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Synthesis and Characterization of New Energetic 
Derivatives Containing High Nitrogen Content 
Moiety and Picryl Group: A New Strategy for 
Incorporating the Picryl Functionality 

 Bo Wu, a Hongwei Yang,*a Zhixin Wang, a Qiuhan Lin,a,b Xuehai Ju,a Chunxu Lu, 
a and Guangbin Cheng*a 

New energetic picryl derivatives were synthesized via the reactions of 2,4,6-
trinitrobenzaldehyde with high nitrogen content compounds (above 70%) containing  hydrazine 
group. The resulting compounds 1-3 and 5-7 were well characterized by IR spectroscopy, 
multinuclear NMR spectroscopy, DSC measurements as well as elemental analysis. 
Additionally, the structures of compounds 1, 2 and 5 were confirmed by single crystal X-ray 
diffraction analysis. Except for the compound 2, all the remaining products exhibit good 
thermal stabilities with decomposition onset temperatures above 180 oC. All products possess 
high heats of formation ranging from  128.62 to 989.52 kJ mol-1. The calculated detonation 
velocities lie in the range between 7417 and 8271 m s-1. The detonation pressures range 
between 21.8 and 31.1 GPa. 
 

 

 

 

Introduction 

The development of energetic materials continues to focus on these 
compounds with high densities, high heats of formation and good 
detonation properties.1 The novel energetic compounds possessing 
excellent performance and low sensitivity are extremely desirable. 
Recently, a new group of energetic materials containing high 
nitrogen content moieties has been studied.2 In contrast with 
traditional explosives, whose energy is derived from the overall heat 
of combustion, the most energy of these energetic compounds 
containing high nitrogen fragment derives from their very high heats 
of formation. The high heat of formation is directly attributed to 
large numbers of N―N and C―N bonds within their structures.3 
Additionally, energetic compounds with high nitrogen, but low 
hydrogen and carbon content allow a good oxygen balance to be 
achieved more easily. Nitrogen-rich parent compounds such as 
guanidines,4 tetrazoles2c, 5 and tetrazines6 are essential units to 
synthesize energetic compounds containing high nitrogen content 
moieties. Generally, oxygen-containing energetic substituents such 
as nitro (NO2),

1c-1e, 2b, 7 nitrato (ONO2),
8 and nitramine (NHNO2)

1g, 2c, 

6e, 9 functionalities are introduced into nitrogen-rich parent 
compounds to produce novel energetic derivatives with excellent 
detonation performance.  

2,4,6-trinitrophenyl moiety (picryl moiety) has been used as an 
energetic unit in the field of energetic materials.10 As known, the 
nitro group is helpful to enhance the oxygen balance and density of 
the energetic materials, which improves the detonation performances. 
Therefore, picryl moiety plays a remarkable role in preparation of 
new energetic materials. Incorporation of a picryl group into the 
nitrogen heterocyclic compounds such as triazoles,10c, 10e furazans,10b 
trizines10a and tetrazoles10h has been investigated. Among these 
energetic picryl derivatives, typical picryl derivatives with high 
nitrogen moiety (nitrogen contents above 70%) are the following: 5-
picrylamino-1,2,3,4-tetrazole (PAT) and (2,4,6-
trinitrophenyl)guanidine. In contrast to (2,4,6-
trinitrophenyl)guanidine, 5-picrylamino-1,2,3,4-tetrazole (PAT) has 
been fully investigated. It can be synthesized from the reactions of 
picryl chloride with 5-amino-1,2,3,4-tetrazole or 1,5-
diaminotetrazole (Scheme 1).10h It also has been further 
characterized for structural aspects, thermal behaviour and explosive 
properties. Usually, picryl halogen (halogen = F, Cl) is used as the 
starting materials for synthesizing energetic picryl derivatives. In the 
present work, 2,4,6-trinitrobenzaldehyde was used as new starting 
material for the preparation of new energetic picryl derivatives. 
These new picryl derivatives containing high nitrogen content 
moieties were synthesized via the condensation reactions of 2,4,6-
trinitrobenzaldehyde with high nitrogen content parent compounds 
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containing hydrazine group such as aminoguanidine derivatives, 5-
hydrazinotetrazolium chloride and 3,6-dihydrazine-1,2,4,5-tetrazine 
dihydrochloride. These new energetic picryl derivatives were 
characterized for structural aspects, thermal behaviour and explosive 
properties by experimental and theoretical methods. 

 

Scheme 1 Synthesis of 5-picrylamino-1,2,3,4-tetrazole (PAT) 

Results and discussion 

Synthesis 

It is known that aromatic aldehyde can readily react with 
amines and hydrazines to generate Schiff bases and hydrazones 
with the elimination of water molecules. However, 2,4,6-
trinitrobenzaldehyde possesses lower reactivity than common 
aldehydes owing to the strong electron-withdrawing inductive 
effect of the three nitro groups attached to the benzene ring. In 
the beginning, the attempts of reactions between the amino 
derivatives of tetrazole (e.g., 5-aminotetrazole and 1,5-
diaminotetrazole) and 2,4,6-trinitrobenzaldehyde  did not result 
in the desired picryl derivatives. It was probably due to the fact 
that the reactivity of the amino group is poorer than that of the 
hydrazine group in nitrogen-rich compounds. Then, the 
commercially available aminoguanidine hydrochloride reacted 
with 2,4,6-trinitrobenzaldehyde to yield N-(2,4,6-
trinitrobenzylideneamino) guanidinium chloride (1). The 
corresponding picryl derivatives 2 and 3 were also synthesized 
from the reactions of 2,4,6-trinitrobenzaldehyde with 
aminoguanidinium nitrate and aminoguanidinium perchlorate 
(Scheme 2). Surprisingly, the desired 1,3-bis(2,4,6-
trinitrobenzylideneamino) guanidine (4) was not obtained from 
the reaction of 1,3-diaminoguanidium monohydrochloride  with 
2,4,6-trinitrobenzaldehyde. 4,6-Dinitro-N-(2,4,6-
trinitrobenzylidene)-1H-indazole-1-carbohydrazonamide (5) 
was the only  ultimate product. It was probably caused by the 
intramolecular cyclization of 4. As reported, the o-nitro group 
in picryl moiety could be replaced by nucleophiles (Scheme 
3).11 

CHO

NO2O2N

NO2

NO2O2N

NO2

N

HN

NH2

NH2

A
NH2

NH2N
H

H2N

A

EtOH, reflux

A= Cl (1), NO3 (2), ClO4 (3)  

Scheme 2 Synthesis of picyl derivatives 1-3. 

 

Scheme 3 The process for the formation of 5 

After preparation of these picryl-functionalized guanidine 
derivatives, we turned our attention to synthesize picryl-
functionalized tetrazole and 1,2,4,5-tetrazine derivatives. 5-(2-
(2,4,6-trinitrobenzylidene)hydrazinyl)-1H-tetrazole (6) and 3,6-
bis-(2-(2,4,6-trinitrobenzylidene)hydrazinyl)-1,2,4,5-tetrazine 
(7) were prepared from the reactions of 2,4,6-
trinitrobenzaldehyde with 5-hydrazinotetrazolium chloride and 
3,6-dihydrazine-1,2,4,5-tetrazine dihydrochloride in the yield of 
80% and 60%, respectively (Scheme 4). 

 

Scheme 4 Synthesis of picyl derivatives 6 and 7 

Single-Crystal X-ray Analysis 

Three compounds described herein (1, 2 and 5) were 
characterized by single-crystal X-ray diffraction analysis. 
Selected data and parameters of the measurements and 
refinements were gathered in Table1. 
Table 1. Crystal data and structure refinement details of 1, 2 and 5 

Crystal 1 2 5 
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Heats of Formation and Detonation Parameters 

The heat of formation (HOF) plays an important role in 
evaluating the performance of energetic materials. The heats of 
formation of the resulting compounds 1-3 and 5-7 were 
calculated based on appropriate isodesmic reactions (Scheme 
S1, Supporting Information). Calculations were carried out 
using the Gaussian 09 program suite.18 The geometry 
optimization of the structures and frequency analyses were 
carried out using the B3LYP functional with the 6-311+G** 
basis set.19 All of the optimized structures were characterized 
by true local energy minima on the potential energy surface 
without imaginary frequencies. For ionic energetic compounds 
1-3, the positive heats of formation were calculated using the 
Born–Haber energy cycle. As summarized in Table 2, the 

resulting compounds 1-3 and 5-7 exhibit positive heats of 
formation. The calculated values fall in the range from 128.62 
(3) to 989.52 (7) kJ mol-1, which are highly positive due to the 
feature of high nitrogen content. 
The detonation velocity (D) and detonation pressure (P), which 
are used to measure the performance of a high explosive, were 
calculated by using the EXPLO5 program (Version 6.01).20 As 
summarized in Table 2, for these new energetic picryl 
derivatives 1-3 and 5-7, the calculated detonation velocities lie 
in the range between 7417 and 8271 m s-1, most of which are 
remarkably higher than that of PAT (7770 m s-1).10h The 
detonation pressures range between 21.8 and 31.1 GPa, in 
which the highest detonation pressure value of 3 (31.1 GPa) is 
slightly lower than that of RDX (35.2 GPa). 

Table 2. The physicochemical properties of 1-3 and 5-7 compared with 5-picrylamino-1,2,3,4-tetrazole (PAT) and 
1,3,5-trinitroperhydro-1,3,5-triazine (RDX). 

Compound 
Tm

a 

[oC] 

Td
b  

[oC] 
OBc 

Nd 

[%] 
ρ (g cm-3)

ΔfHm
g 

 (kJ/mol)

Dh 

(m/s)

Pi  

(GPa)

ISj 

 [J] 

FSk 

[N] 

ESDl 

[J] 

1 205.7 207.7 -67.14 29.39 1.633e  214.18 7417 21.8 25 192 0.887 

2 - 146.3 -48.86 31.11 1.757e 134.76 8256 29.6 11 168 0.321 

3 211.1 211.1 -40.24 24.66 1.853f 128.62 8271 31.1 6 120 0.119 

5 - 189.1 -78.64 28.69 1.683e 525.42 7782 24.8 32 320 1.1 

6 182.2 184.2 -61.89 39.01 1.765f 652.06 8234 28.4 35 360 0.714 

7 - 229.5 -65.27 33.33 1.795f 989.52 8188 28.4 30 288 0.821 

PATm - 183 -50.02 37.84 1.552 452.23 7770 26.4 >60 >360 1.0 

RDXn - 205 -21.6 37.84 1.80 70 8795 35.2o 7.5 120 0.2 

a Melting point. b Thermal decomposition temperature under nitrogen gas. c Oxygen balance (%) for CaHbNcOd: OB (%) =1600 × 

(d-2a-b/2)/ Mw (based on carbon dioxide). d Nitrogen content. e Density from X-ray structure. f Density from theoretical 

calculation. g Molar enthalpy of the formation. h Detonation velocity. i Detonation pressure. j Impact sensitivity measured with a 

2.0 kg hammer. k Friction sensitivity. l Sensitivity against electrostatic discharge. m Data from ref [10h]. n Data from ref [15]. o 

Data from ref [2e]. 

Experimental 

Caution: Although we experienced no difficulties in handling 
these energetic materials, small scale and best safety practices 
(leather gloves, face shield) are strongly encouraged. 

General Methods 

All chemical reagents and solvents were obtained by purchase 
and were used as supplied without further purification. 2,4,6-
trinitrobenzaldehyde,21 aminoguanidinium perchlorate,4a 5-
hydrazinotetrazolium chloride,5i 3,6-dihydrazino-1,2,4,5-
tetrazine dihydrochloride22 were prepared according to 
published procedures. The 1H spectra were recorded on a 

Bruker Avance III 500 instrument at 25 °C. The 13C and 15N 
NMR spectra were recorded on a Bruker Avance III 300 
instrument at 25 °C. The chemical shifts were given relative to 
dimethyl sulfoxide (1H, 13C) or nitromethane (15N) as external 
standards. Infrared (IR) spectra were recorded on a Perkin-
Elmer Spectrum BX FT-IR instrument equipped with an ATR 
unit at 25 °C. DSC studies were performed at a heating rate of 
10 oC min–1 in closed Al containers with a nitrogen flow of 30 
mL min–1 on an STD-Q600 instrument. Analyses of C/H/N 
were performed with a Vario EL III Analyzer. The electrostatic 
sensitivity tests were carried out with an Electric Spark Tester 
ESD JGY-50 III. The sensitivities towards impact and friction 
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were determined by using a HGZ-1 drophammer and a BAM 
friction tester. 
X-ray Crystallography: The X-ray diffraction measurements 
for 1, 2 and 5 were performed with a Bruker three-circle 
platform diffractometer equipped with a SMART APEX II 
CCD detector. The data collection and the initial unit cell 
refinement was performed by using APEX2 (v2010.3-0). Data 
Reduction was performed by using SAINT (v7.68A) and 
XPREP (v2008/2). Corrections were applied for Lorentz, 
polarization, and absorption effects by using SADABS 
(v2008/1). The structure was solved and refined with the aid of 
the programs in the SHELXTL-plus (v2008/4) system of 
programs. The full-matrix least-squares refinement on F2 
included atomic coordinates and anisotropic thermal parameters 
for all non-H atoms. The H atoms were included in a riding 
model. The structure was solved by direct methods with 
SHELXS-97 and expanded by using the Fourier technique. The 
non-hydrogen atoms were refined anisotropically. The 
hydrogen atoms were located and refined. 
Preparation of  2,4,6-trinitrobenzaldehyde 
Several crystals of I2 were added to a suspension of 
2,4,6trinitrotoluene (10 g, 0.044 mol) and N,N-
dimethylpnitrosoaniline (7 g, 0.047 mol) in pyridine (15 mL). 
The reaction mixture was stirred at 30 °C for 48 h. The 
resulting precipitate was filtered off, washed with cold acetone 
and dried in air to yield 11.07 g N,N-dimethyl-N'-(2,4,6-
trinitrobenzylidene)benzene-1,4-diamine in a yield of 70%. A 
suspension of N,N-dimethyl-N'-(2,4,6-
trinitrobenzylidene)benzene-1,4-diamine (10 g, 0.027 mol) in 
80 mL concentrated HCl was stirred at 60 °C for 3 h. The 
precipitate was filtered off, washed with water and dried in air 
to obtain 4.36 g of 2,4,6-trinitrobenzaldehyde in a yield of 65%. 
1H NMR (500M, DMSO): δ (ppm) 10.54 (s, 1H, -CHO), 9.16 (s, 
2H, -CH). 13C NMR (75M, DMSO): δ (ppm) 189.7, 149.6, 
149.2, 135.7, 126.2.  
General procedures for preparation of energetic 
compounds 1-3 
A solution of aminoguanidium salts (2 mmol) and 2,4,6-
trinitrobenzaldehyde (0.7233g, 0.003 mol) in 30 mL ethanol 
was refluxed for 24 h. Then, the reaction mixture was cooled to 
room temperature. The residue was purified on a silica gel 
column chromatography employed by a solvent mixture of 
ethyl acetate: methanol = 8 : 1 to afford the desired product. 
N-(2,4,6-trinitrobenzylideneamino) guanidinium chloride (1) 
0.5672 g of 1 was obtained as reddish solid in a yield of 85%. 
DSC: Tdec= 207.7 oC. 1H NMR (500 MHz, DMSO): δ (ppm) 
12.88 (br, 1H, -NH-), 9.12(s, 2H, -CH), 8.61(s, 1H, -CH=N-), 
7.86 (s, 4H, -NH2). 

13C NMR (75 MHz, DMSO): δ (ppm) 157.0, 
150.5, 148.9, 140.8, 129.6, 125.0. IR (KBr): 3409, 3250, 3175, 
3108, 3012, 2965, 2361, 2336, 1678, 1606, 1537, 1468, 1401, 
1347, 1224, 1176, 1141, 1079,1018, 910, 725, 675, 583, 559, 
503 cm−1. C, H, N analysis (%): C8H8ClN7O6 (333.65), 
calculated result: C 28.80, H 2.42, N 29.39; found: C 29.12, H 
2.56, N 28.78. 
N-(2,4,6-trinitrobenzylideneamino) guanidinium nitrate (2) 

0.6484 g of 2 was obtained as white solid in a yield of 90%. 
DSC: Tdec= 146.3 oC. 1H NMR (500 MHz, DMSO): δ (ppm) 
12.34 (s, 1H, -NH-), 9.14 (s, 2H, -CH), 8.58 (s, 1H, -CH=N-), 
7.73 (s, 4H, -NH2). 

13C NMR (75 MHz, DMSO): δ (ppm) 156.4, 
150.5, 149.0, 141.3, 129.6, 125.1. 15N NMR (30 MHz, DMSO ) 
δ (ppm) -4.37, -16.78, -20.00, -59.91, -231.65, -304.61. IR 
(KBr): 3423, 3166, 3104, 2886, 1683, 1631, 1612, 1547, 1400, 
1385, 1348, 1303, 1226, 1149, 1081, 1037, 914, 825, 726 cm−1. 
C, H, N analysis (%): C8H8N8O9 (360.20), calculated result: C 
26.68, H 2.24, N 31.11; found: C 27.32, H 2.44, N 30.98. 
N-(2,4,6-trinitrobenzylideneamino) guanidinium 
perchlorate (3) 
0.7316 g of 3 was obtained as white solid in a yield of 92%. 
DSC: Tdec= 211.1 oC. 1H NMR (500 MHz, DMSO): δ (ppm) 
12.30 (s, 1H, -NH-), 9.13 (s, 2H, -CH), 8.59 (s, 1H, -CH=N-), 
7.70 (s, 4H, -NH2). 

13C NMR (75 MHz, DMSO): δ (ppm) 156.4, 
150.5, 149.0, 141.4, 129.6, 125.1. 15N NMR (30 MHz , DMSO ) 
δ (ppm) -16.78, -20.00, -59.91, -231.65, -304.61. IR (KBr): 
3551, 3472, 3417, 3245, 3106, 1688, 1638, 1617, 1539, 1465, 
1401, 1349, 1231, 1146, 1115, 1086, 917, 847, 827, 723, 628, 
500 cm−1. C, H, N analysis (%): C8H8ClN7O10 (397.64), 
calculated result: C 24.16, H 2.03, N 24.66; found: C 25.07, H 
2.11, N 23.12. 
Synthesis  of  5 
A solution of 1,3-diaminoguanidine monohydrochloride 
(0.2512 g, 0.002 mol) and 2,4,6-trinitrobenzaldehyde (1.2056 g, 
0.005 mol) in 30 mL ethanol was refluxed for 48 h. Then, the 
reaction mixture was cooled to room temperature and the 
precipitate was collected by filtration. 0.72 g 5 as yellow solid 
was obtained in a yield of 74%. DSC: Tdec= 189.1 oC.  1H NMR 
(500 MHz, DMSO): δ (ppm) 9.10 (s, 6H, -CH), 8.51 (br, -NH2). 
13C NMR (75 MHz, DMSO): δ (ppm) 156.8, 155.1, 150.5, 
148.9, 147.4, 143.3, 141.2, 139.9, 138.1, 129.9, 125.1, 124.5, 
119.5, 116.4. IR (KBr): 3478, 3422, 3367, 3150, 3119, 3092, 
1638, 1594, 1537, 1462, 1445, 1401, 1347, 1300, 1189, 1081, 
1034, 916, 787, 719, 474 cm−1. C, H, N analysis (%): 
C15H8N10O10 (488.29), calculated result: C 36.90, H 1.65, N 
28.69; found: C 37.54, H 1.77, N 28.01. 
Synthesis of 6 
A solution of 5-hydrazinotetrazolium chloride (0.2731 g, 0.002 
mol) and 2,4,6-trinitrobenzaldehyde (0.7233 g, 0.003 mol) in 
30 mL ethanol was refluxed for 24 h. Then the reaction mixture 
was cooled to room temperature. The mixture was purified on a 
silica gel column chromatography employed by a solvent 
mixture of ethyl acetate : methanol = 4 : 1 to afford 0.52 g 6 as 
reddish solid in a yield of 80%. DSC: Tdec= 184.2 oC. 1H NMR 
(500 MHz, DMSO): δ (ppm) 15.56 (br, NH), 12.52 (s, 1H, -
NH-), 9.08 (s, 2H, -CH), 8.39 (s, 1H, -CH=N-). 13C NMR (75 
MHz, DMSO): δ (ppm) 157.7, 150.4, 149.3, 136.2, 130.2, 
124.9. IR (KBr): 3418, 3094, 2956, 2888, 1643, 1605, 1543, 
1402, 1346, 1264, 1150, 1122, 1079, 1059, 920, 742, 721 cm−1. 
C, H, N analysis (%): C8H5N9O6 (323.18), calculated result: C 
29.73, H 1.56, N 39.01; found: C 30.24, H 1.67, N 38.52. 
Synthesis of 7 
A solution of 2,4,6-trinitrobenzaldehyde (0.7233 g, 0.003 mol), 
3,6-dihydrazine-1,2,4,5-tetrazine dihydrochloride (0.2150 g, 
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0.001 mol) in 20 mL ethanol was stirred at 80 oC for 18 h. The 
resulting precipitate in reaction mixture was filtered off. Then 
washed with cold ethanol (50 mL) and dried to afford 0.35 g 7 
as red powder in a yield of 60%. DSC: Tdec= 229.5 oC. 1H NMR 
(500 MHz, DMSO): δ (ppm) 12.75 (s, 2H, -NH-), 9.06(s, 4H, -
CH), 8.54(s, 2H, -CH=N-). 13C NMR (75 MHz, DMSO): δ 
(ppm) 161.3, 150.2, 147.9, 135.5, 129.9, 124.1. IR (KBr): 3422, 
3215, 3093, 2989, 2880, 2361, 2338, 1600, 1539, 1450, 1348, 
1303, 1178, 1084, 1055, 968, 923, 738, 722, 569 cm−1. C, H, N 
analysis (%): C16H8N14O12 (588.32), calculated result: C 32.66, 
H 1.37, N 33.33; found: C 33.15, H 1.41, N 32.94.  

Conclusions 

The new energetic picryl derivatives 1-3 and 5-7 were 
synthesized via the condensation reactions of 2,4,6-
trinitrobenzaldehyde with high nitrogen content (above 70%) 
compounds containing hydrazine group. All products were well 
characterized by means of IR spectroscopy, multinuclear NMR 
spectroscopy, DSC measurements as well as elemental analysis. 
Single crystal X-ray measurements were accomplished for 
compounds 1, 2 and 5. According to the DSC results, Except 
for the compound 2 (Td, onset = 146.3 °C), the decomposition 
onset temperatures (Td, onset) of the remaining energetic picryl 
derivatives are higher than 180 °C, which indicates that these 
new energetic picryl compounds possess good thermal 
stabilities in contrast with 5-picrylamino-1,2,3,4-tetrazole 
(PAT). In particular, the most stable compound is 7, which 
decomposed at almost 230 °C. Its decomposition onset 
temperature is higher than that of RDX (Td = 205 oC). The 
calculated detonation velocities lie in the range between 7417 
and 8271 m s-1. The detonation pressures range from 21.8 to 
31.1 GPa. Ionic picryl derivative 3 has a detonation pressure 
and velocity of 31.1 GPa and 8271 m s-1, respectively, which is 
significantly higher than those of PAT (26.4 GPa and 7770 m s-

1). Except 3, most new picryl derivatives are less sensitive to 
impact, friction and electrostatic discharge than RDX. In 
conclusion, the way to synthesize new picryl derivatives 
starting from 2,4,6-trinitrobenzaldehyde enriches the 
methodology for development of new energetic picryl 
compounds.  
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Synthesis of new picryl derivatives containing high nitrogen content moiety from new 

starting materials are now reported.
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