RSC Advances

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

Journal Name

RSCPublishing

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Functionalized superparamagnetic Fe₃O₄ as an efficient quasi-homogeneous catalyst for multicomponent reactions

U. Chinna Rajesh, Divya and Diwan S. Rawat*

valinate ionic liquid 3-Tetrabutylammonium [NBu₄][Val] supported on chloropropyltriethoxysilane grafted superparamagnetic Fe₃O₄ NPs (VSF) was synthesized and characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The VSF catalyst was used as an efficient "quasi-homogeneous" catalyst for multi-component synthesis of 1,4dihydropyridines and 2-amino-4-(indol-3-yl)-4H-chromenes at room temperature. VSF catalyst was recovered by using an external magnet and recycled for six times without significant loss in catalytic activity. Moreover, VSF is a "quasi-homogeneous" catalyst can bridge the gap between homogeneous and heterogeneous catalysis.

Introduction

Superparamagnetic nanoparticles (MNPs) play a pivotal role in modern science and technologies due to their wide range of applications in various fields such as biotechnology/biomedicine, data storage, magnetic fluids, magnetic resonance imaging and heterogeneous catalysis.¹ The MNPs have been found as sustainable catalysts or catalyst supports in organic synthesis due to their unique properties including huge surface area, non-toxic, recoverable with an external magnet, and avoids the work up/filtration of the catalyst.² The functionalized MNPs have been increasingly exploited in the area of biomedicine and catalysis.³ Several metal NPs or metal complexes including palladium,⁴ gold,⁵ ruthenium,⁶ copper,⁷ osmium,⁸ platinum and nickel,⁹ iridium/rhodium,¹⁰ vanadium,¹¹ and manganese¹² have been supported on the MNPs to explore catalytic potential for various organic conversions. The ionic liquid functionalized ferrite materials were used as support for stabilization of various metal NPs.¹³ However, limited reports available on metal free, ionic liquid functionalized MNPs as recyclable catalysts for multicomponent reactions.14

Ionic liquids have been subject of intense study for last few decades due to their applications in various fields including homogeneous catalysis.¹⁵ Amino acid based ionic liquids (AAIL) have found interesting applications in catalysis,¹⁶ but their uses as immobilization or supporting on solid materials were found to be very limited.¹⁷ AAILs were either solids or liquids of extremely high viscosity have limitations in efficiencies of heat and mass transfer processes. The physico-chemical properties of AAIL may be tuned by changing either cations or anions derived from amino or carboxylic acid functional groups of amino acid to overcome these

limitations.¹⁸ Recently, tetraalkylammonium-based amino-acid ionic liquids [NBu₄][AA] ILs with lower viscosities were reported as an efficient medium for absorption of CO_2 ,¹⁹ and also as ligands or catalysts for few organic conversions.²⁰

The field of "Quasi-homogeneous" catalysis is the frontier between homogeneous and heterogeneous catalysis. This has the advantages offered by both the heterogeneous catalysis, with the characteristic of recovery and recyclability of the catalyst, and the homogeneous catalysis, with the characteristic of low catalyst loading and selectivity of the required product.²¹ In 1996, Bonnemann et al. demonstrated the quasi-homogeneous catalytic nature of platinum colloids for enantioselective hydrogenation of ethylpyruvate to (R)-ethyllactate.²² Schuth et al. reported the efficient use of aluminum-stabilized copper colloids as a quasihomogeneous catalyst for methanol synthesis.²³ Recently, Luo et al. reported the ionic liquid supported MNPs as "quasi-homogeneous" catalyst for synthesis of benzoxanthenes.²⁴ In this context, we presumed that the immobilization or supporting of highly charged low viscous [NBu₄][AA] ILs on solid Fe₃O₄ NPs can show the properties of quasi-homogeneous catalyst to bridge the gap between heterogeneous and homogeneous catalysis.

It is apparent to study the catalytic potential of such quasihomogeneous catalyst in multi-component reactions for the construction of biologically relevant scaffold in a single step. 1,4-Dihydropyridines (1,4-DHPs) are such privileged pharmacological scaffolds which exhibit significant biological activities in the treatment of cardiovascular disease as calcium channel blockers.²⁵ Chromenes and indoles are another class of compounds found in a number of natural products with wide range of biological activities. ^{26,27}2-Amino-4-(indol-3-yl)-4H-chromenes are hybrid molecules, which comprises the incorporation of two pharmacophores such as chromenes and indoles with the intention to exert dual biological activities.

In view of developing efficient green approach for the synthesis of 1,4-dihydropyridines, very few MNPs such as nano- γ -Fe₂O₃,²⁸ γ -Fe₂O₃-SO₃H,²⁹ Fe₃O₄-CeO₂³⁰ and ZrO₂-Al₂O₃-Fe₃O₄³¹ have been reported as recyclable catalysts. To the best of our knowledge, there is no report exists for the one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromenes via Knoevenagel/Pinner/Friedel-Crafts reaction using MNPs as recyclable catalysts. As a part of our ongoing work towards the development of efficient recyclable catalysts for the synthesis of biologically important molecules,³² we report herein, the VSF as a quasi-homogeneous catalyst for the synthesis of 1,4-dihydropyridines and 2-amino-4-(indol-3-yl)-4H-chromenes.

Results and Discussions

Synthesis and Characterization of VSF catalyst

VSF nano material was synthesized by the grafting of the tetrabutylammonium valinate [NBu₄][Val] ionic liquid (VIL) on 3chloropropyltriethoxysilane coated Fe₃O₄ NPs using a simple conventional heating protocol (Scheme 1) and characterized by fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM).

Scheme 1: Synthesis of N4444VIL@Si@Fe3O4 (VSF) catalyst

The XRD pattern of Fe₃O₄ clearly conforms the formation of cubic spinel structure with the diffraction peaks at 2θ are 30.16° , 35.53° , 43.33° , 53.64° , 57.39° and 62.76° which correspond to the phases (2 2 0), (3 1 1), (4 0 0), (4 2 2), (5 1 1), and (4 4 0) respectively (Figure 1). The XRD pattern is in well agreement with the reported data (JCPDS no. 65-3107).³³ The mean crystallite size and the mean particle size was determined using the Scherrer formula and found to be 11.6 nm.

Figure 1: X-ray diffraction patterns of (a) Fe₃O₄ NPs; (b) Si@Fe₃O₄; (c) VSF

The calculated mean crystallite size is consistent with the result measured from the TEM images. There were no considerable changes observed in the x-ray diffraction pattern and crystallite size of silica coated ferrite and VSF (Figure 1b and 1c). However, the intensity of the related peaks of silica-coated and VSF are slightly reduced (Figure 1).

The functional groups of as synthesized VSF material and its precursors were characterized from FT-IR technique as shown in Figure 2. Three characteristic bands correspond to Fe-O vibration and surface hydroxyl groups of Fe₃O₄ appeared at 581, 1622 and 3426 cm⁻¹ respectively (Figure 2a). The characteristic bands of chloropropyl silane coated ferrite appeared at 1039, 1129 cm⁻¹ and 2940, 1415 cm⁻¹ which correspond to Si-O-Si stretching and C-H stretch, bend respectively (Figure 2b). The characteristic bands at 1666 cm⁻¹ corresponds to the carbonyl functional group of VIL (Figure 2c). Moreover, the presence of functional groups in VSF such as Fe-O, Si-O-Si, C-H, carbonyl were conformed from the bands at 581, 1129 and 1039, 1415, 1657 cm⁻¹ respectively (Figure 2d).

Figure 2: FT-IR of (a) Fe₃O₄ NPs; (b) Si@Fe₃O₄; (c) VIL; (d) VSF

The surface morphology of Fe_3O_4 NPs and VSF were characterized from scanning electronic microscopy technique (SEM) as shown in Figure 3. The results clearly showed that there was a change in the morphology of VSF (3c, 3d) as compared with Fe_3O_4 NPs (3a, 3b). Furthermore, the internal morphology and size of VSF NPs were characterized from transmission electronic microscopy (TEM) as shown in Figure 4.

Figure 3: Low to high magnified SEM images of (a), (b) Fe₃O₄ NPs and (c), (d) VSF

The particle size of nano particles was calculated from TEM and found to be varied from 7.35 nm to 12.5 nm which is consistent with the result calculated from PXRD data using the Scherrer formula.

Figure 4: Low to high magnified TEM images of (a), (b), (c), (d) VSF

The thermal stability and percentage of organic functional groups chemisorbed/grafted on Fe₃O₄ NPs were determined by TGA analyses (Figure 5). The weight loss at temperature 150 °C can be attributed to the water desorption from surface of MNPs (Figure 5). The curve (b) shows a weight loss of 4.4% at temperature range 150-550 °C corresponds to the decomposition of 3chloropropyltriethoxysilane on Fe_3O_4 . The curve (c) shows weight loss of 6.1% corresponds to decomposition of VIL. Moreover, the weight loss above 600 °C corresponds to decomposition of Fe₃O₄ to 3FeO. The TGA calculations reveal that 6.1% of ionic liquid was grafted on Fe₃O₄ NPs.

Figure 5: TGA curves of (a) Fe₃O₄ NPs; (b) Si@Fe₃O₄; (c) VSF

The magnetic properties of the VSF, Si@Fe₃O₄, and Fe₃O₄ NPs were measured by vibrating sample magnetometer (Figure 6). The saturation magnetization of bare Fe₃O₄ was found to be 44.8 emu/g. There was slight decrease in magnetization of Si@Fe₃O₄ and VSF, such as 36.1 and 37.3 emu/g respectively. The slight decrease in saturation magnetization was due to the successful supporting of chloropropyl triethoxysilane and ionic liquid on Fe₃O₄ NPs respectively. Moreover, the results indicates that these materials showed a typical superparamagnetic behavior with negligible

remanence, Mr (emu/g) and coercivity, Hc (Oe) as shown in inset (Figure 6). The superparamagnetic behavior and high saturation magnetization of these materials are very beneficial in heterogeneous catalysis as it can be easily recoverable by external magnetic field.

Figure 6: Magnetization curves of Fe₃O₄ NPs; Si@Fe₃O₄; and VSF

VSF as a quasi-homogeneous catalyst for multi-component reactions

Initially, the catalytic potential of VSF NPs were investigated for the synthesis of 1,4-dihydropyridines *via* Hantzsch reaction as shown in Scheme 2. The optimization of reaction conditions were studied for the model reaction between 1,3-cyclohexanedione, benzaldehyde, ethyl acetoacetate and ammonium acetate for the synthesis of 1,4-dihydropyridine **5a**.

Scheme 2: VSF catalyzed one-pot synthesis of 1,4-dihydropyridines.

The reaction was performed in the presence of different VSF catalyst loading under benign solvents such as water, EtOH and without solvent at room temperature (Table 1, Entry 1-6). The results showed that 2 mol% of catalyst and ethanol as a solvent was the best condition to afford product 5a in excellent yield in short reaction time (Table 1, Entry 5). When the reactions were performed in the presence of Fe₃O₄ and Si@Fe₃O₄ NPs under optimized conditions, the product 5a was formed in moderate yields (Entries, 7 and 8). In the presence of VIL as a catalyst the product 5a was formed in 60% yield (Entry 9). Next, we studied the model reaction in the absence of catalyst under optimized conditions, a trace amount of product formation was observed even after prolonged reaction time (Table 1, Entry 10). However, the catalytic activity of either Fe₃O₄ (heterogeneous) or VIL (homogeneous) alone was found to be sluggish with moderate yields of 5a. The combined properties of VSF, a quasi-homogeneous catalyst, gave the best result to afford the DHP 5a in 90% yield at room temperature (Table 1, Entry 5).

Page 4 of 8

Table 1: Optimization study for VSF catalyzed one-pot synthesis of 1,4-dihydropyridine **5a**.^a

Entry	Catal. (mol%)	Solvent	Time	Yield (%) ^b
			(min)	
1	VSF (10)	Water	60	70
2	VSF (10)	EtOH	40	84
3	VSF (10)	No solvent	80	65
4	VSF (5)	EtOH	30	84
5	VSF (2)	EtOH	30	90
6	VSF (1)	EtOH	30	80
7	$Fe_{3}O_{4}(2)$	EtOH	120	50
8	$Si@Fe_3O_4(2)$	EtOH	120	40
9	VIL (2)	EtOH	30	60
10	No catalyst	EtOH	240	Trace

^a1,3-cyclohexanedione (1 mmol), aldehyde (1mmol), ethylacetoacetate (1 mmol), NH₄OAc (1.5 mmol), catalyst (mol%) and solvent (4 mL) at room temperature; ^bIsolated yield.

With these interesting results, we investigated the generality of VSF catalyst for several substituted aryl aldehydes, 1,3-cyclohexanedione/dimedone and ammonium acetate under optimized conditions as shown in Table 2. The aryl aldehydes having electron withdrawing groups such as NO₂, Cl, Br and CN at *para* position showed less reactivity as compared with simple benzaldehyde (Table 2, Entries 2-5). Moreover, the aldehydes bearing electron donating groups such as OMe, Me at *para* and *meta* positions gave excellent yields in short reaction time (Table 2, Entries 6-9).

Table 2: VSF catalyzed one-pot synthesis of 1,4-dihydropyridines.^a

R	R^1	Product	Time	Yield
		5	(min)	(%)
Н	Н	5a	25	94
Н	$4-NO_2$	5b	40	87
Н	4-Cl	5c	40	95
Н	4-Br	5d	35	91
Н	4-CN	5e	45	93
Н	4-Me	5f	30	89
Н	4-OMe	5g	20	93
Н	3,4-OMe	5h	20	92
Н	3-OMe	5i	20	93
Me	Н	5j	25	94
Н	4-OBn	5k	40	91
Н	3-0	51	40	85
EAA	Н	5m	35	85
	R H H H H H H H H H H H H H H EAA	R R^1 H H-NO2 H 4-NO2 H 4-Cl H 4-Br H 4-CN H 4-OMe H 3,4-OMe H 3-OMe Me H H 3-OMe H 3-OMe H 3-OMe	R R ¹ Product H H 5a H 4-NO2 5b H 4-Cl 5c H 4-Cl 5c H 4-Br 5d H 4-ON 5e H 4-ONe 5g H 3,4-OMe 5h H 3-OMe 5i Me H 5j H 4-OBn 5k H 3-o 5l EAA H 5m	R R ¹ Product $f_{(min)}$ Time f_{5} H H 5a 25 H 4-NO ₂ 5b 40 H 4-Cl 5c 40 H 4-Cl 5c 40 H 4-Cl 5c 40 H 4-CN 5e 45 H 4-CN 5e 45 H 4-OMe 5f 30 H 4-OMe 5g 20 H 3,4-OMe 5h 20 H 3-OMe 5i 20 Me H 5j 25 H 4-OBn 5k 40 H $3-0$ 5l 40 H $3-0$ 5l 40 EAA H 5m 35

^a1,3-cyclohexanedione (1 mmol), aldehyde (1mmol), ethylacetoacetate (1 mmol), NH₄OAc (1.5 mmol), VSF catalyst (2 mol%) and EtOH (4 mL) at room temperature; ^bisolated yield.

A comparative study on catalytic performance of VSF with other MNPs catalysts for the synthesis of 1,4-dihydropyridines **5a**, **5m** and **5j** are shown in Table 3. To our delight, VSF is a best quasihomogeneous catalyst to afford the products **5a** and **5m** in high yields at room temperature with turn over number values 39.66 and 35.86 respectively. In contrast, other MNPs such as nano- γ -Fe₂O₃, γ -Fe₂O₃-SO₃H, Fe₃O₄-CeO₂ and ZrO₂-Al₂O₃-Fe₃O₄ are either required high temperature condition (80-90 $^{\circ}$ C) to yield the products or obtained the low TON values (Table 3).

Table 3: Comparative study of	MNPs catalysts	for th	e synthesis	of
1,4-dihydropyridines 5a and 5m.				

1,1 011	, rumyeropyriemes sa and sm.						
5	Catalyst	Time	Temp.	Yield	TON	Ref	
		(min)	(°C)	(%)			
5m	γ-Fe ₂ O ₃	25	90	95	6.53	28	
5m	γ-Fe ₂ O ₃ -	60	90	98	9.44	29	
	SO ₃ H						
5j	Fe ₃ O ₄ -CeO ₂	33	RT	93	3.75	30	
5m	ZrO ₂ -Al ₂ O ₃ -	90	80	94	43.34	31	
	Fe_3O_4						
5a	VSF	25	RT	94	39.66	-	
5m	VSF	35	RT	85	35.86	-	

We further extended the scope of VSF catalyst for the synthesis of 2-amino-4-(indol-3-yl)-4*H*-chromenes *via* Knoevenagel/Pinner/Friedel-Crafts reaction as shown in Scheme 3.

Scheme 3: VSF catalyzed one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromenes.

In order to find the optimize reaction conditions, a model reaction between salicylaldehydes, indole and malononitrile using 2 mol% VSF catalyst in the presence of various polar and non-polar solvents was studied. Interestingly, when water was used a solvent the reaction proceeded smoothly to afford the product **9a** in excellent yield 93% (Table 3, Entry 6). Whereas the organic solvents such as EtOH, DMSO, CH₃CN, THF and CH₂Cl₂ gave the product **9a** in poor to moderate yield 40-60% (Entries 1-5). The reason for high catalytic activity of VSF catalyst in water as a solvent is may be the tendency of water to enhance the rate of organic reactions due to the interactions such as hydrogen bonding and the "Breslow effect" wherein the hydrophobic aggregation of organic molecules decreases the area of the non-polar surface and, in turn, reduces the activation energies.³⁴

 Table 3: Effect of solvent on VSF catalyzed one-pot synthesis of 2amino-4-(indol-3-yl)-4H-chromene 9a.

Entry	Solvent	Time (min)	Yield (%) ^b	
1	EtOH	90	60	
2	DMSO	90	55	
3	CH ₃ CN	90	50	
4	THF	90	43	
5	CH_2Cl_2	90	40	
6	Water	30	93	

^aReaction condition: Indoles (1 mmol), salicylaldehydes (1 mmol), and malononitrile (1 mmol), VSF catalyst (2 mol%), Solvent (1.5 mL) were stirred at room temperature. ^bIsolated yield.

Next, we examined the generality of VSF catalyst for the synthesis of substituted 2-amino-4-(indol-3-yl)-4H-chromenes **9a-9g** from the various substrates such as indoles (**6a-6c**), 2-hydroxy aromatic aldehydes (**7a**, **7b**) and active methylene compounds (**8a**, **8b**) as shown in Table 4. Interestingly, almost all the substrates afforded the desired products selectively in good to excellent yield 80-94% in short reaction time (Table 4, Entry 1-7).

RSC Advances Accepted Manuscrip

The plausible mechanism of VSF catalyzed one-pot synthesis of 2-amino-4-(indol-3-yl)-4*H*-chromene **9a** is depicted in Figure 7. Probably, the high catalytic activity of VSF catalyst is due to the presence of active sites such as low-coordinated sites, and surface vacancies of nano Fe_3O_4 , and carboxylate anion and ammonium ion from ionic liquids can act as conjugate base and acid respectively. Moreover, the combination of both the properties makes VSF as an efficient quasi-homogeneous catalyst. The basic sites of VSF can promote the Knoevenagel condensation between salicylaldehyde **7a** and malononitrile **8a** to afford the olefinic product **10**, followed by a Pinner reaction to yield the iminochromene intermediate **B**. Furthermore, Friedel-Crafts alkylation of indole **6a** with iminochromene **B** results the formation of 2-amino-4-(indol-3-yl)-4*H*-chromene **9a**.

 Table 4: VSF catalyzed one-pot synthesis of 2-amino-4-(indol-3-yl)

 4H-chromenes.^a

Entry	Indole	Aldehyde	Comp.	Product	Time	Yield
	6	7	8	9	(min)	$(\%)^{b}$
1	6a	7a	8a	9a	15, 60 ^c	94, 55°
2	6a	7a	8b	9b	30	85
3	6b	7a	8a	9c	20	87
4	6b	7a	8b	9d	35	82
5	6c	7a	8a	9e	15	90
6	6c	7a	8b	9f	30	83
7	6a	7b	8a	9g	35	87

^aReaction condition: Indoles (1 mmol), salicylaldehydes (1 mmol), and malononitrile (1 mmol), VSF catalyst (2 mol%), Water (1.5 mL) were stirred at room temperature. ^bIsolated yield.^c Fe₃O₄ used as catalyst.

Figure 7: Plausible mechanism of VSF catalyzed one-pot synthesis of 2-amino-4-(indol-3-yl)-4H-chromene 9a.

The recyclability of VSF catalyst was investigated for the reaction between 1,3-cyclohexanedione, benzaldehyde, ethyl acetoacetate and ammonium acetate in the synthesis of 1,4-dihydropyridine **5a** as shown in Figure 8.

Figure 8: Recycling study of VSF catalyst for the synthesis of 1,4-dihydropyridine 5a.

Concluions

We have doveloped VSF as a superparamagnetic quasihomogeneous catalyst to bridge the gap between homogeneous and heterogeneous catalysis for the multi-component synthesis of 1,4dihydropyridines and 2-amino-4-(indol-3-yl)-4*H*-chromenes. The present protocol can provide a superior alternative to the existing methods with advantages such as catalyst is non-toxic, superparamagnetic and easily recoverable with an external magnet, avoids the work up/filtration and high activity/selectivity with excellent yileds. The high catalytic activity of VSF catalyst is due to the presence of active sites such as low-coordinated sites, and surface vacancies of nano Fe₃O₄, and carboxylate anion and ammonium ion from VIL.

Experimental

Powder X-ray diffraction (PXRD) patterns were recorded in a Siemens D500 instrument, using Cu-Ka radiation (1~1.54050 AÊ) and equipped with AT Diffract software. Identification of the crystalline phases were by comparison with the JCPDS ®les.10. TGA analysis (Perkin Elmer, Pyris Diamond) with a heating rate of 10 °C/min in nitrogen atmosphere was used to study the thermal decomposition behavior of samples with respect to α -Al₂O₃ as the reference. Fourier transform infrared (FT-IR) spectra were recorded on Perkin Elmer and the samples were prepared by mixing the samples with KBr. Scanning electron microscopy (SEM) measurement was performed on a JEOL JSM-6610LV electron microscope. The superparamagnetic properties of the samples were studied by using a superconducting quantum interference device (SQUID) magnetometer. Transmission electron microscopy (TEM) measurement was performed on a JEOL 2100F transmission electron microscope. The samples were supported on carbon-coated copper grids for the TEM experiment. Melting points were measured with a Buchi B-540 melting-point apparatus and are uncorrected. The ¹H and ¹³C NMR spectra were measured on a BruckerAC-200 instrument.

Procedure for the preparation of Fe₃O₄ MNPs

The Fe₃O₄ nanoparticles were prepared according to Massart's method. The aqueous solution of 2 eq. FeCl₃·6H₂O (5.8 g in 50 mL water) was mixed with the aqueous solution of 1 eq. FeCl₂·4H₂O (2.2 g in 50 mL water). The mixture was stirred vigorously at 85 °C for 30 min, and then 10 mL of ammonia (28% aqueous solution) was added quickly. The reaction was further stirred for another 30 min at 85 °C to afford the Fe₃O₄ nanoparticles as black precipitate. The obtained Fe₃O₄ NPs was collected by using external magnet, washed with water followed by ethanol and dried at 80 °C in oven.

General procedure for the synthesis of [NBu₄][Val] ionic liquid:

[NBu₄][Val] ionic liquid was prepared by modified literature method.³⁵ Tetrabutylammonium hydroxide solution (40%, 10 mmol) was added to an aqueous suspension of valine (10 mmol). The resultant reaction mixture was stirred at room temperature for 12 h. The water was removed in vacuo at 80 °C and the resultant residue was dissolved in CH₃CN (40 mL) and filtered to remove the unreacted valine. The filtrate was dried over Na₂SO₄, filtered and

Page 6 of 8

excess of solvent was removed in vacuo to afford the desired tetrabutylammonium valinate ionic liquid as low viscous colourless oil.

Procedure for the Preparation of Fe_3O_4 (**Si**(CH₂)₃-NVIL (VSF): The supporting of [NBu₄][Val] ionic liquid on silica grafted ferrite is illustrated in Scheme 1. In a typical procedure, 3 g of Fe_3O_4 and 3-chloropropyltriethoxysilane (6 mmol) in 40 mL of dry toluene was refluxed under nitrogen for 12 h. The obtained grafted Fe_3O_4 (CH₂)₃-Cl was filtered out, washed twice with dry toluene and once with anhydrous diethyl ether, and dried at 75 °C for 6 h in vacuum. Then [NBu₄][Val] ionic liquid (10 mmol) was added to the round bottom flask containing Fe_3O_4 (**Si**(CH₂)₃-Cl (1 mmol) in 50 mL of dry toluene and the mixture was refluxed for 24 h. The resulting solid was filtered out, washed and dried in a similar manner to give the Fe_3O_4 (**Si**(CH₂)₃-NVIL (VSF). After usual workup and washings, the material was dried at 75 °C for 5 h in vacuum oven.

General procedure for the synthesis of 1,4-dihydropyridines (5a-5m) :

A mixture of 1,3-cyclohexanedione 1 (1 mmol), aldehyde 2 (1 mmol), ethyl-acetoacetate 3 (1 mmol), ammonium acetate 4 (1.5 mmol), and VSF nanoparticles (10 wt%) in ethanol (4 mL) were stirred at room temperature. After completion of the reaction (monitored by TLC), the superparamagnetic VSF catalyst was separated from the reaction mixture using an external magnet. The obtained crude products (5a-5m) were purified by recrystallization from hot ethanol. The purified compounds were characterized by IR, ¹H NMR, ¹³C NMR, HRMS, elemental analysis.

Ethyl4-(4-(benzyloxy)phenyl)-2-methyl-5-oxo-1,4,5,6,7,8-

hexahydroquinoline-3-carboxylate (5k): Off white solid; mp 250-253 °C; IR (KBr) 3294, 3215, 3081, 2938, 1697, 1607, 1490, 1384, 1224, 1176, 1080 cm⁻¹; ¹H NMR (400 MHz; DMSO; Me₄Si) δ = 9.08 (brs, 1H), 7.40-7.29 (m, 5H), 7.02 (d, J = 7.9 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 4.99 (s, 2H), 4.81 (s, 1H), 3.96 (q, J = 7.3 Hz, 2H), 2.46-2.45 (m, 2H), 2.25 (s, 3H), 2.19-2.16 (m, 2H), 1.90-1.68 (m, 4H), 1.11 (t, J = 7.3 Hz, 3H) ppm. ¹³C NMR (100 MHz; DMSO; Me₄Si) δ = 194.62, 167.04, 156.30, 151.11, 144.56, 140.35, 137.28, 128.36, 127.47, 114.00, 111.24, 103.64, 69.00, 58.98, 36.70, 34.64, 26.07, 20.76, 18.19, 14.14 ppm. HRMS (ES): Calcd 417.1940, found 417.1937; Anal. Calcd for C₂₆H₂₇NO₄: C, 74.80; H, 6.52; N, 3.35; Found: C, 74.79; H, 6.51; N, 3.36.

Ethyl2-methyl-5-oxo-4-(3-(prop-2-yn-1-yloxy)phenyl)-1,4,5,6,7,8-hexahydroquinoline-3-carboxylate (5I): White solid; mp 260-263 ^oC; IR (KBr) 3279, 3243, 3077, 2941, 1701, 1607, 1488, 1381, 1221, 1037 cm⁻¹; ¹H NMR (400 MHz; DMSO; Me₄Si) δ = 9.14 (brs, 1H), 7.09 (t, J = 7.3 Hz, 1H), 6.75 (d, J = 7.3 Hz, 1H), 6.72-6.69 (m, 2H), 4.87 (s, 1H), 4.67 (s, 2H), 3.98 (q, J = 7.3 Hz, 2H), 3.53 (s, 1H), 2.26 (s, 3H), 2.18 (s, 3H), 1.87-1.74 (m, 3H), 1.12 (t, J = 7.3 Hz, 3H) ppm. ¹³C NMR (100 MHz; DMSO; Me₄Si) δ = 194.52, 166.71, 156.93, 151.51, 149.29, 145.00, 128.64, 120.41, 114.25, 111.37, 110.87, 103.31, 79.31, 77.93, 59.06, 55.07, 36.67, 35.34, 26.11, 20.74, 18.21, 14.14 ppm. HRMS (ES): Calcd 365.1627, found 365.1630; Anal. Calcd for C₂₂H₂₃NO₄: C, 72.31; H, 6.34; N, 3.83; Found: C, 72.30; H, 6.36; N, 3.82.

General procedure for the synthesis of 2-amino-4-(indol-3-yl)-4H-chromene derivatives (9a-9f): A mixture of indoles 6 (1 mmol), 2-hydroxy aromatic aldehydes 7 (1mmol), active methylene compounds 8 (1 mmol), and 10 wt% VSF nanoparticles in 1.5 mL of water were stirred at room temperature. After completion of the reaction (monitored by TLC), the superparamagnetic VSF catalyst was separated from the reaction mixture using an external magnet. The obtained crude products were recrystallized from ethanol to get pure compounds (9a-9f).

2-Amino-4-(5-bromo-1*H***-indol-3-yl)chroman-3-carbonitrile (9c):** Yellow solid; mp 180-182 °C; IR (KBr) 3449, 3382, 3320, 3241, 3206, 3083, 2852, 2346, 2372, 2195, 1661, 1612, 1583, 1491, 1449, 1456, 1422, 1405, 1332, 1273, 1259, 1227, 1076, 1098, 1042, 845, 882, 794, 752, 580, 521 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.20 (br s, 1H), 7.39 (br s, 1H), 7.22-7.16 (m, 4H), 7.05-6.95 (m, 3H), 5.02 (s, 1H), 4.63 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 159.59, 148.75, 135.86, 129.66, 128.55, 127.54, 125.43, 124.13, 122.60, 121.81, 120.42, 118.84, 116.58, 113.12, 60.49, 32.70; HRMS (ES): Calcd 367.0320, found 367.0322; Anal. Calcd for C₁₈H₁₄BrN₃O: C, 58.71; H, 3.83; N, 11.41; Found: C, 58.72; H, 3.82; N, 11.41.

Ethyl2-amino-4-(5-bromo-1H-indol-3-yl)-4H-chromene-3-

carboxylate (9d): Yellow solid; mp 145-147 °C; IR (KBr) 3412, 3318, 2958, 2926, 1731, 1666, 1607, 1518, 1483, 1455, 1399, 1297, 1227, 1185, 1043, 883, 750, 654 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (br s, 1H), 7.74 (s, 1H), 7.21-7.13 (m, 4H), 7.04-6.96 (m, 2H), 6.28 (s, 1H), 5.24 (s, 1H), 4.12-4.04 (m, 2H), 1.16 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 169.43, 160.24, 148.98, 134.76, 127.69, 126.37, 124.71, 124.18, 123.30, 122.96, 122.72, 121.83, 115.60, 112.60, 112.18, 59.44, 31.02, 14.30; HRMS (ES): Calcd 412.0423, found 412.0421; Anal. Calcd for C₂₀H₁₇BrN₂O₃: C, 58.13; H, 4.15; N, 6.78; Found: C, 58.12; H, 4.13; N, 6.79.

2-Amino-4-(2-methyl-1H-indol-3-yl)-4H-chromene-3-

carbonitrile (9e): Yellow solid; mp 202-204 °C; IR (KBr) 3331, 2961, 2933, 2185, 1646, 1604, 1576, 1486, 1457, 1394, 1224, 1040, 744, 593, 562 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (br s, 1H), 7.23 (d, J = 8.5 Hz, 1H), 7.16-7.14 (m, 1H), 7.08-7.00 (m, 3H), 6.96-6.95 (m, 2H), 6.92-6.88 (t, J = 7.3 Hz), 5.10 (s, 1H), 4.52 (s, 2H), 2.47 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ (ppm) 158.84, 148.70, 135.43, 131.97, 129.49, 127.90, 126.93, 124.94, 122.67, 121.06, 120.16, 119.34, 118.15, 115.94, 113.87, 60.56, 31.23, 11.57; HRMS (ES): Calcd 367.0320, found 367.0322; Anal. Calcd for C₁₉H₁₅N₃O: C, 75.73; H, 5.02; N, 13.94; Found: C, 75.72; H, 5.04; N, 14.01.

Acknowledgements

DSR acknowledges the Council of Scientific and Industrial Research (02(0049)/12/EMR-II), New Delhi, India and University of Delhi, Delhi, India for their financial support. UCR is thankful to UGC for the award of a senior research fellowship (SRF). We thank USIC-CIF, University of Delhi, for assisting to aquire analytical data.

Notes and references

Department of Chemistry, University of Delhi, Delhi-110007, India Fax:91-11-27667501;Tel:91-11-27662683;

*E-mail:dsrawat@chemistry.du.ac.in

Electronic Supplementary Information (ESI) available: [1 H NMR and 13 C NMR spectra of selected compounds]. See DOI: 10.1039/b000000x/

 H. Lu, E. L. Salabas and F. Schuth, Angew. Chem. Int. Ed. 2007, 46, 1222; N. Koukabi, E. Kolvari, A. Khazaei, M. A. Zolfigol, B. S. Shaghasemic and H. R. Khavasid, Chem. Commun. 2011, 47, 9230; V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J. M. Basset, Chem. Rev. 2011, 111, 3036.

Page 7 of 8

Journal Name

RSC Advances

- 2. R. B. N. Baig, R. S. Varma, Chem. Commun., 2013, 49, 752; Q. M. 22. H. Bonnemann and G. A. Braun, Angew. Chem. 1996, 35, 1992. Kainz, O. Reiser, Acc. Chem. Res. 2014, 47, 667.
- 3. C. Berry, A. S. G. Curtis, J. Phys. D: Appl. Phys. 2003, 36, 198; Catherine C Berry, J. Phys. D: Appl. Phys. 2009, 42, doi:10.1088/0022-3727/42/22/224003; A. Akbarzadeh, M. Samiei, S. Davaran, Nanoscale Res. Lett. 2012, 7, 144.
- 4. S. Shylesh, L. Wang, W. R. Thiela, Adv. Synth. Catal. 2010, 352, 425; J. Liu, X. Peng, W. Sun, Y. Zhao, C. Xia, Org. Lett. 2008, 10, 3933; S. Ko and J. Jang, Angew. Chem. 2006, 118, 7726.
- 5. R. L. Oliveira, P. K. Kiyohara, L. M. Rossi, Green Chem. 2010, 12, 144; 26. J. Ge, T. Huynh, Y. Hu, Y. Yin, Nano Lett. 2008, 8, 931.
- 6. R. B. N. Baig, R. S. Varma, ACS Sus. Chem. Eng. 2013, 1, 805; S. Wang, Z. Zhang, B. Liu, J. Li, Ind. Eng. Chem. Res. 2014, doi.org/10.1021/ie500156d.
- 7. R. B. N. Baiga, R. S. Varma, RSC Adv. 2014, 4, 6568; T. Zeng, L. Yang, R. Hudson, G. Song, A. R. Moores, C. J. Li, Org. Lett. 2011, 13, 442. R. 27. B. N. Baig, R. S. Varma, Green Chem. 2012, 14, 625.
- 8. K. Fujita, S. Umeki, M. Yamazaki, T. Ainoya, T. Tsuchimoto, H. Yasuda, Tetrahedron Lett. 2011, 52, 3137.
- 9. M. J. Jacinto, R. Landers, L. M. Rossi, Catal. Commun. 2009, 10, 1971; R. Liu, Q. Zhao, Y. Li, G. Zhang, F. Zhang and X. Fan, J. Nanomater. 2013, doi.org/10.1155/2013/602602.
- 10. R. A. Reziq, H. Alper, D. Wang and M. L. Post, J. Am. Chem. Soc. 2006, 128, 5279; G. Liu, H. Gu, Y. Sun, J. Long, Y. Xu, H. Lia, Adv. Synth. Catal. 2011, 353, 1317.
- 11. M. Bagherzadeh, M. M. Haghdoost, A. Shahbazirad, J. Coord. Chem. 2012, 65, 591.
- 12. P. Riente, C. Mendoza, M. A. Pericas, J. Mater. Chem. 2011, 21, 7350; 31. H. R. Shaterian, M. Aghakhanizadeh, Catal. Sci. Technol. 2013, 3, 425; 32. Y. Kong, R. Tan, L. Zhao, D. Yin, Green Chem. 2013, 15, 2422.
- 13. R. A. Reziq, D. Wang, M. Post and H. Alpera, Adv. Synth. Catal. 2007, 349, 2145.
- 14. P. Riente, C. Mendoza and M. A. Pericas, J. Mater. Chem. 2011, 21, 7350; Z. quikun, H. Xiaotong and T. Boa, RSC Advaces, 2013, 3, 9924; Y. Kong, R. Tan, L. Zhao and D. Yin, Green Chem. 2013, 15, 2422.
- 15. Ralf Giernoth, Angew. Chem. Int. Ed. 2010, 49, 2834; H. Ohno, K. Fukumoto, Acc. Chem. Res. 2007, 40, 1122; W. Miao, T. H. Chan, Org. Lett., 2003, 5, 5003; C. Roosen, P. Müller, L. Greiner, Appl. Microbiol. Biotechnol. 2008, 81, 607.
- 16. J. C. Plaquevent, J. Levillain, F. Guillen, C. Malhiac, A. C. Gaumont, Chem. Rev. 2008, 108, 5035; G. Tao, L. He, W. Liu, L. Xu, W. Xiong, T. Wang, Y. Kou, Green Chem. 2006, 8, 639.
- 17. W. Chen, Y. Zhang, L. Zhu, J. Lan, R. Xie, J. You, J. Am. Chem. Soc. 2007, 129, 13879.
- 18. J. Kagimoto, K. Fukumoto, H. Ohno, Chem. Commun. 2006, 2254; G. Tao, L. He, N. Sun, Y. Kou, Chem. Commun. 2005, 3562.
- 19. H. Yu, Y. T. Wu, Y. Y. Jiang, Z. Zhou, Z. B. Zhang, New J. Chem. 2009, 35. 33, 2385; Z. Feng, F. C. Gang, W. Y. Ting, W. Y. Tao, L. A. Min, Z. Z. Bing, Chem. Eng. J. 2010, 160, 691.
- 20. N. Itagaki, M. Kimura, T. Sugahara, Y. Iwabuchi, Org. Lett., 2005, 7, 4185; J. E. Hein, J. Bures, Y. Lam, M. Hughes, K. N. Houk, A. Armstrong, D. G. Blackmond, Org. Lett. 13, 2011, 5644; J. Yan, L. Wang, Synthesis, 2010, 3, 447.
- 21. J. Zhang, W. Zhang, Y. Wang and M. Zhanga, Adv. Synth. Catal. 2008, 350, 2065; A. Biffis, S. Cunial, P. Spontoni, L. Prati, J. Catal. 2007, 251, 1.

- S. Vukojevic', O. Trapp, J. D. Grunwaldt, C. Kiener and F. Schuth, 23 Angew. Chem. 2005, 44, 7978.
- Q. Zhang, H. Su, J. Luo and Y. Wei, Green Chem. 2012, 14, 201. 24
- D. Kumar, V. B. Reddy, S. Sharad, U. Dube, S. Kapur, Eur. J. Med. 25. Chem. 2009, 44, 3805; W. Kemnitzer, J. Drewe, S. Jiang, H. Zhang, C. C. Grundy, D. Labreque, M. Bubenick, G. Attardo, R. Denis, S. Lamothe, H. Gourdeau, B. Tseng, S. Kasibhatla, S. X. Cai, J. Med. Chem. 2008, 51, 417.
 - A. M. El-Nagger, A. M. Abdel-El-Salam, F. S. M. Latif, M. S. A. Ahmed, Pol. J. Chem. 1981, 55, 793; K. A. Ohemeng, C. F. Schwender, K. P. Fu, J. F. Barrett, Bioorg. Med. Chem. Lett. 1993, 3, 225; G. P. Ellis, I. M. Lockhart, in: The Chemistry of Heterocyclic Compounds: Chromenes, Chromanones, and Chromones, (Ed.: G. P. Ellis), Wiley-VCH, New York, 2007, Vol. 31, pp 1-1196.
 - J. E. Saxton, Academic Press, New York, 1998; R. J. Sundberg, Academic Press, New York, 1997; Casapullo, G. Bifulco and I. R. Bruno, J. Nat. Prod., 2000, 63, 447; F. D. Horgen, D. B. D. Santos, G. Goetz, B. Sakamoto, Y. Kan, H. Nagai and P. J. Scheuer, J. Nat. Prod., 2000, 63, 152
- 28. N. Koukabi, E. Kolvari, A. Khazaei, M. A. Zolfigol, B. S. Shaghasemic and H. R. Khavasid, Chem. Commun. 2011, 47, 9230.
- N. Koukabi, E. Kolvari, M. A. Zolfigol, A. Khazaei, B. S. Shaghasemi, 29. and B. Fasahati, Adv. Synth. Catal. 2012, 354, 2001.
- M. B. Gawande, V. D. B. Bonifácio, R. S. Varma, I. D. Nogueira, N. 30. Bundaleski, C. A. A. Ghumman, O. M. N. D. Teodorod and P. S. Branco, Green Chem. 2013, 15, 1226.
- A. Wang, X. Liu, Z. Su and H. Jing, Catal. Sci. Technol. 2014, 4, 71.
- S. Manohar, U. C. Rajesh, S. I. Khan, B. L. Tekwani and D. S. Rawat, ACS Med. Chem. Lett., 2012, 3, 555; N. Kumar, S. I. Khan, Beena, G. Rajalakshmi, P. Kumaradhas and D. S. Rawat, Bioorg. Med. Chem., 2009, 17, 5632; N. Kumar, S. I. Khan, M. Sharma, H. Atheaya, D. S. Rawat, Bioorg. Med. Chem. Lett., 2009, 19, 1675; S. Manohar, S. I. Khan and D. S. Rawat, Bioorg. Med. Chem. Lett., 2010, 20, 322; A. J. Krzysiak, D. S. Rawat, S. A. Scott, J. E. Pais, M. Handley, M. L. Harrison, C. A. Fierke and R. A. Gibbs, ACS Chem. Biol., 2007, 2, 385; R. Mamgain, R. Singh and D. S. Rawat, J. Het. Chem., 2009, 46, 69; K. Arya, U. C. Rajesh and D. S. Rawat, Green Chem., 2012, 14, 3344; A. Thakur, M. Tripathi, U. C. Rajesh and D. S. Rawat, RSC Adv., 2013, 3, 18142; U. C. Rajesh, S. Manohar and D. S. Rawat, Adv. Synth. Catal., 2013, DOI:10.1002/adsc.201300555.
- P. Wang, A. Kong, W. Wang, H. Y. Zhu, Y. K. Shan, Catal. Lett. 2010, 33. 135. 159.
- K. Pirkanniemi, M. Sillanpaa, Chemosphere, 2002, 48, 1047; A. Chanda, 34. V. V. Fokin, Chem. Rev. 2009, 109, 725; M. O. Simon, C. J. Li, Chem. Soc. Rev. 2012, 41, 1415; R. Breslow, Acc. Chem. Res. 1991, 24, 159.
- C. R. Allen, P. L. Richard, A. J. Ward, L. G. A. V. Water, A. F. Masters and T. Maschmeyer, Tetrahedron Lett. 2006, 47, 7367.

RSC Advances

Graphical Abstract

Functionalized superparamagnetic Fe₃O₄ as an efficient quasi-homogeneous catalyst for multi-component reactions

U. Chinna Rajesh, Divya and Diwan S. Rawat*

Department of Chemistry, University of Delhi, Delhi-110007, India Fax: 91-11-27667501; Tel: 91-11-27662683,*E-mail: <u>dsrawat@chemistry.du.ac.in</u>

Tetrabutylammonium valinate ionic liquid [NBu₄][Val] supported on 3-chloropropyltriethoxysilane grafted superparamagnetic Fe₃O₄ NPs (VSF) was synthesized and characterized by fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electronic microscopy (TEM), scanning electronic microscopy (SEM), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM). The VSF catalyst was used as an efficient "quasi-homogeneous" catalyst for multi-component synthesis of 1,4-dihydropyridines and 2-amino-4-(indol-3-yl)-4*H*-chromenes at room temperature. VSF catalyst was recovered by using an external magnet and recycled for six times without significant loss in catalytic activity. Moreover, VSF is a "quasi-homogeneous" catalyst can bridge the gap between homogeneous and heterogeneous catalysis.