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Abstract: As one of the most interesting advancements in the field of nano technology, Carbon Nanotubes 
(CNTs) have been given special attention because of their remarkable mechanical and electrical properties 
and are being used in many scientific and engineering research projects. One such application facilitated 
by the fact that CNTs experience changes in electrical conductivity when exposed to different gases is the 
use of these materials as part of gas detection sensors. These are typically constructed on a Field Effect 
Transistor (FET) based structure in which the CNT is employed as the channel between the source and the 
drain. In this study, an analytical model has been proposed and developed with the initial assumption that 
the gate voltage is directly proportional to the gas concentration as well as its temperature. Using the 
corresponding formulae for CNT conductance, the proposed mathematical model is derived. An Artificial 
Neural Network (ANN) algorithm has also been incorporated to obtain another model for the I-V 
characteristic in which the experimental data extracted from a recent work by N. Penget al. has been used 
as the training data set. The comparative study of the results from ANN as well as the analytical models 
with the experimental data in hand show a satisfactory agreement which validates the proposed models. It 
is observed that the results obtained from the ANN model are closer to the experimental data than those 
from the analytical model. 
 
Keywords: Carbon Nanotubes (CNTs), NH3 gas Sensor, Neural Networks,I-V characteristic, Field Effect 
Transistor (FET) 
 

1. Introduction  

With the development of industry and human activity, air pollution has become a serious problem to the 
environment. Hazardous gases such as NO2, NH3, CO, H2S, and SO2, have harmful effects on human life, 
animals, and plants. Therefore, it is essential to develop gas sensors with high sensitivity in order to detect 
harmful gases for the purpose of improving the quality of environmental living conditions and protecting 
humans from exposure to hazardous gases[1, 24]. 
 
Sensor is a term used for devices that can measure specific physical quantities and convert them into a 
readable electrical signal for an observer or an instrument. Sensors come in many different types based on 
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the intended material that they are expected to detect as well as mechanisms of detection. They can be 
classified as electromagnetic sensors, mechanical sensors, thermal sensors, etc. [7, 15]. The trend in 
sensor manufacturing and production is heading toward those with higher sensitivities, better selectivities 
and faster response times; also those which are easier to fabricate, more portable, remotely operateable 
and more cost-effective are more desirable[34]. In addition to the main sensing function, the sensor is 
expected to keep track of various ambient factors such as temperature and humidity, time, location and 
event history. Rapid improvements in nanoscience and engineering, as well as faster and more advanced 
compact integrated electronics are helping these requirements come true. In this regard, many newly 
developed materials like graphene and Carbon Nanotubes (CNTs)are now becoming available for the 
design fabrication of nanosensors[18]. 
 
To date, carbon nanotubes based gas sensors have aroused great interest since their discovery in 1991. 
Carbon nanotubes are formed in two major types; single-walled carbon nanotubes (SWNTs) comprising 
single graphene sheet wrapped in the form of a cylindrical tube and multi-walled carbon nanotubes 
(MWNTs) consisting of a group of such nanotubes in concentric configuration, both possessing varying 
inherent band gaps(Figure 1)[21, 41]. 
 

 
SWNT                                        MWNT 

 
Fig.1 Schematic of different CNT structures 

 
 
Depending on their helicity, carbon nanotubes are either electrically conductive or semi-conductive. They 
possess unique intrinsic properties including high surface area, high chemical and mechanical stability 
and excellent electrical conductivity. Moreover, SWNTs with diameters as low as ~ 1 nm and near-
ballistic electron transport [9, 16, 39], makes them an ideal candidate for sensing/transducer material for 
direct electronic detection of analyte gases. This plethora of unique properties of SWNTs has motivated 
researchers across the globe to pursue development of SWNTs based gas sensors. The achievements in 
the application for carbon nanotubes as arrays or sensors have been well documented and thoroughly 
reviewed [10, 30, 33, 38]. 
 
Almost a decade ago, Kong et al.[25], and during the same time, Collins et al.[11] first demonstrated that 
the conductance of individual SWNTs can be changed up to three times within a few seconds after they 
are exposed to electron donating NH3 and electron withdrawing NO2 gas at room temperature, with 
superior sensing performance over commercially available sensors. The mechanism of sensing was based 
on direct charge transfer between adsorbate and p-type semi conductive SWNTs causing modulation of 
Fermi level in the semiconducting tubes (Figure 2)[31]. 
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     Electron donating molecules (NH3...) 

Electron withdrawing molecules (NO2…) 
 
 
 
 

 
Fig 2. Schematic of molecules donating and withdrawing electrons on CNT 

 
It is known that the carbon nanotube characteristics depend strongly upon their physical features such as 
chirality and diameter [46]. Single-walled nanotubes are typically categorized as either metallic or 
semiconductors according to their chirality. Semiconducting SWNTs can be used in the fabrication of 
FET devices able to be operated at room temperature and under ambient conditions[13, 42] . 
 
 

 
Fig 3. FET based gas sensor structure 

 
It has been demonstrated that semiconducting SWNTs experience significant changes in conductance 
levels in the presence of different gases. As depicted in Figure 3, the proposed gas sensor using CNT as 
the conducting channel has a structure quite similar to that of the conventional metal-oxide semiconductor 
field effect transistor (MOSFET) which consists of one source metal, one drain metal, a silicon back gate 
as well as a gate insulator[20, 22]. The source and drain electrodes are connected by a CNT channel, 
while a dielectric barrier layer separates the channel from the gate. In most studies in the literature, silicon 
is used as the back gate, while SiO2 serves as a dielectric layer [26, 36]. When gas molecules are in 
contact with the CNT surface, carrier concentration will undergo a change owing to the variability of the 
current between  the drain and the source which is a measurable parameter[32]. 
In order to carry out a comparative study, it has been attempted to implement an artificial intelligence 
method to develop another model. Artificial Neural Network (ANN) as one of the most accurate and 
powerful intelligent schemes has been chosen as the tool in this step. The results obtained from the 
constructed ANN are then compared to those from the analytical model as well as the experimental data 
to check which approach provides better levels of accuracy[35, 48]. 
Artificial Neural Networks is an intelligent algorithm which has been developed based on an analogy to 
biological nervous system. Various types and structures of artificial neural networks have been employed 
in scientific analytical studies among which, the most common and comprehensible is one consisting of 
interconnected group of neurons which are mathematical operator units called Perceptrons[2, 27].  
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Fig.4 Simple artificial neural network 

 
A schematic of the typical structure of an ANN comprising Perceptrons is provided in Figure (4). Each 
input value to a Perceptron is multiplied by a weight and added to a bias value. The general mechanism of 
ANN includes a process in which a set of input data are introduced to the network. Through a series of 
mathematical calculations based on predefined “activation functions” for each neuron or “node”, an 
output value is given by the ANN. In order for the ANN to learn to compute the optimum output value, a 
training data set is introduced to the network before the actual inputs are given to the artificial neural 
network[37, 47]. 
 
Based on a predefined learning algorithm, the ANN updates the weights and bias corresponding to each 
node using the error between the calculated results from the actual inputs and the desired output [17, 43]. 
In our study, Feed-forward structure for the neural network with Back Propagation learning algorithm has 
been implemented. The experimental data has been used as the training data set has been employed for 
validation and testing.  The results show satisfactory agreement between the results from the proposed 
model with the experimental counterparts. 
 
 
2. Proposed Models 

2.1Analytical model 

 
It has been attempted to model the CNT band structure beginning with modeling the single layer graphene 
band structure. Employing the Taylor series expansion near the Fermi points, the  energy dispersion 
relation can be derived as follows [3, 6]. 

E�k� � � �		
���
 �� 
	��
 � k�
                                                                                                       (1) 

where aC-C = 1.42Å represents the length of Carbon-Carbon(C-C) bond, d is the CNT diameter, � �2.7	���� denotes the nearest neighbour C-C tight binding overlap energy, and the ±symbol has been 
included to account for conductance and valence bands. We can simply write for the first band gap 
energyE� � 2a�-�t/d � �0.8eV) /d. Also, since the band structure is parabolic near the k=0 points, it can 

be written: E�k� ! "#
 � ћ$%&$
'∗ 	                                                                                                                          (2)                                                                                                                          

where ħ is the reduced Plank constant,)∗ is the effective mass of the CNT depending upon the tube 
diameter, kx represents longitudinal wave vector component[5, 8]. The number of conduction channels in 
the energy E is defined as:  M�E� � 	2 ∆"∆%	.		, �	 		
����, � -"		
����. /0��1 
⁄                                                                                  (3) 

where L denotes the channel length. Two major factors contribute to the conductance effect on large 
channels, enabling it to follow the Ohmic scaling law based on Landauer formula. The first factor 
independent of length is the interface resistance. The second one results from the fact that the relation 
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between the conductance and the width is nonlinear and is dependent upon the number of modes in the 
conductor. However, these modes are the quantized parameters in the Landauer formula in which both 
factors are interrelated as demonstrated by Eq (4) [4]: 

G � 
4$
h
5 dEM�E�T�E� 7. �8�"9:∞

;∞
                                                                                               (4) 

Where ℎ represents the Plank constant, = denotes the electron charge and > is the transmission probability 
of an injected electron through the channel approximated as �>�?� 	� 1� in ballistic channels[12]. Owing 

to the fact that the expression
�8�" is noticeable only near the Fermi energy [12], the conductance can be 

obtained by considering the Fermi–Dirac distribution function as [29]. 

G � 
4$
h

		
����, 7 -	
����91 
⁄ A 7E . 

����	�$ 9B$ d 7. 11:C�D�DE�/FGH9
:∞

;∞

                                             (5) 

Changing the integral boundaries as follows, Equation (5) can be rewritten as 

G � -4$
h, �3	a�;�tπkKT�B$ LA ��B $M1:C&�N dx � 5 ��B $M1:C&PN dx:∞

Q
:∞

Q
R                                                        (6) 

where 		x � �E . E��/kKT  and the normalized Fermi energy is given by η � �ET . E��/kKT . This 
equation can be numerically solved by incorporating the partial integration method [14, 23, 45]. The 
general model for the conductance of carbon nanotube-based gas sensor can be derived similar to that of 
silicon based model proposed by Gunlycke[19]. G � -4$U, �3	a�;�tπkKT�B$ Vℐ;B$�η� � ℐ;B$�.η�X                                                                                 (7) 

The conductance characteristic demonstrates the performance of NH3 gas sensor based on CNT 
nanostructure. It has been revealed that when the CNT gas sensor is exposed to NH3, the conductance 
changes[44].  We have proposed a model based on the reported experimental data and the relationship 
between conductance, gas concentration and temperatures follows [40]: YZ[ � YZ\[ � YZ[] � YZ[^ 	 (8)                                                                                                                                                                                                                              
When the sensor is exposed to the gases in different temperatures, we can define three parameters for 
conductance, namely YZ\[ ,YZ[] and YZ[^ .The first parameter ,YZ\[, is the conductance without gas; YZ[] is assumed as the conductivity changes depending on > parameter, and the last parameter, YZ[^, is 
based on different values of gas concentration with constant temperature. It is shown that when CNT gas 
sensor is exposed to NH3, the conductance levels changes with respect to temperature and varying 
concentrations [35]. As ?[ results in varying conductance of channel, the parameters that have a strong 
influence on gas sensor conductance are the gas concentration as well as gas temperature. It has been 
shown that ?[ depends on temperature and gas concentration; therefore, we can write:  

_E� ∝ FE� ∝ Tb ⇒ E�=αT � βF                                                                                                                 (9)                   

Finally, equations (9) and (10) are employed to obtain the Conductance model of gas sensor as: Gde� � -4$U, �3	a�;�tπkKT�B$[ℐ�B$ 7g�E� . Ehi ∗ q9 /kKT� � ℐ�B$ 7g.�E� . Ehi ∗ q9 /kKT]       (10)              

                                                                                                                                                                    Gd� � -4$U, �3	a�;�tπkKT�B$[ℐ�B$ g�αT � βF . Eh� ∗ qi/kKT�		� 	ℐ�B$ �.�αT � βF . Eh� ∗ q�/kKT]  
                                                                                                                                                          (11)                                                                                                                         
Based on the current-voltage characteristic of graphene based FET devices, the performance of the gas 
sensor can be evaluated by equation (12). Assuming that the source and substrate terminals are kept in 
ground potential, and applying a small voltage between source and drain (VDS), the channel region 
experiences a flow of electrons. Moreover, the relationship between current and conductance can be 
replaced by Fermi-Dirac integral shape of general conductance model of SWCNT as:                                                               
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I= [-4$U, �3	a�;�tπkKT�B$[ℐ�B$ g�αT � βF . Eh� ∗ qi/kKT�		� 	ℐ�B$ �.�αT � βF . Eh� ∗ q�/kKT]] ∗ �V�m .V��                                                                                                                                         (12)                                                                                                                         
Where n[o  is the voltage between the gate and the source and �p  denotes the threshold voltage. I-V 
characteristic of the proposed model in comparison with experimental results is depicted in figures (a1) to 
(g1). An increase in the current can be associated to the charge transfer between CNT and NH3 molecules 
when the NH3 molecules are the donors. This phenomenon is also known as chemical doping by gas 
molecules. It clearly gives an illustration of the fact that there is a good agreement between the proposed 
model and the extracted data [28].  In the suggested model, different temperature and concentration 
values are demonstrated in the form of α and β  parameters, respectively, to create an agreement with 
reported data which is tabulated as follows: 
 

Table 1: Different temperature and concentration values with α and β parameters 

T(oC) F(ppm) α β 

25 500 -4 0.03 

50 500 -2 0.03 

100 500 -1 0.03 

150 500 -0.8 0.03 

200 100 -0.5 0.01 

200 200 -0.5 0.02 

200 500 -0.5 0.03 
 
According to the analytical model,αis suggested as the temperature control parameter and is obtained by 
iteration method. The analytical model based on the extracted data in our study shows that the rate of 
changes in conductivity depending on temperature gives better results by: 
α � qrs	�>� . t																																																						                                                                               (13)                 
Parameters q and t are extracted as q � 0.012 and t � 0.046. Also, β defined as a controlled parameter 
of gas concentration which calculated by iterative method and shows the rate of change in conductivity 
depends on gas concentration given by:  
β � wrs	�x� 	. y																																																																																																																																					(14)                                                                                
Where the constants are calculated in the same manner as w � 1.622 and y � 8.814. 
 
2.2ANN based model 

The proposed Artificial Neural Network has been developed incorporating a network comprising three 
layers: one input, one output and one hidden layer. The hidden layer consisted of three nodes and Feed-
forward structure has been employed for the ANN. MATLAB software was utilized for programming and 
the experimental data were used as the training data set as well as testing data. The built-in Neural 
Network tool in MATLAB randomly selects part of the input data for training and the rest is employed for 
testing. The values for the weights and bias are also randomly chosen by the software and updated in each 
epoch using the Back-propagation learning algorithm. For each set of input data, the corresponding plots 
of the I-V points as well as the regression graph were plotted. The results are provided in Figures (5) to 
(11). 
 
3. Discussion and Results  

The diagrams depicting the I-V characteristic of CNT corresponding to different gas temperatures at 500 
ppm concentration are illustrated in Figures (5) to (8). The values associated with the analytical model, as 
well as ANN are compared with those extracted from experimental study.  
 

Page 6 of 14RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



7 

 

 
                                           (a1)            (a2) 
Fig.5 Comparative study of proposed analytical and ANN models with experimental data under 500ppm, 

at 25°C and corresponding ANN regression graphs (a2) 

 
               (a1)                                     (a2) 

 
Fig.6 Comparative study of proposed analytical and ANN models with experimental data under 500ppm, 

at 50°C and corresponding ANN regression graphs (a2) 

 
                (a1)                            (a2) 

Fig.7 Comparative study of proposed analytical and ANN models with experimental data under 500ppm, 
at 100°C and corresponding ANN regression graphs (a2) 
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                (a1)                                                                   (a2) 

Fig.8 Comparative study of proposed analytical and ANN models with experimental data under 500ppm, 
at 150°C and corresponding ANN regression graphs (a2) 

 
As a consequence of the chemical interaction between the NH3 molecules and the resultant adsorption on 
the CNT surface which causes electrical charge to be transferred between them and hence changes the 
carrier concentration, the channel conductivity varies during the process. As observed from Figures (5a1) 
to (8a1) corresponding to temperatures of 25, 50, 100, and 150 degrees, respectively, the conductance as a 
measure of the I-V characteristic has increased at higher temperatures. It is also evident from Figures 
(5a2) to (8a2) that the proposed ANN model gives to hand better and more accurate estimates of the actual 
CNT performance in the presence of gas than those provided by the analytical model. This is verified by 
the fact that the regression values during the calculations of I-V points with ANN are remarkably close to 
1. Figures (9) to (11) depict the I-V characteristics of CNT at 200 degrees in gas concentrations equal to 
100, 200, and 500 ppm, respectively.  

 
            (a1)                                                                        (a2) 

 
Fig.9 Comparative study of proposed analytical and ANN models with experimental data at T=200°C 

under 100 ppm and the corresponding ANN regression graphs (a2) 
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                                             (a1)                                                                          (a2) 

Fig.10 Comparative study of proposed analytical and ANN models with experimental data at T=200°C 
under 200ppm and the corresponding ANN regression graphs (a2) 

 

 
(a1)                                                                         (a2) 

Fig.11 Comparative study of proposed analytical and ANN models with experimental data at T=200°C 
under 500ppm and the corresponding ANN regression graphs (a2) 

 
Physical and chemical phenomena similar to the previous experiments occur in these cases. The 
illustrations reveal the fact that when the gas concentration is higher, the CNT conductivity increases. 
Also in these cases, satisfactory agreement between the ANN results as well as the outstanding value of 
regression almost equal to 1 prove the ANN model to be superior to the analytical counterpart. This has 
been shown in Figures (9a2) to (11a2). In tables 2 and 3, 4 and 5 the data of validation for the 
analytical model and ANN are presented. 
 
 
 

Table 2: Validation parameters for analytical model at different temperature 

Gas Concentration =500ppm 

Temperature(°C) 25 50 100 150 

MNS 0.0100 0.0062 0.0068 0.0155 
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R
2
 0.8960 0.9413 0.9247 0.8202 

Q
2
 0.8190 0.8939 0.8640 0.6278 

RSS 0.4351 0.1819 0.0916 0.4060 

TSS 4.1831 3.2202 1.2168 2.2577 

SSE 0.7012 0.3099 0.1426 0.7122 

PRESS 0.7573 0.3418 0.1655 0.8403 

 

 

Table 3: Validation parameters for analytical model at different gas concentration 

Temperature=200°C 

Gas Concentration(ppm) 100 200 500 

MNS 0.0325 0.0392 0.0398 

R
2
 0.7483 0.7417 0.7321 

Q
2
 0.3549 0.2429 0.2541 

RSS 0.7855 0.8028 2.3183 

TSS 3.1207 3.1076 2.3396 

SSE 1.8839 2.1930 1.7924 

PRESS 2.0131 2.3527 2.5291 

 

 

Table 4: Model validation parameters for ANN at different temperatures 

Gas Concentration =500ppm 

Temperature(°C) 25 50 100 150 

MNS 0.0025 0.0012 0.0011 0.0060 

R
2
 0.9919 0.9934 0.9969 0.9783 

Q
2
 0.9783 0.9985 0.9890 0.9441 

RSS 0.0773 0.0489 0.0241 0.2566 

TSS 9.6007 7.4485 7.6961 11.8104 

SSE 0.1961 0.0812 0.0804 0.6391 

PRESS 0.2079 0.0854 0.0847 0.6602 

 

Table 5: Model validation parameters for ANN at different gas concentration 

Temperature=200°C 

Gas Concentration(ppm) 100 200 500 

MNS 0.0018 0.0017 0.0023 

R
2
 0.9913 0.9947 0.9889 

Q
2
 0.9843 0.9918 0.9795 

RSS 0.1144 0.0560 0.1500 

TSS 13.1572 10.4764 13.4709 

SSE 0.2000 0.1817 0.2666 

PRESS 0.2072 0.1908 0.2756 
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4. Conclusion 

Two different approaches namely Artificial Neural Network and analytical modelling have been 
employed in developing models for the I-V characteristics of CNTs in exposure to NH3. It has been 
demonstrated that the CNT experiences measureable fluctuations in conductance levels when exposed to 
NH3. Variations in gas concentration and temperature cause conductance alterations, i.e the higher gas 
concentration and temperature, the higher conductivity in CNT channel. This interesting phenomenon can 
be employed in gas detection devices. In the proposed analytical model, two control parameters, namely 
the temperature control parameters (α) and gas concentration control parameter (β) are incorporated and 
calculated by iteration method. The ANN model employs the experimental data as the learning data set. 
Both models are able to produce good results with satisfactory agreement with the extracted experimental 
data. The ANN model, however, has proved to be able to produce more accurate results than those by the 
analytical counterpart. 
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