several transition events, ri, including 

the diffusion through monomer movement and dimer translation as well as detachment. The N dimers 

are partitioned over the possible transition events. After the rates of the events are calculated, a list of 

transition probabilities is constructed in terms of the rates. The individual transition probabilities are 

maxηii rW =            (2) 

where ∑≥ krmaxη . A sufficiently large system is used to ensure the randomness of the events. The 

following KMC algorithm is similar to those described previously by others 
42-44

 : 

1) Select a random number, r, in the range of (0,1);  2) Choose the transition event from the list by 

selecting the first index x satisfying the condition rr
x

j ≥∑1
; 3) Execute the event corresponding to rx;  

4) Update all rj events; 5) Advance the time in the simulations by ∆τ, where ∑=∆
i

iirn1τ and ni is the 

number of transition event with rate ri, the subset of all rates belonging to the ith type event. The 

computation time was decreased by binning the rates by type. Each time a type of rate is selected first, 

and an instance of that rate is chosen randomly and executed afterwards.  

In general, the rates of most second-order biochemical reactions of proteins inside cells are in the 

range of 0.1~10.0 µM
-1

s
-1

 
45, 46

  and the cellular concentrations of proteins are around 1 µM, 
47, 48

  

which sets  the jump frequency Γoff  in Eq. (1) in the range of 10
4
~10

6
 Hz provided that the associated 

energy barrier ∑ erEint  is on the order of 10 kBT. 
49

 Similar values were used for the KMC simulations 

of the interactions of DNA and polymers. 
32, 33

 Based on experimentally measured values, 
50-53

 the 

diffusion coefficients for biomacromolecules inside cells were varied from 0.1 to 10.0 µm
2
/s. For 
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macromolecules such as myosin II, the diffusion coefficient can be as small as 0.8 µm
2
/s. 

54
 As the 

diameters of myosin II, keratin and vimentin are between 5 and 10 nm, the size of each lattice in KMC 

simulations was set to 5 nm. Three parameters were varied in KMC simulations, including Einter, 
mono

diffr  

and the 2D coverage of the lattice by biomacromolecules, ϕ .  

As the KMC simulations have the power to compute the dynamic process from millisecond up to 

hours, we monitored the evolutions of the number of clusters ( )tN , the number average cluster size 

( )tA , the weight  average cluster size ( )tS  and polydispersity ( )tP  from 10
-6 

sec up to 10
6 

sec. ( )tN  

is the summation of the number ( )tns  of all oligomers of size s, including dimers (s=1), i.e., 

( ) ( )∑= tntN s . The number average cluster size is ( ) ( ) ( )∑∑= tntsntA ss  while the weight average 

cluster size is ( ) ( ) ( )∑∑= tntnstS ss

2 . The polydispersity is ( ) ( ) ( )∑∑= tStAtP . 

 Proof tests can ensure that the simulations are independent of the window size and the random 

seeding process. To investigate the effect of window size, four different window sizes 64×64, 128×128, 

256×256, and 512×512 were used in the KMC simulations with mono

diffr =0.1 µm
2
/s and ϕ =0.016 at 

different Einter. For each lattice size, simulations were carried out until the systems reached the 

steady-states. Fig. S2 depicts simulation outputs for several characteristic features of the aggregated 

clusters. The cluster density, the number average cluster size, and the weight average cluster size did not 

vary appreciably once the simulation window is bigger than 128×128 (Fig. S2a-c). Since the 512×512 

simulations require three times more computational time than the 256×256 lattice simulations, and the 

difference in the outputs of the two lattice sizes was not significant, a 256×256 lattice was used in most 

of the simulations described below. 

To test if the random seeding of the dimers has an effect on simulated aggregations, three runs with 

different random generation approaches were carried out on a 256×256 lattice with mono

diffr =0.1 µm
2
/s and 

ϕ =0.016 at different Einter. The cluster densities and average cluster sizes from different runs were 

almost indistinguishable (Fig. S3a and b). The weight average cluster size ( )tS  only differed slightly 

in longer simulation time (Fig. S3c). Hence, the simulations results were largely immune to the random 

number used for the seeding of dimers in the beginning of simulations. 

 

Results and Discussion 
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In this study, we assumed that the energy barrier for the association of a dimer to another dimer or 

one existing cluster was very small since the mutations in biomacromolecules mostly affect the 

intermolecular interaction strength that usually governs the dissociation rate, not their configurations for 

association. Thus, we only considered two critical processes: diffusion and dissociation, which 

determine the size distribution of aggregates of biomacromolecules. Diffusion tends to narrow down the 

size distribution whereas system noise broadens the distribution. The mean value of the size distribution 

at steady-state is mainly determined by the dissociation rate between two dimers. 
38

 Nevertheless, the 

evolution of the system is largely affected by the diffusion of the basic building blocks, the dimers. 

Specifically, the time that it takes for a system to reach steady-state depends on the diffusion process. In 

KMC simulations, the dissociation process was adjusted by varying Einter while diffusion process was 

tuned by changing mono

diffr . Additionally, different values of coverage ϕ  were also used as the 

concentration has direct impact on the collision frequency of dimers, which supposedly affects the 

transport process of dimers. Without further specification, Γoff was assumed to be 10
6
 Hz in most 

simulations. 

Because the disease-associated aggregations of biomacromolecules are usually caused by mutations 

that change the intermolecular interactions, 
55-57

 we first varied the interaction energy. The statistics of 

the simulated aggregation for interaction energy Einter at 8, 10, 15, 20, 25 kBT are shown in Fig. 2. The 

maximum simulation time was up to 10
8
 sec. In the simulations, the number of clusters ( )tN  

underwent a fast decay after an initial lag phase and approached a steady-state. As for the cases with 

Einter≥15 kBT, an intermediate plateau emerged and became more evident with increased Einter. However, 

these cases had the same number of clusters ( )tN  at steady-state regardless of the values of Einter. This 

observation was probably due to the fact that the aggregations at steady-state were limited by the 

incoming flow of the diffusing dimers when offr  became smaller than mono

diffr . According to the classical 

nucleation theory, 
58

 enhanced interaction strength results in reduced critical cluster size. The trend of 

decreasing cluster size with Einter  is consistent with the theoretical predication (Fig. 2b and c). Similar 

observation was also reported for simulated aggregations by monomer addition. 
59

   Moreover, the 

evolution of number average cluster size ( )tA  and the weight average cluster ( )tS  displayed a 

double-S shape. The second “S” is associated with the intermediate plateau in ( )tN . The presence of 

double-S suggests the formation of intermediate aggregates. 
60

 Significant fraction of uncompacted 
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clusters was identified in the plateau of the first S phase (Fig. S4a), which disappeared from the 

steady-state at the end of the second S phase (Fig. S4b). The uncompacted clusters usually have higher 

energies than compacted ones since they have longer perimeters that correspond to large surface 

energies. Additionally, the ( )tA  and ( )tS  decreased with Einter when Einter≤15 kBT whereas they had 

almost the same values when Einter≥15 kBT. For all cases, more time was required for the system to reach 

the final steady-state with increased Einter although the aggregation rate in the first “S” phase was 

promoted by Einter. As to the polydispersity ( )tP , it fluctuated around 1.0 for most cases except for the 

cases of low Einter. When Einter=8 kBT, the width of the cluster size distribution was highly spread during 

faster aggregation phase since ( )tP  deviated dramatically away from 1.0 (Fig. 2d). The significant 

polydispersity was probably due to the large critical size associated with weak interaction strength. The 

cluster size distributions of Einter=8 kBT and 10 kBT are also shown Fig. 3a and b, respectively. In 

comparison, the cluster size was sparely distributed for the low interaction strength case.  

Besides the interaction strength between dimers, the diffusion coefficient is another critical factor 

determining the dynamics of aggregation. To investigate the effect of diffusion process on aggregation, 

we varied the diffusion coefficient from 0.1 to 10.0 µm
2
/s for Einter=10 kBT and ϕ =0.016. The 

comparison of the statistical outputs of the simulations with different diffusion coefficients is shown in 

Fig. 4. As the diffusion coefficient increased, the fast drop of the number of clusters shifted to smaller 

time scales and the aggregation kinetics was accelerated. The double-S shape appeared in the evolutions 

of ( )tA  and ( )tS  but not in the evolution of ( )tN , which is different from that in Fig. 2 where the 

interaction energy was enhanced. Additionally, ( )tA  and ( )tS  at steady-state decreased with diffusion 

coefficient. Again, the presence of double-S suggests the existence of intermediate aggregates. These 

intermediates had uncompacted configurations and disappeared in the later stages of aggregation (Fig. 

S5) as the energy of the system minimized over time. 

As the concentration of the biomacromolecules also affects the mean free path for dimers, we varied 

the coverage ϕ  of the biomacromolecules from 0.016 to 0.16, corresponding to 6400~64000 

molecules/µm
3
 close to the cellular protein concentrations. 

48
 The comparison of the statistical outputs of 

the simulations with different coverage is shown in Fig. 5. The kinetics of aggregation shifted towards 

smaller time scale with increased concentration, indicating that the shortening of the travel distance for 

the collisions between dimers and existing clusters accelerates the aggregation process. The double-S 

shape emerged in the evolutions of ( )tA  and ( )tS  when the coverage ϕ  was higher than 0.1. The 
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steady-state values of ( )tA  and ( )tS  only increased slightly with ϕ  in the range of 0.016 to 0.16, 

similarly to the observations of the aggregations by monomer addition. 
26

 

Similar to the kinetics of aggregation of particles through monomer addition mechanism, 
20, 61

 the 

simulated aggregation of filamentous biomacromolecules started with an initial lag phase and entered a 

fast elongation phase before reaching the steady-state (Fig. 6). Here, the lag phase was more sensitive to 

the diffusion coefficient and the concentration (or the coverage) of dimers. The increase of interaction 

energy between dimers also shortened the lag phase but not as effective because the dissociation rate is 

an exponential function of the interaction energy and a slight change in the energy leads to a dramatic 

shift in the dissociation kinetics. The number of building block in the aggregates was usually used to 

characterize the kinetics of assembly by the monomer addition mechanism. 
20, 62

 Comparing the data in 

Fig. 6 to those in Figs. 2, 4 and 5, it can be seen that ( )tN , ( )tA , ( )tS  and ( )tP  were more sensitive 

to the subtle features of aggregation kinetics.  For example, the double-S shapes were only captured by 

the first three parameters, not the amount of the dimer in oligomers; in the late stage of aggregation, 

( )tA  and ( )tS  still displayed considerable dynamics while the fraction of the dimer in oligomers was 

already constant (Fig. 6).  

Unlike spherical particles, dimers have an anisotropic shape and possibly a polarized charge 

distribution. The anisotropicity can lead to singularities in aggregates as indicated by the white arrows in 

Fig.  S5. These singularities do not allow easy fill-in of dimers and hence leave an empty space in the 

aggregates, which leads to the formation of metastable clusters that may or may not evolve into stable 

clusters. These metastable clusters have impaired structural stability, which potentially affect their 

biological functions in cells. Especially for cytoskeletal proteins such as myosin II, keratin and vimentin 

that govern the mechanical properties of cells, these singularities could potentially cause severe 

influence on cellular physiology. Importantly, the accelerated assembly of aggregates due to the 

mutations in these biomacromolecules is prone to these singularities because increased intermolecular 

interactions do not permit the aggregates to relax to achieve lower energy configurations.  

In the above simulations, Γoff was assumed to be 10
6
 Hz that is at the high end of possible frequency 

range. To investigate the effect of Γoff, we used Γoff =10
4
 Hz (the low end) for cases with Einter=10 kBT, 

ϕ =0.016 and different diffusion coefficients (Fig. S6). Again, the double-S feature occurs in all cases. 

By comparison, the diffusion coefficient only plays a role in the sub-second time scale whereas the 

first-S phases reside and the second-S phases of these cases are almost indistinguishable, which is also 
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dramatically different from the cases with Γoff =10
6
 Hz in Fig. 4 where the diffusion coefficient affects 

both the first- and second- S phases. 

To demonstrate the relevance between our simulations and experiments, we compare our simulation 

results to the experimental observations of the assembly kinetics of myosin II thick filaments reported 

by R. K. Mahajan and J. D. Pardee. 
14

 In the experiments, the assembly of the purified myosin II 

proteins was promoted by adding salt to the protein solution and the assembly kinetics of thick filaments 

was measured by light scattering method. The comparison between the simulation and the experiment is 

shown in Fig. 7. The solid curves are the data extracted from the experimental results. T

14
 The open 

symbols are the simulation results at Γoff =10
4
 Hz, Einter= 10 kBT, mono

diffr =0.1~10.0 µm
2
/s and 3D 

concentration of 0.25 µM (equivalently ϕ =0.016 in 2D) dimer, which corresponds to the second-S 

phase that occurs at the similar time scale when the experimental observations were made. As the first-S 

phase is too short to be seen in experiments (Fig. S6), it was not included for comparison. It can be seen 

that the simulation results are in good agreement with the experimental ones. Additionally, the 

accelerated kinetics of aggregations resulted from the increased 2D coverage ϕ  is consistent with the 

trend in the experiments where the high concentration promoted the aggregation of proteins. Taken 

together, the comparison suggests that the values of the parameters and the numerical scheme for dimer 

addition mechanism used in our simulations are able to reproduce experimental results. 

Intuitively, the dimer translation might be considered equivalent to the combination of two 

successive rotations of monomers. As the events in KMC simulations are based on associated 

probabilities, the overall rate of two successive events is the product of the rates of these two events, not 

the summation. Therefore, numerically the dimer translation is not equivalent to the result of two 

successive rotations of monomers. To show the effect of dimer translation, simulations in the absence of 

the dimer translation were conducted for interaction energy at 10 kBT and 20 kBT (Fig. S7). The 

difference is apparent at 10 kT when compared to the results with dimer translation. 

So far, the dimers were only allowed to move in 2D. However, they could move along the direction 

perpendicular to the 2D plane in cells. To study the effect of the third direction of motion, we performed 

additional simulations by creating and deleting unassembled dimers randomly at the same rates to ensure 

the mass conservation. Dramatic effect was observed when these rates are 10 times faster than the dimer 

rotation rate (Fig. S8). However, when there rates are equal to or smaller than the dimer rotation rate 

(not shown), the effect is negligible. 
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It is worth pointing out that the KMC simulations carried out in this study are not purposely fit to 

any experimental observations but rather to demonstrate the power of the KMC simulations and 

investigate the effects of interaction energy, diffusion, and molecular concentration on the aggregation 

processes that are dependent on dimer addition mechanism. To mimic the kinetics of the aggregation of 

specific biomacromolecules, one can adjust the value of Γoff  since it is an empirical parameter that is 

difficult to directly measure experimentally. By contrast, the values of other parameters such as mono

diffr , 

Einter, and the size of molecules may be accurately obtained by experimental techniques.      

 

Conclusions 

A stochastic simulation model of the assembly of biomacromolecules by the dimer addition 

mechanism was presented and the statistical outputs were discussed. The values of three critical 

parameters, the interaction energy, the diffusion coefficient and the concentration, were varied in 

physiologically relevant ranges. The energy barrier for the dissociation of dimers had the strongest effect 

on the average cluster size and cluster number in the parameter regimes investigated here. Meanwhile, 

the diffusion and concentration of biomacromolecules had a weak effect. All three factors influenced the 

rate of fast aggregation after the initial lag phase. The number of clusters, the number average cluster 

size, the weight average cluster size, and the polydispersity were used to analyze the kinetics of 

aggregations under different conditions. These four parameters were able to detect subtle features of the 

kinetics. Double-S shapes were observed in simulations, which are suggested to be the results of 

unstable aggregates. KMC simulations make possible the investigation of the aggregation of mutated 

biomacromolecules from microseconds to hours, where the interaction energy is highly affected by the 

mutations. Currently, molecular dynamics simulations allow the accurate predication of the interaction 

energy associated with mutations, which can be potentially combined with KMC simulations to make 

the molecular simulations more powerful. The simulation approach presented in this work could be used 

for other phenomena beyond the examples described here used for its initial development. For example, 

the approach may be extended to investigating more complicated situations where the dipole associated 

with each dimer is considered. It would also be worthwhile to extend the methodology to the full kinetic 

spectrum from the diffusion-limited extreme to the reaction-limited extreme, for example, by explicitly 

setting the energy barrier for the association events. Such extensions, which rely on increased 
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computational power, offer the promise for improved understanding of the disease progression due to 

the abnormal aggregations of filamentous proteins in cells. 
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Figure captions 

 

Figure 1. Schematic graph of the transport and aggregation process of dimer addition in a kinetic Monte 

Carlo simulation: (a) example of the dimer diffusion on lattices through either the movement of one of 

its monomer or the translational motion of the whole dimer; (b) the association and disassociation of a 

dimer to an existing cluster by the movement of one its monomer. Two monomers in one dimer are 

connected by a red line. 

 

Figure 2. The effect of interaction strength for monomers in different dimers on the aggregation of 

dimeric biomacromolecules in 256×256 hexagonal lattices using the KMC method where Γoff =10
6
 Hz, 

mono

diffr =0.1 µm
2
/s and ϕ =0.016. The evolutions of the number of clusters N(t), number average cluster 

size A(t), weight average cluster size S(t),  and polydispersity P(t) are shown in (a), (b), (c) and (d), 

respectively.  

 

Figure 3. The size distribution of oligomers at t=0.01, 0.1, 1.0 and 10 s for Einter= 8 kBT (a) and 10 kBT 

(b), respectively. The size distribution is more spread in the low Einter case.  

 

Figure 4. The effect of diffusion process on the aggregation of dimeric biomacromolecules in 256×256 

hexagonal lattices using the KMC method.  The evolutions of the number of clusters N(t), number 

average cluster size A(t), weight average cluster size S(t)  and polydispersity P(t) are shown in (a), (b), 

(c) and (d), respectively. The interaction strength Einter was 10 kBT. The diffusion coefficient varied from 

0.1~10.0 µm
2
/s. 

 

Figure 5. The effect of concentration on the aggregation of dimeric biomacromolecules in 256×256 

hexagonal lattices using the KMC method.  The evolutions of the number of clusters N(t), number 

average cluster size A(t), weight average cluster size S(t) and polydispersity P(t) are shown in (a), (b), (c) 

and (d), respectively. The parameters are Einter =10 kBT, Γoff =10
6
 Hz, and mono

diffr =0.1 µm
2
/s. 

 

Figure 6. The fraction of dimer in oligomers is affected by the interaction energy (a), the diffusion 

coefficient (b), and molecular concentration (c).  
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Figure 7. The simulated aggregation of dimers is in good agreement with the experimental observations 

of the assembly of myosin II thick filaments. The solid curves are the experimental data extracted from 

R. K. Mahajan and J. D. Pardee (Fig.2a in Biochemistry 1996, 35:15504-15514). The open symbols are 

the simulation results at Γoff =10
4
 Hz, Einter= 10 kBT, and 3D concentration of 0.25 μM (equivalently 

ϕ =0.016 in 2D) dimer, corresponding to the second S phase (Fig. S6), which occurs on a similar time 

scale as the experimental observations.  The first S phase in Fig. S6 is too short to be observed in the 

reported experiments. The open circles, triangles and squares represent the cases of mono

diffr =0.1, 1.0 and 

10.0 µm
2
/s, respectively. 
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Schematic graph of the transport and aggregation process of dimer addition in a kinetic Monte Carlo 
simulation: (a) example of the dimer diffusion on lattices through either the movement of one of its 

monomer or the translational motion of the whole dimer; (b) the association and disassociation of  a dimer 

to an existing cluster by the movement of one its monomer. Two monomers in one dimer is connected by 
red line.  
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The effect of interaction strength for monomers in different dimers on the aggregation of dimeric 
biomacrolecules of in 256x256 hexagonal lattices by KMC method where Γoff =10 6Hz,  rdiff

mono=0.1 µm2/s 
and  φ=0.016. The evolutions of the number of clusters N(t), number average cluster size A(t), weight 

average cluster size S(t)  and polydispersity P(t) are shown in (a), (b), (c) and (d), respectively.  
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The size distribution of oligomers at t=0.01, 0.1, 1.0 and 10 s for Einter= 8 kBT (a) and 10 kBT (b), 
respectively. The size distribution is more spread in the low Einter case.  
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The effect of diffusion process on the aggregation of dimeric biomacrolecules of in 256x256  
hexagonal lattices by KMC method.  The evolutions of the number of clusters N(t), number average cluster 

size A(t), weight average cluster size S(t)  and polydispersity P(t) are shown in (a), (b), (c) and (d), 

respectively. The interaction strength Einter was 10 kBT. The diffusion coefficient varied from 0.1~10.0 
µm2/s.  
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The effect of concentration on the aggregation of dimeric biomacrolecules of in 256x256 hexagonal lattices 
by KMC method.  The evolutions of the number of clusters N(t), number average cluster size A(t), weight 

average cluster size S(t) and polydispersity P(t) are shown in (a), (b), (c) and (d), respectively. The 
parameters are Einter =10 kBoT, Γoff =106 Hz, and  =0.1 µm2/s.  
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The fraction of dimer in oligomers is affected by the interaction energy (a), the diffusion coefficient (b) and 
molecular concentration (c).  
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The simulated aggregation of dimers is in good agreement with the experimental observation of the 
assembly of myosin II thick filament. The solid curves are the data extracted from the experimental results 

reported by R. K. Mahajan and J. D. Pardee (Fig.2a in Biochemistry 1996, 35:15504-15514). The open 

symbols are the simulation results at Γoff =104 Hz, Einter= 10 kBT,  and 3D concentration of 0.25 µM 
(equivalently  =0.016 in 2D) dimer during the second S phase in Fig. S6, which occurs on a similar time 
scale as the experimental observations. The first S phase in Fig. S6 is too short to be seen in previously 

reported experiments. The open circles, triangles and squares represent the cases of rdiff
mono=0.1, 1.0 and 

10.0 µm2/s, respectively.  
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