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Abstract 16 

The marine environment provides a rich source of natural products with potential therapeutic application. The rate of 17 

studies in marine animals, particularly invertebrates has increased considerably in the last few years leading to an 18 

increase in the number of bioactive compounds discovered. In this context, this review focuses on phylum 19 

Echinodermata and aims at summarizing and highlighting the bioactive compounds derived from the echinoderms 20 

discovered between 2009 and 2013, clarifying their structure, distribution, biosynthetic origin, and biological activity.  21 

  22 
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1 Introduction 23 

Nature is an olden pharmacy, rich in bioactive compounds (BC) with several biological properties (bioactivities).1 24 

Responsible for more than 70% of the Earth’s surface, the oceans are an enormous source of potential therapeutic 25 

agents.2-4 The marine environment is extremely complex, showing immense biodiversity.5 Numerous new natural 26 

compounds have been isolated from marine invertebrates, such as echinoderms with interesting pharmaceutical 27 

activities and a broad spectrum of biological activity.6 The importance of these echinoderms as a promising source of 28 

bioactive compounds for development of pharmaceuticals and potential therapeutic applications has been growing 29 

rapidly.2, 3, 7, 8 The echinoderms are a phylum containing about 7,000 living species and 13,000 extinct.9, 10 The 30 

current echinoderms are divided into five classes: Holoturoidea (sea cucumbers), Asteroidea (starfishes), Echinoidea 31 

(sea urchins and sand dollars), Crinoidea (crinoids and sea lilies), and Ophiuroidea (brittle stars and basket stars).5, 11 32 

The bioactive compounds derived from echinoderms are compounds of interest showing an extensive application in 33 

the treatment of many diseases.12, 13 Those compounds showed several biological properties, such as antibacterial, 34 

anticoagulant, antifungal, antimalarial, antiprotozoal, anti-tuberculosis, anti-inflammatory, anti-tumor, anti-HIV and 35 

antiviral activities.6, 12-17 36 

The BC are considered chemical compounds derived and isolated from biological sources and therefore, marine 37 

natural bioactive compounds (MNBC) are compounds isolated from marine sources. Some of the BC can also be 38 

referred to as secondary metabolites, that is, small molecules with molecular weight (MW) less than 2 kDa produced 39 

by an organism, and not essential for its survival.18 40 

Recently, much attention has been paid to unraveling the structural, compositional and sequential properties of BC.2 41 

Based on structural information, these compounds can be subdivided according to Schmitz’s chemical classification 42 

into six major chemical classes, namely, polyketides, terpenes, peptides, alkaloids, shikimates, and sugars.6, 19 43 

However, many other classes of marine-sourced compounds have also been reviewed to varying extents, including 44 

briarane-type diterpenoids, cyclic polypeptides containing b-amino acid fragments, alkaloids, pyrroloiminoquinone 45 

alkaloids, guanidines, ascidian-derived alkaloids, 2-aminoimidazole alkaloids, antitumour peptides, kahalalides, 46 

carotenoids, α-conotoxins, cladiellins, asbestinins, briarellins, eleutherobins, fuscosides, pseudopterosins, 47 

sesquiterpenoids, triterpenoids, and disesquiterpenoids.20 Still others, such as halogenated, marine toxins, 48 

glycosphingolipids, polyketides, sterols, imidazole, oxazole, thiazole alkaloids, ribosomal peptides, phospholipids, 49 

terpenyl-purines, non-methylene-interrupted fatty acids, antimicrobial peptides, alkaloids with a non-rearranged 50 

monoterpenoid unit, diterpenoids and conotoxins.21, 22 51 

Several reviews have been published on bioactive natural products derived from different organisms such as 52 

microalgae, fungi, mussels, shellfish, and starfish.23-27 Concerning the MNBC derived from echinoderms, some of the 53 

information has been included in general reviews published from 2009 to 2011 by Blunt et al..20-22 Thus, the main 54 

goal of this review is gathering information of the new natural compounds, with special emphasis on BC, from 55 
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echinoderms isolated over the last 5 years (2009 to 2013), describing their structure, distribution, biosynthetic origin, 56 

and bioactivity.  57 

 58 

2 General characteristics of echinoderms 59 

Echinoderms are a phylum of invertebrate marine animals (Phylum Echinodermata), which live exclusively in the 60 

marine habitat, distributed in almost all depths and latitudes, as well as reef environments or shallow shores, being 61 

characterized by their radial symmetry.9, 28 During larval development an echinoderm has a distinct bilateral 62 

symmetry that is lost during metamorphosis; the radial symmetry appears only after the formation of the mesoderm.9, 63 

28, 29 64 

The adult echinoderms have a water vascular system with external tube-feet, used mainly in locomotion, and a 65 

calcareous endoskeleton consisting of ossicles connected by a mesh of collagen fibers. 9, 28 The skeletal system is one 66 

of the most characteristic features of the echinoderms, which varies both in the arrangement details, as well as in their 67 

development extent, between five different classes. The skeletal plates have their origin in the mesoderm and near the 68 

surface of the body, directly beneath the outer body cover. Spines, frequently associated with these plates, suggest the 69 

meaning of the name Echinoderm which is in Latin, spiny skin.9, 28, 29 70 

The echinoderms are also known by their regeneration ability. Most sea cucumbers, starfishes and sea lilies often lose 71 

parts of their arms intentionally, when they feel threatened or during the asexual reproduction, which they can later 72 

regenerate. Sea urchins are constantly replacing spines lost by damage.30 In most of these species, asexual 73 

reproduction is by transverse fission with the disc splitting in two. Although in most species at least part of the disc is 74 

needed for complete regeneration, in a few species of starfishes, such as Sclerasterias euplecta and Linckia 75 

columbiae, a single severed arm can grow into a complete individual over a period of several months. Thus, an 76 

individual may have arms of varying lengths.31, 32 Asexual reproduction by transverse fission has also been observed 77 

in adult sea cucumbers, such as Holothuria parvula.33 During echinoderms sexual reproduction, the eggs and sperm 78 

cells are typically released into open water, where fertilization takes place. Usually, the echinoderms are nearly all 79 

gonochoric, though a few species are hermaphroditic.9, 28, 29 80 

The current echinoderms are distributed into five different classes: Holoturoidea (sea cucumbers), Asteroidea 81 

(starfishes), Echinoidea (sea urchins and sand dollars), Crinoidea (crinoids and sea lilies) and Ophiuroidea (brittle 82 

stars and basket stars).9, 29 83 

 84 

2.1 Class Holothuroidea 85 

The sea cucumbers are elongated echinoderms without a definite skeleton and pentaradial symmetry, with a mouth at 86 

one extremity surrounded by a circle of branched tentacles and an anus at the opposite extremity.28 Typically, the 87 

body is five sided and on each side bears a double row of tube-feet, used in locomotion. The body wall is highly 88 

muscular. The alternate use of longitudinal and circular muscles enables the cucumber to creep like a worm.29 89 

Page 5 of 49 RSC Advances

R
S

C
A

dv
an

ce
s

A
cc

ep
te

d
M

an
us

cr
ip

t



Although there is no continuous skeleton, the body wall is rather firm, and this is in large measure due to the presence 90 

of microscopic calcareous plates embedded in the tissues. In some species, a calcareous ring of ten plates surrounds 91 

the esophagus and serves as a support for the tentacles.9, 28  92 

The diet of most cucumbers consists of plankton and decaying organic matter found in the sea. The digestive canal is 93 

held in definite position by mesenteries. The esophagus loads into a stomach which is then followed by a tubular 94 

intestine. From the walls of the cloaca, there is usually a pair of minutely branched respiratory trees which, by the 95 

muscular action of the cloaca, are filled with water and serve as respiratory organs.9, 28, 29 96 

The sea cucumbers are dioecious with separate male and female individuals, which reproduce by releasing sperm and 97 

eggs into the ocean water. The reproductive system consists of a single gonad, consisting of a cluster of tubules 98 

emptying into a single duct that opens on the upper surface of the animal, close to the tentacles.  In the development 99 

stages of the embryo is produced a larval form known as an auricularia.9, 29 100 

 101 

2.2 Class Asteroidea  102 

Belonging to the class Asteroidea are the starfish or sea stars. These organisms are composed by a central disc from 103 

which usually five arms radiate, although some species may have more. They show a bilateral symmetry during larva 104 

phase, which is lost during metamorphosis, developing radial symmetry, typically pentamerism.28, 29 Located in the 105 

starfish body is the madreporite, a pore, responsible for the entry of water in a hydraulic system, named water 106 

vascular system, which is made up of a network of fluid-filled canals and is concerned with locomotion, adhesion, 107 

food manipulation and gas exchange. Mouth and anus are close together in the center of the disc on the underside of 108 

the starfish body, together with the water intake (madreporite).9, 28 The majority of starfishes is carnivorous and feed 109 

on sponges, bryozoans, ascidians, mollusks, bivalves and snails. Others feed on detritus, eating decomposed organic 110 

material and fecal matter.34 In the starfish feeding their stomach is everted through the mouth opening over the prey, 111 

thus surrounding the prey with the digestive organs. Digestive juices are secreted and the tissue of the prey is 112 

liquefied. The food mass is digested, and together with the stomach is again sucked through the mouth opening into 113 

the body.9, 28 The starfishes are found in the ocean and at different depths. They can live in the coral reefs, and on 114 

sand or rocks.9 115 

The starfish are well known by their regenerative ability. They are able to regenerate an entire new member (lost 116 

arms) or part of the central disc. The starfish are vulnerable to infections during the early stages after the loss of an 117 

arm, and the regrowth can take several months or years. The loss of parts of the body also can occur as a protective 118 

function, losing a body part to escape a predator (self-amputation) or during asexual reproduction.9, 28, 35 The 119 

starfishes are able to reproduce by sexual or asexual reproduction. In the sexual stage, the starfishes are simultaneous 120 

hermaphrodites, producing at the same time eggs and sperm. The eggs and sperm are released into the water and the 121 

embryos and larvae live as part of the plankton, or housed in rocks.29, 36, 37 In the asexual stage, the starfish may be 122 

able to reproduce by fission of their central discs or by of one or more of their arms.29, 37 123 
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 124 

2.3 Class Echinoidea  125 

The sea urchins and sand dollars are usually globular, hemispherical, or disc-shaped.9, 28 The skeletal plates, named 126 

ambulacral areas are arranged in meridional bands, which bear openings through which the ambulacral feet protrude. 127 

The tube-feet are moved by a water vascular system, allowing the sea urchin to pump water in and out of the tube 128 

feet, enabling it to move.9, 29 As sea urchins move slowly, they feed mostly on algae. Surrounding the mouth, there is 129 

a circular opening where the skeletal plates are replaced by a membrane termed the peristome. Normally, the anus is 130 

in the pole opposite to the mouth in a region called the periproct. Around the periproct, the genital plates alternate 131 

with the ocular plates, and one of the genital plates is modified to serve as a madreporite.9, 28 132 

Five teeth are visible in the center of the peristome, and the entire chewing organ is known as Aristotle's lantern. At 133 

the top of the lantern, a short esophagus is open, which leads into the stomach.38 The intestine bends backwards in the 134 

opposite direction to that of the course of the stomach and in the case of the sea urchin leads to a median dorsal anus, 135 

while in the sand dollars it passes along the posterior interambulacrum to an anal opening either on or close to the 136 

margin of the disc.28, 29 137 

The female's eggs float freely in the sea, and are fertilized by free-floating sperm released by males. The eggs 138 

fertilized develop into a free-swimming blastula embryo in as few as 12 hours, but several months are needed for the 139 

larva to complete its full development, which begins with the formation of the test plates around the mouth and 140 

anus.9, 29 141 

 142 

2.4 Class Crinoidea 143 

The crinoids or sea lilies include three basic sections: the stem, the calyx, and the arms.29 The stem is composed of 144 

highly porous ossicles which are linked by ligamentary tissue. The calyx is usually a globular or cup-shaped capsule 145 

which contains the more important internal organs, such as the digestive and reproductive organs. The mouth is 146 

located at the top of the dorsal cup, while the anus is located peripheral to it. The arms exhibit pentaradial symmetry, 147 

with smaller ossicles than the stem and equipped with cilia which facilitate feeding by moving the organic media into 148 

the mouth.28, 29 149 

The mouth descends into a short oesophagus. There is no true stomach, since the oesophagus binds directly to the 150 

intestine, which runs in a single loop around the inside of the calyx. The end of the intestine opens into a short 151 

muscular rectum, which ascends towards the anus.9, 28, 39 152 

Crinoids have male and female individuals, but have no true gonads, producing their gametes from genital canals. 153 

The eggs and sperm are release into the surrounding sea water. The fertilized eggs hatch, resulting in the formation of 154 

a free-swimming ciliated larva, in which there is no communication between the mouth and the “stomach”. The larva 155 

does not feed, and it lasts only for a few days before settling in the bottom of the sea using an adhesive gland on its 156 

ventral surface. The larva then metamorphoses into an adult.9, 28 157 
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 158 

2.5 Class Ophiuroidea  159 

The brittle stars or serpent stars have highly flexible arms radiating from a central circular or pentagonal disc. The 160 

body outline is similar to the starfish, but the central disk is sharply marked off from the arms, and contains all the 161 

internal organs responsible for digestion and reproduction.9, 28, 29 The underside of the disk contains the mouth, with 162 

five jaws formed from skeletal plates. The madreporite is located within one of the jaw plates, and not on the upper 163 

side of the animal, as it is in starfishes.28, 29 Writhing movements of the arms, the brittle stars produce locomotion.40  164 

The ophiuroids are scavengers or detritivores and small organic particles, small crustaceans and worms are moved 165 

into the mouth by the tube feet. The digestive system is confined to the disc and lacks an anus.9, 28 166 

Brittle stars can easily regenerate lost arms or arm segments unless all arms are lost. Discarded arms have not the 167 

ability to regenerate. The ophiuroids use this capacity to escape predators or reproduction. Some brittle stars, such as 168 

Ophiactis savignyi and Ophiocomella ophiactoides, exhibit fissiparity with the disk splitting in half.28, 41, 42 In most 169 

species the sexual individuals are separate, although a few are hermaphroditic. The gonads are located in the disk, and 170 

the gametes are shed into the surrounding water.28, 42 171 

 172 

3. Bioactive compounds and biological activities 173 

3.1 Triterpene glycosides 174 

The holostan-type triterpene glycosides, identified as marmoratoside A (1), 17 α-hydroxy impatienside A (2), 175 

marmoratoside B, 25-acetoxy bivittoside D were isolated from the sea cucumber Bohadschia marmorata collected 176 

from offshore waters of Hainan Island in the South Sea of China. Moderate antifungal activity were observed for (1) 177 

and (2).43 The sea cucumber Holothuria (Microthele) axiloga sampled from the same regional waters yielded 178 

arguside F, impatienside B (3), and pervicoside D. Compound (3) showed antifungal activity.44 Bioactive triterpene 179 

glycosides, echinoside A (4) and holothurin A1 (5) isolated from Holothuria scabra (also from South China Sea) for 180 

the first time, showed antifungal activity.45 181 

Leucospilotaside B (6), holothurin B2 and echinoside B were isolated from the sea cucumber Holothuria leucospilota 182 

(again also from South China Sea). Leucospilotaside B is a new triterpene glycoside, and the other compounds have 183 

been isolated for the first time from this sea cucumber.45 Compound (6) exhibited moderate cytotoxicity against 184 

human tumor cell lines (HL-60, MOLT-4, A-549, and BEL-7402).46 The glycosides, achlioniceosides A1, A2 and A3, 185 

(Antarctic sea cucumber Achlionice Violaecuspidata) were the first triterpene glycosides isolated from the sea 186 

cucumber belonging to the order Elasipodida, but the bioactivity has not been reported for these compounds.47 Two 187 

holostanes with a trisaccharide moiety, pentactaside I (7) and II (8), and a disaccharide pentactaside III (9) rarely 188 

isolated from sea cucumbers (Pentacta quadrangularis, Zhanjiang, South China Sea) showed in vitro cytotoxicity 189 

against tumor cell lines (P-388, A-549, MCF-7, MK N-28, HC T-116, and U87MG).46 The isomeric tetrasaccharides, 190 

pentactaside B (10) and C (11) (sea cucumber Pentacta quadrangularis, Guangdong Province), showed cytotoxicity 191 
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against human tumor cell lines (P388, HCT-116, MCF-7, MKN-28, and A-549).48 Isolated for the first time from the 192 

sea cucumber Apostichopus japonicus (Qingdao Sea, Eastern China) was cladoloside B (12).49 Compound (12) 193 

showed growth inhibitory antifungal activity against Candida albicans, Cryptococcus neoformans, Candida 194 

tropicalis, Trichophyton rubrum, Microsporum gypseum and Aspergillus fumigatus.50  195 

Liouvillosides A4 and A5, two minor triterpene glycosides were isolated from the sea cucumber Staurocucumis 196 

liouvillei (Bouvet Island, South Atlantic Ocean). The glycosides A4 and A5 are disulphated tetraosides with a very 197 

rare 3-O-methylquinovose as terminal monosaccharide, but their bioactivity has not been reported.51 Desulfated 198 

echinoside A (13) (sea cucumber Pearsonothuria graeffei, Qingdao, China) inhibited in vitro, the proliferation of 199 

human cancer cells (HepG2) and reduced the tube formation of human endothelial cells (ECV-304) whereas in vivo, 200 

attenuated the neovascularization in the chick embryo chorioallantoic membrane. Ds-echinoside A (13) also exhibited 201 

anti-metastatic activity via inhibition of NF-kB-dependent matrix metalloproteinase-9 and vascular endothelial 202 

growth factor.52 Isolated from the Far Eastern sea cucumber Eupentacta fraudatrix (Troitsa Bay, Sea of Japan), were 203 

the cucumariosides H5 (14), H6 (15), H7 (16) and H8. Compounds (14-16) were cytotoxic against mouse lymphocytes 204 

and hemolytic against mouse erythrocytes.53 Two sulfated triterpenes patagonicoside B (17) and C (18) isolated from 205 

the sea cucumber Psolus patagonicus (The Bridges Island, Tierra del Fuego, Argentina) exhibited antifungal activity 206 

towards Cladosporium cladosporoides.54  207 

Nobiliside I and nobiliside II, two new triterpene glycosides were isolated from sea cucumber Holothuria nobilis 208 

(Fujian, Qingdao Ocean), but their bioactivity has not been reported.55 Holotoxin D (19) (sea cucumber Apostichopus 209 

japonicus (Qingdao Sea, Eastern China) was isolated for the first time by Yuan et al.56 and exhibited growth 210 

inhibitory antifungal activity against Candida albicans, Cryptococcus neoformans, Candida tropicalis, Trichophyton 211 

rubrum, Microsporum gypseum and Aspergillus fumigatus.50 A nortriterpene glycoside, 26-nor-25-oxo-holotoxin A1 212 

(20), four triterpene glycosides, including both holostane and non-holostane types analogues, holotoxins E (21), F 213 

(22) and G (23) (sea cucumber Apostichopus japonicus, Dalian coast, Bohai Sea of China) showed potent antifungal 214 

activity.50 215 

Holostan-type glycosides, holotoxin D1 (24) and 25,26-dihydroxy-holotoxin A1 (25) (sea cucumber Apostichopus 216 

japonicus) exhibited potent antifungal activity.57 Minor triterpene glycosides, identified as cucumariosides A1 (26), 217 

A3, A4, A5, A6 (27), A12, A15, and cucumarioside A2 (28), A7, A8 (29), A9, A10 (30), A11, A13 (31), A14, B1, B2 (32) 218 

were isolated from the sea cucumber Eupentacta fraudatrix (Troitsa Bay, Japan Sea).58-61 Glycosides (26), (27), (28), 219 

(29), (30), and (31) were the most active agents against mouse spleen lymphocytes with cytotoxic action against 220 

Ehrlich carcinoma. Compound (32) demonstrated low cytotoxic action against Ehrlich carcinoma. Compounds (26), 221 

(27), (28), (30), (31), and (32) showed hemolytic activity against mouse erythrocytes and compounds (26) and (27) 222 

antifungal activity.58-61 223 

The cucumariosides H2, H3 and H4 (33) were isolated from the same invertebrate and collected from the same area in 224 

the Japan Sea. Compound (33) with a 25-ethoxy group showed potent cytotoxic activity against lymphocytes and 225 
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very high hemolytic activity.62 Isolation of echinosides A (34) and B (35) from the sea cucumber Holothuria polii 226 

(Red Sea, Egypt) was reported for the first time by Melek et al.. 63 Compounds (34) and (35) possess potential in 227 

vitro schistosomicidal activity against Schistosoma mansoni adult worms.63 Scabraside D (36), fuscocineroside C (37) 228 

and 24-dehydroechinoside A (38) were isolated from Holothuria scabra for the first time by Han et al.. 64 The 229 

glycosides (36-38) showed in vitro cytotoxicity against human tumor cell lines (P-388, A-549, MKN-28, HCT-116, 230 

and MCF-7).64 Pseudocnoside A (39) (sea cucumber Pseudocnus dubiosus leoninus, South Atlantic Ocean), showed 231 

cytotoxicity and anti-proliferative activity against cancer cell lines (A-549 and HeLa).65 232 

A new triterpene holostane disulfated tetrasaccharide olygoglycoside, turquetoside A, containing a rare terminal 3-O-233 

methyl-D-quinovose was isolated from the sea cucumber Staurocucumis turqueti (Eastern Weddell Sea, Antarctic), 234 

but its bioactivity has not been reported.66 Cucumarioside I2 (40) isolated from the sea cucumber Eupentacta 235 

fraudatrix (Troitsa Bay, Japan Sea) increased the lysosomal activity of macrophages.67 Cucumariosides I1 (41), I3 and 236 

I4 also were isolated from the sea cucumber Eupentacta fraudatrix (Troitsa Bay, Japan Sea). Compound (41) showed 237 

cytotoxicity against mouse spleen lymphocytes and Ehrlich carcinoma as well as cytotoxicity, hemolytic activity 238 

against mouse erythrocytes and antifungal activity.68 A minor triterpene glycosides, typicosides A1 (42), A2 (43), B1 239 

(44), C1 and C2 (45) were isolated from the sea cucumber Actinocucumis typical. The new glycosides (42-45), 240 

contained a hydroxyl-group in the aglycone side chain, demonstrating rather strong hemolytic and cytotoxic 241 

activities.69 242 

Sea cucumber Cladolabes schmeltzii (tropical Indo-West Pacific Sea) yielded cladolosides B1, B2, C, C1, C2 and D 243 

(46-51) with strong cytotoxic and hemolytic effects.70  244 

 245 

3.2 Steroids 246 

Steroid glycosides, such as evasterioside C was isolated from starfish Evasterias retifera (Sea of Japan), and 247 

evasteriosides D (52) and E from Evasterias echinosoma (Gulf of Shelichov, Okhotsk Sea).71 Compound (52) 248 

stimulated p53 activity. Evasterioside C and E showed no p53 activity.72 Steroidal monoglycosides, kurilensosides E, 249 

F, G, H (53-56) and 15-O-sulfate of echinasteroside C (57) were isolated from the Far Eastern starfish Hippasteria 250 

kurilensis (Kuril Islands) and inhibited the egg fertilization by sperm of the sea urchin Strongylocentrotus nudus. 251 

Kurilensoside H that contains 4,5-epoxy functionality  was the 15-sulfate analogue of the co-metabolite echinastero 252 

echinasteroside C.73 Kurilensoside I and kurilensoside J isolated from the Far East starfish Hippasteria kurilensis (Sea 253 

of Okhotsk) have a 2-O-methyl-β-D-xylopy-ranose residue at C3 of polyhydroxylated steroid aglycone, but the 254 

bioactivity has not been reported for these compounds.74 Anthenoside A (58) (starfish Anthenea chinensis; Sanya 255 

Bay, South China Sea) exhibited cytotoxicity against human tumor cell lines (HL-60, MOLT-4, A-549 and BEL-256 

7402) and promoted tubulin polymerization.75 257 

Isolated from the starfish Archaster typicus, (Quang Ninh, Vietnam) was the polyhydroxysteroid, named (24R)-27-258 

nor-5α-cholestane-3β,6α,8,14, 15α,24-hexaol, although the bioactivity has not been reported.76 Sterol sulfates 259 
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lysaketotriol (59) and lysaketodiol (60) (starfish Lysastrosoma anthosticta; Sea of Japan) showed immunomodulatory 260 

activity. Compound (59) produced moderate stimulation of lysosomal activity in mouse splenocytes.77 The glycoside, 261 

identified as 1-O-(β-D-quinovopyr-anosyl–(1-2)-β-D-fucopyranosyl-(1-4)-[β-D-fucopyranosyl(1-2)] β-D-262 

quinovopyranosyl)-butanol (61) (starfish Asterias amurensis; Guangxi, North Sea of China) promotes osteoblastic 263 

proliferation.78 A new glycoside, typicusoside A (62), and four highly hydroxylated steroids, named (24R)-27-nor-264 

5α-cholestane-3β,4β,6α,8,14,15α,24-heptaol (63), 5α-Cholestane-3β,4β,5,6α,8,14,15α,24,26-nonaol (64), 5α-Cholest-265 

25(27)-ene-3β,6α,8,14,15α,24,26-heptaol 15-O-sulfate, sodium salt (65), and (23E)-27-Nor-25-oxo-5α-cholest-23-266 

ene-3β,6α,8,14,15α-pentaol 15-O-sulfate, sodium salt (66) (starfish Archaster typicus; coast-line of Quang Ninh, 267 

Vietnam) revealed moderate toxic effects in the sperm- and blastomere on embryonal development of the sea urchin 268 

Strongylocentrotus intermedius.79 The starfish Solaster endeca (Okhotsk Sea, Shelikhov Gulf), yielded a (20R)-5α-269 

cholestan-3β,6α,8,15α,24,26-hexaol (67), which caused an increase of 30% in the lysosomal activity.72 270 

A new pentasaccharide, named hylodoside A (68), was isolated from the starfish Leptasterias hylodes (Okhotsk Sea), 271 

while disaccharide novaeguinoside Y (69) was isolated from Culcita novaeguineae (Seychelles). Steroids (68) and 272 

(69) showed moderate hemolytic activity in the mouse erythrocytes assay.80 The anthenosides B, C, D, E (70), F, G 273 

(71), H (72), I (73), J (74) and K (75) are polyhydroxysteroidal glycosides (starfish Anthenea chinensis; Sanya Bay, 274 

South China Sea). Compounds (70), (71), a mixture of (72) and (73) as well as a mixture of (74) and (75) showed 275 

inhibitory activity against human tumor cells (K-562 and BEL-7402). The mixture of (74) and (75) also exhibited 276 

cytotoxicity against human tumor U87MG cells and promoted tubulin polymerization.81 The (24R,25S)-24-methyl-277 

5α-cholestane-3β,6α,8,15β,16β,26-hexaol; (22E,24R,25S)-24-methyl-5α-holest-22-ene-3β,6α,8,15β,16β,26-hexaol; 278 

and (22E,24R,25S)-24-methyl-5α-cholest-22-ene-3β,4β,6α,8,15β,16β,26-heptaol were isolated from the starfish 279 

Asteropsis carinifera (Van Fong Bay, Vietnam), but the bioactivity has not been reported for these compounds.82 A 280 

new polyhydroxy sterol ester, (25S)-5α-cholestane-3β,6α,7α,8,15α,16β-hexahydroxyl-26-O-14’Z-eico-senoate, 281 

isolated from the starfish Asterina pectinifera (Liaoning province, China) do not showed antiviral activity against 282 

herpes simplex virus type 1 or cytotoxicity against human liver carcinoma HepG2 cell line in vitro.83  283 

The starfish Archaster typicus (Qingping Market, Guangzhou, China), yielded sodium 5α-cholesta-9(11),24-dien-284 

3β,6α,20β-triol-23-one 3-sulphate (76), sodium 5α-cholesta-9(11)-en-3β,6α,20β-triol-23-one 3-sulphate; sodium 285 

(25R)-5α-cholestane-3β,4β,6α,8,14α,15β,26-heptaol-15-sulphate; sodium (25R)-5α-cholestane-3β,6α,8,14α,15β,26-286 

hexaol 15-sulphate; and sodium cholest-25(27)-ene-3β,4β,5α,6α,7β,8β,14α,15α,24,26-decanol 6-sulphate. Steroid 287 

(76) exhibited weak anticancer activity (MDA-MB-435 and Colo205).84 Cariniferosides A, B, C, D, E and F (77), six 288 

steroidal biglycosides were isolated from the starfish Asteropsis carinifera (Van Phong Bay, South China Sea). 289 

Sulfated compound (77) demonstrated a significant inhibition of cells colony formation (RPMI-7951 and T-47D) in a 290 

clonogenic assay.85 A new steroidal glycoside, called fisherioside A was isolated from the starfish Leptasterias fisheri 291 

(Sakhalin Island, Okhotsk Sea). The bioactivity has not been studied.86 Starfish Mithrodia clavigera (Maldive islands, 292 
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Pacific Ocean), yielded a sulfated polyoxide steroid, named mithrotriol. Mithrotriol did not demonstrate cytotoxic 293 

effects against human melanoma cell lines.87  294 

Steroidal glycosides, identified as pectiniosides H–J were isolated from the alcoholic extract of the starfish Asterina 295 

pectinifera (Yellow Sea, China), and did not show cytostatic activity on HL-60 cells.68 The isolation from the starfish 296 

Aphelasterias japonica (Poset Bay, Japan Sea), yielded the aphelasteroside E. The bioactivity has not been studied.88 297 

The neuritogenic and  neuroprotective activities of six new starfish polar steroids, (25S)-5α-cholestane-298 

3β,4β,6α,7α,8,15α,16β,26-octaol (78), and (25S)-5α-cholestane-3β,6α,7α,8,15α,16β,26-heptaol (79) from the starfish 299 

Patiria pectinifera (Northwestern Pacific Sea) were observed using the mouse neuroblastoma C-1300 cell line and an 300 

organotypic rat hippocampal slice culture.89  301 

             302 

3.3. Saponins 303 

Saponins, named holothurinosides E, F, G, H, I, A1, C1, E1, F1, G1, H1 and I1 and desholothurin A1 were isolated from 304 

the sea cucumber Holothuria forskali collected from offshore waters of Banyuls-sur-Mer in the France, but the 305 

bioactivity has not been reported for these compounds.90 Isolated from the sea cucumber Holothuria nobilis (Fujian 306 

Province, East China Sea) was the saponin echinoside A (80), which inhibited the growth of tumors in mouse models 307 

as well as human prostate carcinoma xenografts in nude mouse models and inhibited the noncovalent binding of 308 

topoisomerase2α to deoxyribonucleic acid (DNA).91 Holothurinoside J1 (81) and Holothurinoside K1 (82) were 309 

saponins detected in the body wall of sea cucumber Bohadschia subrubra (Great Reef of Toliara, Indian Ocean) and 310 

exhibited weak hemolytic activity and orcinol reaction.92  311 

Novaeguinosides A–D (83-86) are asterosaponins (starfish Culcita novaeguineae; Sanya Bay, South China Sea) with 312 

cytotoxicity against human tumor cell lines (K-562 and BEL-7402).93 Two 24-hydroxylated asterosaponins, 313 

identified as sodium (20R,24S)-6α-O-(4-O-sodiumsulfato-β-D-quinovopyranosyl)-5α-cholest-9(11)-en-3β,24-diol 3-314 

sulfate (87) and sodium (20R,24S)-6α-O-[3-O-methyl-β-D-quinovopyranosyl-(1→2)-β-D-xylopyranosyl-(1→3)-β-D-315 

glucopyranosyl]-5α-cholest-9(11)-en-3β,24-diol 3-sulfate (88) (Culcita novaeguineae; South China Sea), showed 316 

cytotoxicity against human cell lines (K-562 and BEL-7402) and inactivated tubulin-polymerization.94 317 

Isolated from the starfish Archaster typicus (Quang Ninh, Vietnam) were the archasterosides A (89), B (90) and C. 318 

Compounds (89) and (90) showed moderate cytotoxic activity against cancer cell lines (HeLa and mouse JB6 P+ 319 

Cl41).95, 96 Diplasteriosides A (91) and B (92) (starfish Diplasterias brucei; coast of the Ross Sea, Terra Nova Bay, 320 

Antarctica) showed toxicity activity against human cell cancer (T47D, RPMI-7951).97 In HCT-116 cells, only 321 

compound (91) was toxic.98 Isolated from starfish Asterias amurensis (Pohang, Korea) were the asterosaponins, 322 

named 6α-O-[β-D-fucopyranosyl-(1→2)-β-D-galactopyranosyl-(1→4)-[β-D-quinovopyranosyl-(1→2)]-β-D-323 

quinovopyranosyl-(1→3)-β-D-galactopyranosyl]-5α-chol-9(11)-en-23-one-3β-yl sodium sulfate (93), 6α-O-[β-D-324 

fucopyranosyl-(1→2)-β-D-galactopyranosyl-(1→4)-[β-D-quinovopyranosyl-(1→2)]-β-D-quinovopyranosyl-(1→3)-325 

β-D-galactopyranosyl]-5α-cholesta-9(11),24-dien-23-one-3β-yl sodium sulfate (94), and 6α-O-[β-D-fucopyranosyl-326 
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(1→2)-β-D-galactopyranosyl-(1→4)-[β-D-quinovopyranosyl-(1→2)]-β-D-quinovopyranosyl-(1→3)-β-D-327 

galactopyranosyl]-5α-cholest-9(11)-en-23-one-3β-yl sodium sulfate (95). Compounds (93-95) revealed cytotoxic 328 

effects on to the RAW 264.7 cells.99  329 

Hippasteriosides A, B, C and D (96) were isolated from starfish Hippasteria kurilensis (Kuril Islands, Okhotsk Sea). 330 

The compound (96) demonstrate a remarkable inhibition of the HT-29 colony formation, suggesting its anti-331 

cancerogenic properties.100 The asterosaponin, asteropsiside A (97) (starfish Asteropsis carinifera; Phong Bay, South 332 

Chinese Sea) inhibited the growth of the T-47D and RPMI-7951 tumor cell colonies in vitro.101 Lethasteriosides A 333 

(98) and B were isolated from the ethanolic extract of the Far Eastern starfish Lethasterias fusca. Glycoside (98) 334 

demonstrated inhibition of the T-47D, RPMI-795I and HCT-116 cells colony formations.102 Novaeguineside G, a 335 

new asterosaponine were isolated from the starfish Culcita novaeguineae (South China Sea), but the bioactivity has 336 

not been reported.103 Astrosteriosides A (99), B, C and D (100) were found in Vietnamese starfish Astropecten 337 

monacanthus (Cát Bà Island, Vietnam). Compounds (99) and (100) exhibited potent anti-inflammatory activity.104 338 

Two tetrasaccharides, β-D-quinovopyranosyl-(1→2)-β-D-fucopyranosyl-(1→4)-[β-D-fucopyranosyl-(1→2)]-α-D-339 

quinovopyranose and methyl β-D-quinovopyranosyl-(1→2)-β-D-fucopyranosyl-(1→4)-[β-D-fucopyranosyl-(1→2)]-340 

α-D-quinovopyranoside, were isolated from the starfish Asterias rollestoni (Yellow Sea, China), contain an α-D-341 

quinovose moiety. However, the bioactivity has not been reported for these compounds.105 342 

 343 

3.4 Peptides 344 

Centrocins 1 (101) and 2 (102), two novel dimeric peptides from the Norwegian green sea urchin Strongylocentrotus 345 

droebachiensis (Tromsø, Norway) exhibiting antimicrobial activity.106 346 

 347 

3.5 Sphingolipids and fatty acids 348 

The galactocerebrosides (BAC-1, BAC-2, BAC-4 and BAC-4-4a) and the glucocerebroside (BAC-2a) were isolated 349 

for the first time from the sea cucumber Bohadschia argus (Okinawa, Japan).107, 108 BAC-2a has a polar head group 350 

(glucose). The bioactivity has not been studied.108 A novel cerebroside, AMC-2 (103) isolated from the sea cucumber 351 

Acaudina molpadioides (Zhejiang Province, China), reduced the levels of hepatic triglyceride and of total cholesterol 352 

in fatty liver mice by down regulation of stearoyl-CoA desaturase.109 Two unsaturated fatty acids, identified as (7Z)-353 

octadecenoic acid (104) and (7Z,10Z)-octadecadienoic acid (105) isolated from the body wall of sea cucumber 354 

Stichopus japonicus (Gangneung market, Korea), showed a potent α-glucosidase inhibitory activity.110 The fatty acids 355 

C20 : 2ω-6, arachidonic (C20 : 4ω-6) and eicosapentaenoic (C20 : 5ω-3) were isolated for the first time from the sea 356 

cucumber Athyonidium chilensis (Las Cruces, Chile), but the bioactivity has not been reported for these 357 

compounds.111 358 

A hematoside-type ganglioside (glycosphingolipids), LLG-1, was reported for the first time with origin in the starfish 359 

Linckia laevigata (Okinawa, Japan), however no bioactivity was associated with this compound.112 Sixteen new 360 
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compounds were isolated from the pyloric caeca of the starfish Protoreaster nodosus (Okinawa, Japan), and 361 

identified as PNC-1-3a, PNC-1-3b, PNC-1-4a/PNC-1-4b, PNC-1-4c, PNC-1-5b, PNC-1-5c, PNC-1-6a, PNC-1-362 

6b/PNC-1-6c, PNC-1-6d, PNC-1-7a, PNC-1-7b, PNC-1-8a, PNC-1-8c, and PNC-1-10, but their bioactivity has not 363 

been reported.113 Three new ganglioside molecular species, termed PNG-1, PNG-2A, and PNG-2B were isolated 364 

from the starfish Protoreaster nodosus (Okinawa, Japan) pyloric caeca. PNG-2A and PNG-2B represent the first 365 

GM4 elongation products in nature, but no bioactivity has been associated with these compounds.114
 366 

 367 

3.6 Carotenoids, quinones, spinochromes and pigments 368 

Four carotenoids, 4-ketodeepoxyneoxanthin, 4-keto-4′-hydroxydiatoxanthin, 3′-epigobiusxanthin, and 7,8-369 

dihydrodiadinoxanthin were isolated from the crown-of-thorns starfish Acanthaster planci (Ootsuki coast, Japan), but 370 

no bioactivity has been reported for these compounds.115
 371 

The polyhydroxylated naphthoqinone pigments, aminopentahydroxynaphthoquinone (106) (C10H7NO7) and 372 

acetylaminotrihydroxynaphthoquinone (107) (C10H9NO6) (106 and 107 structural formula not reported) were isolated 373 

from the Strongylocentrotus nudus (Yellow sea, China) purple sea urchin. Compounds (106) and (107) exhibited 374 

moderate antioxidant activity, Fe2+ chelating, lipid peroxidation inhibition and oxidative stress protection 375 

properties.116 Six sea urchin pigments, spinochrome monomers B (108) and D (109), three spinochrome dimers, 376 

anhydroethylidene-6,6’-bis(2,3,7-trihydroxynaphthazarin) (110) and its isomer (111), and ethylidene-6,6’-bis(2,3,7-377 

trihydroxynaphthazarin) (112) as well as one pigment that was preliminary identified as a spinochrome dimer with 378 

the structural formula C22H16O16 (113) (108-113 structural formula not reported) were isolated from the sea urchin 379 

Strongylocentrotus droebachiensis (Barents Sea, Russia) and revealed antioxidant activity 117. Compounds (108) and 380 

(109) had anti-allergic effects in rabbits.117, 118  381 

A crinoid Proisocrinus ruberrimus (Okinawa Trough, Japan) yielded the brominated anthraquinone pigments, 382 

proisocrinins A–F, to which no bioactivity has been reported.119 Two phenanthroperylenequinone, gymnochromes E 383 

(114) and F (115) were isolated from the crinoid Holopus rangii collected from Curacao south coast. Compound 384 

(114) showed cytotoxic activity toward the NCI/ADR-Res and inhibited histone deacetylase-1. Compound (115) was 385 

a moderate inhibitor of myeloid cell leukemia sequence 1 (MCL-1) binding to Bak.120
 386 

  387 

3.7 Other bioactive compounds 388 

Two sulfated alkene, (5Z)-dec-5-en-1-yl sulfate (116) and (3E)-dec-3-en-1-yl sulfate (117), (Sea Cucumber 389 

Apostichopus Japonicus, Liaoning Province, China) showed antibacterial, antifungal and cytotoxic activities (A549, 390 

MG63 and U251 cells).62 391 

Isolated from the sea urchin Glyptocidaris crenularis (Dalian, Yellow Sea, China) were the compounds N-acyl 392 

taurine (118) and 1-(β-D-ribofuranosyl)-1,2,4-triazole (119), which exhibited a weak cytotoxicity against brine 393 

shrimp larvae.121 394 
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Ophiodilactones A (120) and B (121), two tetrameric phenylpropanoids (brittle star Ophiocoma scolopendrina) 395 

exhibited moderate cytotoxic activity against P388 murine leukemia cells.122  396 

 397 

4. Conclusion 398 

More than two hundred natural compounds with origin in echinoderms species were discovered between 2009 and 399 

2013 and they are described in this review. Of the 240 natural compounds discovered, only 50% of the compounds 400 

were associated with some sort of bioactivity. For the remaining 50% of compounds, their bioactivity has not yet 401 

been either studied or reported. The most studied BC were the triterpene glycosids and steroids, showing antifungal 402 

activity and cytotoxicity against human tumor cell lines as the main biological properties. 403 

A higher number of new natural compounds has been isolated from the starfishes and sea cucumbers. This tendency 404 

does not mean necessarily that Asteroidea and Holothuroidea classes represent the source with larger diversity of 405 

natural compounds than other echinoderm class. Species from these classes seem to be more popular among 406 

researchers, probably due to the bioprospecting studies, which eventually discriminates other marine invertebrates, 407 

such as sea urchins, crinoids and brittle stars. Therefore, further studies should be pursued on less studied species or 408 

even in non-studied at all, especially from Echinoidea, Crinoidea and Ophiuroidea, in order to screen and search for 409 

other new potential BC. In addition, more attempts on screening other biological properties rather than those already 410 

carried out in natural compounds, could demonstrate other potentialities; a BC with no antifungal activity could 411 

exhibit others activities such as anti-tumor and anti-inflammatory. It is also important to emphasize that the studies on 412 

mechanisms of action of the discovered bioactive compounds are still lacking. The majority of published studies do 413 

not include such any information. Since the mechanisms of action for BC are sometimes unknown, and many of their 414 

biological properties screened in vitro are not confirmed when tested in vivo the majority of bioactive compounds 415 

isolated from marine organisms do not attain a stage of clinical trials. 416 

  417 
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