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Iodine (III) catalyzed C(sp2)_H functionalization/intramole- 

cular amination reaction of N-aryl-2-amino-N-heterocycles 

has been developed in water and under ambient conditions. 

This metal-free/open-flask chemistry is general and 

successfully applied in synthesizing benzimidazole-fused 

heterocycles pyrido[1, 2-a]benzimidazole, benzimidazo[1,2-

a]quinoline and benzimidazo [2,1-a] isoquinoline derivatives.   

Direct cross-dehydrogenative amination of inert C(sp2)–H 

bond became a valuable tool in organic synthesis.1 Over the 

years, numerous protocols for intramolecular direct C–N bond 

formations have been developed, and most of these methods 

involve the catalytic use of Pd complexes2 or Cu salts.3 

Generally, the transition metal catalyzed carbon-heteroatom 

bond formation reactions are required elevated temperatures 

and high loading of the catalyst and/or metal oxidant. 

Furthermore, the presence of heavy metal contaminants in the 

final product mitigates their application in the bulk synthesis of 

active pharmaceutical ingredients (API) for commercial use. 

Hence, reaction protocols that enable the preparation of 

nitrogen containing compounds through C–N cross-coupling 

reactions in the absence of transition metals are attractive and 

considered greener.4 In this context, the hypervalent iodine 

reagents promoted oxidative C-N bond formation received 

much attention due to their low toxicity, comparable reactivity 

with transition-metal and easy availability.5,6 However, in this 

iodine (III) mediated cross-coupling chemistry, for most of the 

cases fluorinated solvents6a,e,h,i remained the preferred one 

which severely impedes the application particularly in large 

scale synthesis. Therefore a new, more efficient and 

environmentally benign metal-free catalytic system for 

oxidative C-H amination is highly desirable.  

 

The benzimidazole-fused heterocyclic scaffold exists in a wide 

range of biologically active compounds (Fig. 1).7 

Consequently, substantial synthetic methods have been 

developed for the preparation of this class of molecules.8,9,10 

 

 

 

 

 

 

 

 

 

 

In this aspect synthesis of pyrido[1, 2-a]benzimidazoles by 

copper(II) catalyzed intramolecular C-H amination of N-aryl-

2-aminopyridines in acidic medium has been reported by Zhu8d 

and  Maes8e independently. However, both of the approaches 

require high reaction temperature (120 oC), and the substrate 

scope is limited in terms of substituents on the pyridine 

moiety. An alternative approach mediated by iodine (III) has 

also been reported by Zhu recently.6i But this methodology 

failed in terms of regioselectivity and the use of expensive 

fluorinated alcohol remains the drawback of this synthesis. To 

overcome these issues, herein, we report, an oxidative C-N 

bond formation with catalytic amount of in situ generated 

hypervalent iodine (III) reagent [hydroxy(tosyloxy)iodo] 

benzene (Koser’s reagent, HTIB)11 in water12,13 and under 

ambient conditions (Scheme 1). 
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Scheme 1. Formation of benzimidazole-fused heterocycles
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This protocol is general, regioselective and has been 

successfully utilized in synthesizing medicinally important 

heterocycles pyrido[1, 2-a]benzimidazole, benzimidazo[1,2-

a]quinoline and benzimidazo  [2,1-a]isoquinoline derivatives. 

 

At the outset, N-phenyl-2-aminopyridine141a was selected as 

the model compound to explore the optimized reaction 

conditions with iodine (III) in water and at room temperature 

(Table 1). It was found that the reaction of 1a with 

phenyliodine diacetate (PIDA, 1equiv.) in water at room 

temperature was unsuccessful (entry 1, Table 1). Product was 

not formed even at the elevated temperature, 100 oC (entry 2, 

Table 1). To our delight when we performed the reaction with 

PIDA (1equiv.) in the presence of p-toluenesulphonic acid 

monohydrate (PTSA.H2O) (2 equiv.) as an additive, the 

desired product was isolated in 90 % yield (entry 3, Table 

1).11a When methane sulphonic acid (2 equiv.) was combined 

with PIDA poor yield (15%) was obtained (entry 4, Table 1). 

When we reduced the amount of PIDA from 1 to 0.5 equiv., 

the yield of the isolated product dropped to 30% (entry 5, 

Table 1). The yield also diminished when amount of PTSA. 

H2O was reduced from 2 equiv. to 1equiv. (entry 6, Table 1). 

Next we turned our attention to make the reaction catalytic and 

performed the reaction by using PIDA with several oxidants 

(entries 7-9, Table 1). It was observed that combination of 

PIDA (0.2 equiv.) with PTSA. H2O (2 equiv.) in m-CPBA 

(1equiv.) in water gave 2a in best yield (90 %) (entry 7, Table 

1). Oxidants like TBHP (entry 8, Table 1) and H2O2 (entry 9, 

Table 1) remained ineffective. Use of 10 mol% PIDA gave the 

desired product only in 60% isolated yield (entry 10, Table 1). 

When we tried to promote the cyclization by in situ generated 

HTIB by using PhI (0.2 equiv.) as an iodine source11b with 

PTSA.H2O and m-CPBA as an oxidant in water, annulated 

product was obtained in 75% yield (entry11, Table 1).  

 

 

 

 

 

 
Entry Precat

.   
Amount Additive Oxidant t(h) Yield  

(%)b 
 

 1 PIDA 1 equiv -- -- 24 n.r.  
 2c PIDA 1 equiv -- -- 24  n.r.  

3 PIDA 1 equiv PTSA.H2O  -- 4  90  

4 PIDA 1 equiv CH3SO3H -- 8  15  
5 PIDA 0.5 equiv PTSA.H2O  -- 8  30  

6 PIDA 1 equiv PTSA.H2O
d  -- 8  40  

7 PIDA 0.2 equiv PTSA.H2O m-CPBA 4 90  

8 PIDA 0.2 equiv PTSA.H2O TBHPe 8 n.r.  
9 PIDA 0.2 equiv PTSA.H2O H2O2

f 8  n.r.  

10 PIDA 0.1 equiv PTSA.H2O m-CPBA 4  60  

11 PhI 0.2 equiv PTSA.H2O m-CPBA 4 75  
12 HTIB 1 equiv -- -- 4 85  

 aReaction conditions: 1a (1.0 equiv.), PIDA (0.2 equiv.),  PTSA.H2O (2 

equiv.),  m-CPBA (1 equiv.),  H2O (1 mL),  rt ; b isolated yields;  c reaction 
carried out at 100 oC;  d1.0 equiv used e70 vol% in water;  f30 vol% in water; 

n. r. = no  reaction.  

 

When we used Koser’s reagent (HTIB) (1.0 equiv.) in absence 

of m-CPBA and PTSA 2a isolated in 85% yield, which 

indicates that the Kosers’s reagent is the active species 

(entry12, Table 1). 

 

Reaction of a variety of N-arylated-2-aminopyridines14 was 

investigated under the optimized reaction conditions (Table 2). 

As depicted in Table 2, N-aryl-2-aminopyridines bearing 

electron-donating (Me and t-Bu) or electron-withdrawing 

groups (F, Cl, Br, CF3) at the para position of the aniline 

moiety proceeded with almost quantitative yields (2b-g). High 

yield was also obtained with ortho substitution as compound 

2h was isolated in 89% yield. Both electron donating (OMe) 

and electron withdrawing (F, Cl, CF3, NO2) substituents at the 

meta-position of the aniline of N-aryl-2-aminopyridine 

derivatives proceeded in a highly regioselective manner to 

afford exclusively C-7 substituted pyrido[1, 2-

a]benzimidazoles (2i-m).8d,e Interestingly, no other 

regioisomer i.e. C-9 substituted pyrido[1, 2-a]benzimidazoles 

were detected. In this context, disubstituted derivative has been 

tested under these optimized conditions and the product 2n 

was isolated in 82% yield with complete regioselectivity. To 

further enhance the generality of the reaction, substitution on 

the pyridine ring was also investigated. 5-Bromo or 2-methyl 

derivatives reacted efficiently to give the corresponding 

products 2o-p and 2q, respectively in excellent yields (90-

94%). Cyclization of N-napthyl-2-aminopyridine was also 

performed under the optimized condition and the novel 

pyridine annulated naptho imidazo product (2r) was isolated in 

82% yield. By applying this optimized condition 

benzo[d][1,3]dioxole annulated pyridoimidazo compound (2s) 

has been synthesized in 94% yield.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Next we turned our attention in applying the present protocol 

for the synthesis of another important complex heterocyclic 
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Table 2 Synthesis of pyrido[1,2-a] benzimidazole derivativesa

m-CPBA (1 equiv.)

N

N

2a

4 h, 90%

a Reaction conditions: N-arylpyridine-2-amine (0.29 mmol), PhI(OAc)2 (0.058 mmol), m-CPBA

(0.29 mmol), PTSA.H2O (0.58 mmol), H2O (1 mL, ), rt, air
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system benzimidazo[1,2-a]quinoline (Table 3). Under the 

optimized condition N-aryl-2-aminoquinolines14 bearing 

electron donating (3a) or electron withdrawing group (3b-d) 

produced the desired heterocycles in high yields (92-95%). 

Here also the reaction was highly regioselective as substrates 

having meta-substitution in the aniline ring gave exclusively 

C-9 substituted products (3e-g) in good yields (72-75%). We 

have further applied the optimized condition in synthesizing   

benzimidazo [2,1-a] isoquinolines (Table 3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We were pleased to find that the iodine (III) promoted C-H 

amination of N-arylisoquinoline-1-amine derivatives14 was 

facile and the cyclic compounds were isolated in excellent 

yields (84-85%) (Table 3). The electronic nature of the 

substituents at para-position (3h-j) had no effect on the 

cycloamination reaction. In this case also the reaction remained 

completely regioselective and only C-10 substituted product 

(3k) was isolated in 72% yield.  

 

The scalability of this reaction was tested by performing the 

reaction of 1a in gram scale (5.8 mmol) under the optimized 

conditions (Scheme 2). 

 

 

 

 

 

 

 

 

Based on these findings and previous literature reports15,6c,h,i 

we put forward a plausible mechanism for amination of 1a. 

The operating mechanism for this reaction is suggested to start 

from an interaction between the in situ generated PhI(OH)OTs 

(Koser’s reagent) and N-phenyl-2-aminopyridine (1a) (Scheme 

3), to result the electrophilic N-iodo species A.  In subsequent 

steps the electrophilic annulation on the pyridine nitrogen of A 

generates intermediate B which upon deprotonation forms 2a 

(eq 1, Scheme 3). The eliminated PhI enters the catalytic cycle 

upon oxidation by m-CPBA in presence of PTSA. H2O to 

generate the reactive iodine (III) PhI(OH)OTs and complete 

the catalytic cycle. The explanation for the high 

regioselectivity can be put forward, where the intermediate AA 

is favoured over AB due to steric effect (eq 2, Scheme 3), in 

order to give one regioisomer exclusively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In conclusion, we have developed a practical method for the 

synthesis of benzimidazole-fused heterocycles from readily 

available N-aryl-2-amino-N-heterocycles under metal-free 

conditions. The reaction is catalyzed by in situ generated 

hypervalent iodine (III) at room temperature. Use of water as 

solvent and open-flask chemistry makes this process greener and 

more attractive for large scale synthesis. To the best of our 

knowledge, this is one of the rare example where water has been 

used as solvent in the hypervalent iodine (III) catalyzed oxidative 

C-N bond formation. More significantly, complete control on the 

regioselectivity was achieved in this C-H cycloamination process. 

In view of the growing understanding of hypervalent iodine C-H 

activation/ functionalization processes, the reaction described herein 

showcased a reactivity profile that is notably different to those 

previously reported.6h,i,8c It is believed that the new hypervalent 

iodine (III) promoted protocol will add value in developing a 

number of efficient and practical methods for C-N bond 

construction from unactivated C-H bonds. 
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