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This study reports on molecular dynamics simulations of concentrated binary hard sphere colloids near 

the glass transition. We present the three-dimensional mean square displacements for systems that 

increase in density, into the glass transition region. The molecular dynamics simulations probe wider time 

scales than the experimentally assessable range. They cover the short time scale that corresponds to 10 

ballistic motion, the intermediate scale that corresponds to caged Brownian motion, and the long time 

diffusion described by the Einstein-Smoluchowski limit.  We report results for 2, the non-Gaussian 

parameter, which captures the details of the mean square displacements around the time that, on average, 

rearrangements of the particle cages occur. The dynamic temporal correlations were examined in terms of 

the four point susceptibility. The implications ageing are also discussed.15 

1. Introduction 

Hard sphere colloids are an excellent model for studying the 

cooperative behaviour in systems with simple and well-defined 

interactions. They can help provide important insights about the 

structural and transport properties of suspensions including 20 

Brownian dynamics, rheology, phase behaviour and stability. 

Binary mixtures of hard spheres were shown to crystallize in the 

same lattice geometry as metal alloys if the ratio between the two 

types of particles is identical to that of the metal atoms.1-4 These 

extremely important experiments showed that excluded volume 25 

effects (i.e., hard sphere interactions) are dominant over a wide 

range of length-scales, and implied that the physical conclusions 

and insights obtained from studying hard sphere colloids may 

have a much greater validity, than previously expected.  

 The dynamics of hard spheres at high densities is dominated 30 

by multiparticle correlations. As the overall volume fraction 

increases the individual particle motions become increasingly 

hindered until the system approaches either a phase-transition or 

a disordered glassy state.  The latter often results when the system 

is not a monodisperse colloid. In a recent paper5 Narumi et al. 35 

presented results for the dynamics of a binary colloid system at 

densities that are close to the glass transition. The particle sizes 

and composition of the binary colloid were specifically chosen so 

as to prevent the system from easily crystallizing. The individual 

particle motions were tracked by confocal microscopy. The main 40 

observations in this paper were the spatial and temporal 

heterogeneities as the system approaches glass transition. This 

was attributed to a cooperative motion of whole domains within 

the suspension. Similar conclusions were also reached by other 

authors.6-12 45 

 In the present paper we report on a Molecular Dynamics (MD) 

study of a hard sphere mixture that is similar to the dense 

suspensions studied experimentally by Narumi et al.5 The MD 

approach allows us an examination of a greater time interval and 

provides a more detailed description of the particle motions, both 50 

at very short times when the particle motion is in the ballistic 

regime, as well as at long times when the particle breaks out of 

the “cage” of the surrounding hard spheres. The MD 

computations do not account for the presence of the solvent, 

which is qualitatively correct when the dynamics is dominated by 55 

particle-particle instead of particle-solvent molecules collisions. 

Replacing the MD by Brownian dynamics that includes the 

solvent (through a friction kernel) is problematic for systems near 

glass transition as discussed at the end of this article.  

 The paper is organized as follows, the next Section briefly 60 

describes the details of the MD procedure, Section 3 presents the 

results and discussion and Section 4 summarizes the conclusions.  

2. Molecular Dynamics Procedure 

The system of interest is chosen to be like that of Narumi et al.5 
who studied a binary colloid suspension. The components making 65 

up the colloid consisted of colloidal hard spheres of diameters 

3.10 and 2.36 m, or a size ratio of small over large of 0.7613. 

Both the large (L) and the small (S) components displayed a 

polydispersity of 5%. To mimic the polydispersity we selected to 

subdivide the large component into three very similar sizes, and 70 

similarly the small component into three sizes, such that the 

polydispersity of each component was 5%. In what follows, we 

will usually simply refer to the large and small components, and 

not make any distinctions between the sub-classes. The number 

ratio, small to large (NS/NL), used is that of Narumi et al.5, 75 

namely 1.56.   
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 The MD procedure is an event-driven approach based on 

binary collisions between the molecules such that both the 

momentum and kinetic energy are conserved. When two particles 

i and j with initial velocities vi and vj collide they obtain new 

velocities vi
′ and vj

′ that are given by 5 
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where ij i jr r r   and ij i jv v v  .  

  No explicit solvent molecules are present in the computations 

and thus all collisions take place between the colloidal particles. 10 

This is an approximation, of course, but this choice does not lead 

to a qualitatively different result. The Brownian motion in our 

simulation is entirely due to collisions between the particles and 

does not account for the random collisions with the solvent 

molecules that are present in the experimental suspension. The 15 

absence of an explicit low molecular weight solvent 

overemphasizes the very short-time ballistic motion, but the long 

time purely diffusion behaviour should be very similar since it is 

driven by a fluctuation-dissipation balance, which is similar the 

presence bath of small molecules.  An example of this behaviour 20 

can be found in the work of Scala et al.,13 who introduced event-

driven Brownian dynamics for hard spheres. They demonstrated 

that the density dependence of the diffusion constant in the liquid 

phase is, in fact, the same for molecular dynamics and Brownian 

dynamics when the diffusion coefficient is scaled by its 25 

appropriate low-density value (see also 14-17). 

 Two sets of computations were performed. The first one was 

for a total of 40,000 hard spheres, while the second was for 4,000. 

The larger number of particles allows for obtaining better 

statistics with accurate averages for the mean square 30 

displacements. The lower number of particles was used to capture 

spatial and temporal heterogeneities in the collective dynamics of 

the particles.  

3. Results and Discussion 

3.1. Equilibrium structure and radial distribution function   35 

The equilibrium structure of liquids and complex fluids in general 

is characterized by the radial distribution function (RDF), which 

illustrates the short range liquid order induced by the repulsive 

interactions whose amplitude decays at longer length scales.18 

Our system of interest, consisting of a binary hard sphere mixture 40 

centred on two distinct particle sizes, gives rise to three radial 

distribution functions according to the particle types, i.e., 11, 12, 

and 22.  A typical result for the RDF is shown in Fig. 1. It shows 

the small-small, small-large and large-large distributions 

functions. As mentioned above, strictly speaking our simulations 45 

consist of six different size species, to account for the 

experimentally observed polydipersity. We present the RDFs for 

the two main sizes corresponding to the peaks in the distribution. 

The rest of the hard spheres, of less common sizes that are 

present in the mixture, however, still have an effect on the shape 50 

of each RDF by introducing the lower satellite peaks in the 

vicinity of the main ones. The main peaks positions correspond to 

sum of the radii of the particular interacting species. The distance 

on the horizontal is scaled with the diameter of the larger 

particles in our simulations.  The RDFs shown in Fig.1 can be 55 

directly compared to the ones reported by Narumi et al (see Fig.2 

of ref. 5). There is excellent agreement between peak locations 

and peak heights. 

3.2. Particle dynamics and mean square displacements 

MD allows tracing a significantly greater range to times 60 

compared to experiments.  There is no limit for the shortest times, 

and the high end, limited by computer resources, is well beyond 

the times that can be assessed by experiment.5  Fig. 2 presents 

results for simulations for a total of 40,000 particles. Each run 

consists of about 2.51010 collisions. All six species (the main 65 

two components and the satellite particles that account for the 

polydispersity) are plotted. Hence, the different curves in each 

figure correspond to different size fraction of the mixture starting 

from the smallest (top curves) and ending with the largest (lowest 

curves.) The initial linear slopes in all plots shown in the figure 70 

correspond to ballistic motion of each particle which is described 

by the equation  
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where ri is the displacement of particle i with mass mi, kT is the 75 

thermal energy and t is time.  In this regime most particles simply 

move freely along straight lines. At longer times the ballistic 

motion no longer characterizes the particle motion, instead 

multiple collisions with neighbouring particles (or molecules) 

lead to Brownian motion, which for moderately diluted systems is 80 

given by  

 
2 6ir Dt  (3.2) 

with D denoting the diffusion coefficient. A complete analysis 

describing both regimes as well as the transition between the two 85 

types of motion was given by Uhlenbeck and Ornstein19 (see also  

Fig. 1. Radial distribution functions for small-small (2-2, dotted line), 

small-large (2-1, solid line) and large-large (1-1, dashed line) cases. 

Only the RDFs two main sizes corresponding to the peaks in the 

distribution are shown. The distance on the horizontal is scaled with 

the diameter of the larger particles 1.  
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Refs. 20, 21, 22 or 23.) Hence the Uhlenbeck-Ornstein process 

predicts two distinct regimes of particle motion: ballistic and 

Brownian. Therefore, when plotted in logarithmic scale the r2 vs 

t dependence consists of two straight lines with different slopes  

bound by a smooth transition region without any inflection. Our 5 

results in Fig. 2 however do not fully conform to this behaviour. 

The data for  = 0.53 (see Fig. 2a) are very close to the 

Uhlenbeck-Ornstein model, but a more careful inspection reveal a 

that there is a trend toward formation of an inflection point at  

intermediately long times. This is even more pronounced at 10 

higher volume fractions (see Figs. 2b-2d), where one may 

distinguish three different regimes of particle motion. The free 

particle ballistic motion shows that r2 rapidly increases with 

time (see Fig. 3a.) At longer times, however, the particle 

dynamics is dominated by large number of inter-particle 15 

collisions. The particle exhibits diffusion-like dynamics, but r2 

Fig. 2. Mean square displacement vs time for a hard sphere mixture. (a)  = 0.53; (b)  = 0.57; (c)  = 0.58; (d)  = 0.59; (e)  = 0.60; (f)  = 0.62. 

Fig. 3. A sketch illustrating the motion of a particle in a dense 

suspension. (a) ballistic motion (no collisions); (b) short scale 

diffusion within a “cage”; (c) hopping between “cages”. 
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does increase much because of the obstruction due to a “cage” of 

surrounding particles (see Fig. 3b.) This cage “traps” the tracer 

particle and the range if the motion is of the order of the cage 

inner dimensions. At sufficiently long times the particle would 

eventually break free from this particular cell and move to other 5 

locations in space that correspond to larger displacements and r2 

will further increase when that happens (see Fig. 3c.) That is why 

at long times the mean square displacement r2 is greater. 

However, the higher the volume fraction the longer is the time 

that a particle spends trapped in the cage from the surrounding 10 

neighbours. This is evident from Figs. 2d-2f. In fact for  = 0.62 

(Fig. 2f) and higher, no increasing trend in r2 was obtained for 

the times covered by the simulations. If the system has undergone 

a glass transition, each particle may be forever locked within the 

cage of the surrounding nearest neighbours.   15 

 As the dispersion volume fractions increases the individual 

particle diffusivity becomes hindered, however sporadic 

collective motions may occur. They are related to simultaneous 

coordinated motions of domains containing large number of 

particles. Such fluctuation driven occurrences are not visible in 20 

the dynamics 40,000 particles because of the averaging over such 

a large system. However smaller number of particles show 

occasional jumps in the r2 vs time plots. Fig. 4 presents results 

obtained from a MD computation of the mean square 

displacement against time for binary hard sphere mixtures 25 

containing 4,000 particles. The total number of collisions was 

again equal to 2.51010. Because of the smaller number of 

particles fluctuation-driven collective motions are not smoothed 

out by averaging and can be observed. Fig. 4a corresponds to  = 

0.62. Four distinct jumps in the mean square displacement r2 are 30 

observed. The jumps propagate across all particles irrespective of 

their size. This effect is due to a cooperative motion of a whole 

domain in the process of rearranging the suspension structure.24 

Similar motions are detected at higher volume fractions. Fig. 4b 

presents data for  = 0.64. This time three sudden increments in 35 

the r2 vs time plot are clearly visible. The relative magnitude of 

the jumps is smaller compared to the case shown in Fig. 4a. The 

reason is in the higher volume fraction, which results in less 

available space for particle motions and collective domain 

rearrangements. Still the sudden jumps in the mean square 40 

displacement exceed the noise level of the curves. 

  

Fig. 4. Mean square displacements of each hard sphere component at long times and high densities. (a)  = 0.62; (b)  = 0.64. 

Fig. 5. Kurtosis parameter for the two main size species (corresponding to the peaks of the size distribution – see the text). 

 (a)  (b) 
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3.3. Non Gaussian Effects on the Suspension Dynamics 

At high densities the particle movement is characterized by two 

broad types of movement: limited movement within a cage of 

neighbors, and more significant excursions that accompany the 

re-arrangement of those cages.  If one analyzes the distribution of 5 

displacements on a timescale that corresponds to these re-

arrangements, one tends to find a rather broad distribution. It has 

been suggested25-26 that this broadening with respect to a 

Gaussian distribution can be made quantitative by the use of a so-

called non-Gaussian parameter,  10 

 
4

2 2
2

1
( ) 1

3

x
t

x


  


 (3.3) 

where x = x(t) is the displacement in one dimension after some 

time t. The non-Gaussian parameter is a measure of the excess 

kurtosis of a distribution. For a perfect Gaussian distribution 2 = 15 

0.  A value larger than zero is an indication that the tails of the 

distribution are more prominent, i.e., that a large displacement is 

more likely than a Gaussian distribution would predict. 

 In Fig.5 we show the results for 2 as a function of time, 

averaging over all particles and over multiple time origins. We 20 

display the results for both the small and the large particles. It is 

clear that at higher densities there is a development of a distinct 

maximum in 2. This maximum shifts to larger time t as he 

volume fraction increases. This trend is the same for small and 

large particles.  The maximum in 2 as a function of time occurs 25 

earlier for the small particles (at any given volume fraction).  

 It is interesting to point that similar dynamic inhomogeneities 

were also observed in binary mixtures of soft spheres.  

3.4. Aging Effects 

As the density approaches the glass transition the dynamics of the 30 

system slows down considerably, as is apparent from the mean 

square displacements.  At (and beyond) the glass transition 

density the properties of the system become increasingly 

dependent on the history of the sample. That is, a measurement of 

the mean square displacements can be expected to vary with 35 

time.27 In Fig. 6 we plot the mean square displacements at early 

and at late times, at volume fractions  = 0.59 and 0.60.  Both 

these samples were generated by compressing a system 

equilibrated at  = 0.54. The displacements were then collected 

for a period of about 100 time units 
1/2

2 /m kT , which is long 40 

enough to see the onset of the diffusive regime. And then, 

similarly, for the intervals [100,200] and at the “late” time 

[200,300]. At both volume fractions the early times are markedly 

different from the subsequent time intervals. Comparing the 

results for = 0.59 and 0.60 the aging is somewhat longer for the 45 

higher density, as expected.  

 Following Pusey et al.28 we fitted out data to the expression  

 

   2ln / 6 ln gr t    , (3.4) 

where g is the glass transition volume fraction. The theoretical 50 

value for  for hard spheres is 2.15.29 We found that our data can 

be fitted with  = 2.15 if g = 0.592. This value is close to the one 

reported by Pusey at al. (g = 0.585) 28 for monodisperse hard 

spheres. This may indicate that the location of the glass transition 

is only slightly sensitive to the bidispersity of the hard sphere 55 

system.  

4.5. Four Point Susceptibility  

We have determined the four point correlation (susceptibility) 

function 4, which represents the fraction of particles with 

correlated dynamics at given moment in time. It is defined by30-31 60 

     
22

4 2

V
t Q t Q t

kTN
   
  

, (3.5) 

 where  

   
1 1

N N

ij j

i j

Q t w
 

  r μ . (3.6) 

 ij jw r μ  is an overlap function (see Ref. 31 for more details).  

Fig. 6. Mean square displacements at early and at late times for (a)  =0.59 and (b) 0.60 showing the effects of aging on the overall particle 

dynamics. . 

 (a)  (b) 
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The results for 4 are shown in Fig. 7. The total density is  = 

0.58. The curves represent the results for the larger of the two 

main particle species and different values for the characteristic 

length-scale L describing the spatial inhomogeneity.30-31 All 

curves show that there is no correlation for times that are either 5 

equal close to zero or very long. Hence that the dynamic temporal 

correlations pass through a maximum. There is a certain time that 

corresponds to strongest dynamic correlation, which is defined by 

the maximum of the curves. After that the motions becomes less 

correlated until 4 goes down to zero for long times. 10 

4. Summary and Conclusions 

In summary we performed MD analysis of the behaviour of 

binary hard sphere dispersions at high volume fractions. The 

analysis showed that as the systems approaches the glass 

transition three distinct time range can be identified: (i) short 15 

times where the particles exhibit ballistic (pre-collision) motion,23 

(ii) intermediate times corresponding to the small length-scale 

movements of a particle in a “cage” formed by the surrounding 

nearest neighbours, and (iii) long time diffusion corresponding to 

the Einstein-Smoluchowski limit.32-34 The mean square 20 

displacement in case (i) is proportional to t2, does not change with 

time for case (ii) and is proportional to t in the long-time 

diffusion limit, case (iii). These are shown in Fig. 2 

 Our computations showed that at high densities and long times 

a cooperative motion of domains of particles can occur in an 25 

attempt to reach a more optimal arrangement. These appear as 

jump-wise increases in the mean square displacements when 

plotted against time – see Fig. 4. 

 The MD data confirmed the experimental observation5 that the 

random diffusion process has a significant non-Gaussian 30 

component (Fig. 5). This presents difficulties to in describing the 

complete dynamics in the framework the theory of anomalous 

diffusion.23, 35 Hence, other approaches are often used.36-37 

Another difficulty follows from the observation that the system 

ages with time (see Fig. 6 and ref. 5) and therefore is non-ergodic 35 

and not in true thermodynamic equilibrium. This implies that 

fluctuation-dissipation relationships relating the friction to 

moments of the random force distribution can only be used as 

quasi-static approximations or not at all. We argue that MD 

simulations offer an excellent tool for analysis of colloids near 40 

the glass transition.  
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We present extended timescale molecular dynamics results of binary hard sphere systems near 

the glass transition. 
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