

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. This Accepted Manuscript will be replaced by the edited, formatted and paginated article as soon as this is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/advances

1 Highly dispersed Cu(II), Co(II) and Ni(II) catalysts covalently immobilized

- 2 on imine modified silica for cyclohexane oxidation with hydrogen peroxide
 - R. Antony^a, S. Theodore David Manickam^{a,*}, Pratap Kollu^b, P.V. Chandrasekar^c,
- 4

3

K. Karuppasamy^a, S. Balakumar^a

5 ^aCentre for Scientific and Applied Research, PSN College of Engineering and Technology,

6 Tirunelveli-627 152, Tamil Nadu, India.

⁷ ^bDepartment of Metallurgical Engineering and Materials Science, Indian Institute of
8 Technology, Mumbai-400076, India.

9 ^cCollege of Physics and Information Engineering, Institute of Optoelectronic Display, Fuzhou
10 University, Fuzhou-350002, PR China.

11

Abstract

This paper describes the synthesis of Cu(II), Co(II) and Ni(II) catalysts immobilized on imine 12 functionalized silica gel through 3-aminopropyltriethoxysilane linker. The synthesized 13 catalysts were characterized by spectroscopic techniques namely EDS, FT-IR, UV-Vis., ²⁹Si 14 MAS NMR, powder XRD and ESR spectroscopy. These analytical methods evidently 15 confirmed the formation of silica supported catalysts. Thermal properties of catalysts were 16 studied between 30-800 °C by thermo gravimetric-differential thermo gravimetric (TG-DTG) 17 analysis. The surface roughness of silica gel was increased upon modifications, but without 18 losing its lumpy shape as evidenced by SEM investigation. Magnified SEM and AFM images 19 together suggested the high dispersive nature of catalysts. Cyclohexane was successfully 20 21 converted into cyclohexanol and cyclohexanone by the catalysts with an aid of hydrogen 22 peroxide (oxidant). Comparatively, Cu(II) catalyst exhibited better cyclohexane conversion 23 than other catalysts. The reusable nature of the catalysts was established by performing five consecutive catalytic run with Cu(II) catalyst. Comparatively, the present reported catalytic 24 systems would be the simple, reusable and effective models for higher cyclohexane conversion 25 with better product selectivity. 26

27 Keywords: silica gel; Schiff base; heterogeneous catalysts; ESR spectroscopy; cyclohexane;

28 *Corresponding author (S. Theodore David Manickam). E-mail: s.theodore.david@gmail.com

1 1. Introduction

Oxidation of organic substrates containing inert C-H bonds is one of the desirable and 2 challenging organic transformation^{1, 2} for researchers. Specifically, oxidation of C-H bond 3 available in cyclohexane is an important area in synthetic chemistry as there is an upward 4 attention on using its products such as cyclohexanol and cyclohexanone (also known KA oil). 5 For example, its products are employed as starting materials for the manufacture of adipic acid, 6 polyamide-6, acidulant in baking powder and caprolactam. Appreciably, caprolactam is an 7 important precursor in the manufacture of commercial products like nylon-6 and nylon-6,6^{3,4}. 8 The current existing industrial procedure involves 150 °C temperature and 1-2 MPa pressure 9 over metal cobalt salt or metal-boric acid catalyst for just 4% conversion of cyclohexane into 10 cyclohexanol and cyclohexanone. Besides, this commercial technique yields more 11 cyclohexanol and some additional steps are required to get better cyclohexanol/cyclohexanone 12 ratio^{5, 6}. Due to these limitations, the search of new catalysts for the effective oxidation of 13 cyclohexane has become imperative. In this exploration, heterogeneous catalysts are often 14 preferred over homogeneous catalysts due to easy catalyst separation, excellent reusability and 15 chemical and thermal stability^{7, 8}. These outstanding qualities build heterogeneous catalysts as 16 environmentally benign catalysts. Different types of heterogeneous catalysts have been 17 endeavoured for cyclohexane oxidation and few instances are Co(II) and Cr(VI) on poly(4-18 vinylpyridine-co-divinylbenzene) (4.64% conversion)⁹; scorpionate Fe(III) complex on carbon 19 materials $(20.8\% \text{ conversion})^{10}$ and desilicated MOR zeolite $(37.2\% \text{ conversion})^{11}$ in the 20 presence of co-catalyst and co-oxidant; and gold nanoparticles on carbon materials (3.6% 21 conversion)¹². In spite of that, silica gel is relatively more desirable support than 22 aforementioned supports due to its low price, excellent stabilities, good accessibilities and 23 organic groups can be robustly anchored to the surface of the silica gels^{13, 14}. With these salient 24 features, silica supported catalysts have exposed superior cyclohexane conversion too. Few 25 examples are listed here. Urus et al have achieved 99.99% cyclohexane conversion with silica 26

supported complexes. But they employed microwave irradiation and attained very poor 1 cyclohexanol and cyclohexanone selectivity¹⁵. Mesoporous silica materials such as MCM-41 2 (45.5% conversion with 51.9\% cyclohexanol and 48.1% cyclohexanone selectivity)¹⁶ and 3 SBA-15 (71.1% conversion with 26% cyclohexanol and 74% cyclohexanone selectivity)¹⁷ 4 have also been strived for better cyclohexane conversion. But tedious procedures, exercising 5 more chemicals and relatively high cost are necessitated in the synthesis of mesoporous silica 6 7 materials. In this circumstance, aforesaid demerits would suppress the utility of effective silica supported catalysts. Therefore, it is important to find simple, low cost and effective silica 8 supported catalysts for cyclohexane oxidation with enhanced selectivity. 9

In the drive towards the preparation of heterogeneous catalysts using silica materials, 10 various approaches have been followed. Among them, incorporation of organic entity (flexible 11 spacer) onto silica is considered as the best one. The major benefit in anchoring organic groups 12 onto silica is the easier formation of catalytic centre^{18, 19}. The method of organo-modification 13 of inorganic materials is usually divided into two classes. In class I, organic and inorganic 14 components are embedded and only hydrogen, van der Walls or ionic bonds provide cohesion 15 to the whole structure. Whereas in class II, the two phases (organic and inorganic) are linked 16 together through strong chemical covalent or coordinative bonds²⁰⁻²². The class II type is more 17 favoured than class I, since it affords an additional chemical strength to the organo-modified 18 inorganic materials. Furthermore, covalent immobilization of metal complexes to the solid 19 support offers high catalytic efficiency and better recyclability without having the inherent 20 problems like leaching of complex/ligand during the reaction^{23, 24}. Silica based materials have 21 been frequently organo-modified by class II method using 3-aminopropyltriethoxysilane 22 (APTES) as the linker between silica materials and the organic entity^{22, 25, 26}. This linker 23 compound may go through the formation of Schiff base ligands on the route to organo-24 modification of silica. The added applications with forming Schiff bases are their chelating 25 ability with transition metal ions, stability under variety of oxidative and reductive conditions 26

RSC Advances Accepted Manuscript

and borderline nature between hard and soft Lewis bases. As well, when Schiff base ligands
 are administered as their metal complexes, the range of their applications has been enhanced^{27,}
 ²⁸. Isatin is the most reported endogenous indole due to its reaction with primary amines for the
 preparation of Schiff bases^{29, 30}.

Based on the above facts, here we aspire to accomplish the new recyclable silica 5 supported catalytic systems with sufficient catalytic ability and selectivity under 6 7 environmentally tolerable conditions for cyclohexane oxidation. New silica supported Cu(II), Co(II) and Ni(II) catalysts (catalysts 1, 2 and 3, respectively), derived through 3-amino 8 modification and imine functionalization of silica gel, have been synthesised and applied in 9 catalytic cyclohexane oxidation using hydrogen peroxide as oxidant. The reason for using 10 hydrogen peroxide is its environmental benign character as it decomposes to give only water 11 and oxygen. Thus using hydrogen peroxide is always safe and promising approach for a variety 12 of oxidation reactions³¹. This work also comprises characterization of catalysts using EDS, FT-13 IR, UV-Vis., ²⁹Si NMR, powder XRD and ESR; surface studies (SEM and AFM); and thermal 14 study (TG-DTG). 15

16 2. Experimental

17 2.1. Materials

3-aminopropyl triethoxysilane (APTES) was procured from Himedia. Silica gel, metal salts,
isatin, cyclohexane, acetonitrile, toluene and hydrogen peroxide were purchased from
E-Merck. All the chemicals and solvents were employed without further purification.

21 2.2. Synthesis of amino modified silica gel (SiO₂-NH₂)

50 gm silica gel was pre-treated by refluxing with excess amount of 1:1 hydrochloric acid for 6 h. It was filtered off and washed with sufficient amount of deionised water till the pH becomes 7. The resultant product was dried at 120 °C for 12 h. Then, 20 g pre-treated silica was taken in 100 ml toluene followed by the addition of 20 ml APTES and the resultant

1 mixture was refluxed for 72 h. The final suspension was filtered off, washed with excess

2 amount of toluene, ethanol and diethyl ether and dried at 100 °C under vacuum.

3 2.3. Synthesis of imine modified silica gel (L)

For the preparation of L, 5 mmol isatin and 5 gm SiO₂-NH₂ were taken in 100 ml deionised
water. The ensuing mixture was then magnetically stirred for 24 h at 60 °C in the reaction
flask. The obtained brown colour solid product was filtered, washed repeatedly with water and
dried at 100 °C.

8 2.4. Synthesis of catalysts

9 2 gm L and 50 ml deionised water were mixed in the reaction flask towards the synthesis of 10 catalyst 1. To this mixture, 5 mmol copper chloride was added and magnetically stirred at 11 ambient temperature for 24 h. The achieved product was filtered and washed thoroughly with 12 water and dried at 90 °C under vacuum. Likewise, catalysts 2 and 3 were synthesised from 13 their corresponding metal chlorides. The schematic manifestation for the synthesis of catalysts 14 is shown in Fig. 1.

15 2.5. Characterization

FT-IR spectra were recorded on a Jasco FT-IR 4100 spectrophotometer from KBr pellets 16 containing 1% of the sample in 4000-400 cm⁻¹ wave number region with 2 cm⁻¹ resolution. 17 Electronic spectral studies were performed on a Shimadzu UV-2600 spectrophotometer in 200-18 800 nm wavelength range using diffuse reflectance (DR) technique.²⁹Si cross polarized magic 19 angle spinning nuclear magnetic resonance (²⁹Si CP MAS NMR) spectral analysis of L and 20 catalyst 1 was achieved on Mercury Plus 300 MHz NMR spectrometer (VARIAN, USA) 21 equipped with a 5 mm dual broad band probe. Thermal properties of the compounds were 22 investigated by TG-DTG technique using a Mettler Toledo star system under dynamic N_2 23 atmosphere within 30-800 °C temperature range at a heating rate of 10 °C min⁻¹. Powder X-ray 24 diffraction (PXRD) determinations were executed on X-ray diffractometer ((XPERT PRO 25 PANalytical, Netherland)) for phase identification. The patterns were run with CuK α radiation 26

1 with a secondary monochromator (λ = 0.1545 nm) at 40 kV and 30 mA. The morphologies, 2 dimensions and elemental compositions of catalysts were explored using a scanning electron 3 microscope of Hitachi S-3400N model attached with energy dispersive spectroscope. The SEM 4 images were taken at 15 kV accelerating voltage with 2 kX magnification range under liquid 5 N₂ atmosphere. For studying particle distribution, the AFM analysis was accomplished on 6 catalyst 1 using AFM XE 70, park systems.

7 2.6. Oxidation of cyclohexane

The oxidation reactions were carried out in the 25 ml flask equipped with magnetic stirrer. The 8 flask was charged with 0.05 g of the catalyst (1/2/3) in 10 ml acetonitrile. Then, 10 mmol of 9 30% H₂O₂ solution and 5 mmol of cyclohexane were added successively. This reaction 10 mixture was stirred in the reaction flask at 70 °C under atmospheric pressure conditions for 12 11 h. Aliquots from the reaction mixture were taken at the time intervals of 2 h for product 12 analysis to examine the effect of reaction time on cyclohexane conversion percentage. Two 13 other separate catalytic experiments (one without catalyst and another without oxidant) were 14 also performed by using similar reaction procedure. The product samples were investigated 15 using Hewlett-Packard gas chromatograph (HP 6890) having FID detector, a capillary column 16 (HP-5), a programmed oven with temperature range from 50 to 200 °C and N₂ carrier gas at a 17 flow rate of 0.5 cm³min⁻¹. The conversion percentage of cyclohexane and selectivity for 18 cyclohexanol and/or cyclohexanone was calculated using the equations given below: 19

Conversion % of cyclohexane = $100 \times [Initial \% - Final \%] / Initial \%$

20 Selectivity (%) = $100 \times [GC \text{ Peak area \% of cyclohexanol and/or cyclohexanone}]/$ $\Sigma \text{ Peak area of total products.}$

21 3. Results and discussion

22 3.1. Characterization of catalysts

The presence of expected elements in the respective prepared compounds is confirmed by EDS
analysis. The EDS spectra of silica gel, SiO₂-NH₂, L and the catalysts (1, 2 and 3) are

6

1

2

peaks of corresponding metal ions in their EDS spectra.

The FT-IR spectra of silica gel, SiO₂-NH₂ and L are compared and shown in Fig. 2. In 3 the FT-IR spectrum of silica gel (Fig. 2a), the bands at 3548 (broad) and 1632 cm⁻¹ are 4 assigned to the stretching and bending vibrations of silanol groups (Si-OH), respectively. The 5 bands found at 1094 and 798 cm⁻¹ are the characteristic anti-symmetric and symmetric 6 stretching modes (Si-O-Si) of [SiO₄] units, respectively. A small shoulder observed at 974 cm⁻¹ 7 can be allocated to the Si-OH stretching mode and band at 462 cm⁻¹ is the evidence of Si-O-Si 8 bending vibrations^{32, 33}. As shown in Fig. 2b, the appearance of new continuing band in the 9 region of 3290-3000 cm⁻¹, characteristic stretching vibration of NH₂ group, confirms the 10 aminopropylation of silica support. It is further supported by the stretching and bending 11 vibration modes of aliphatic CH₂ groups, appeared at 2938 and 1495 cm⁻¹, respectively. The 12 NH₂ bending vibration of SiO₂-NH₂ emerges at 1572 cm⁻¹. In the FT-IR spectrum of L (Fig. 13 2c), stretching and bending vibrations of $-NH_2$ group are disappeared due to the imine (C=N) 14 15 group formation by the reaction of isatin with SiO₂-NH₂. The occurrence of this reaction is also proved by the presence of new characteristic bands at 1714 and 1629 cm⁻¹ which are the 16 indicative peaks for stretching modes of C=O and C=N groups, respectively. In addition to 17 these changes, the new band is found at 1467 cm⁻¹ because of aromatic -C=C- stretch. The 18 anticipated amide –NH stretch is masked by the broad Si-OH stretching vibration. In the FT-IR 19 spectra of catalysts, it is expected that coordination of nitrogen centre to the metal ion would 20 21 reduce the electron density in the imine link and shift the C=N stretching frequency to the lower wave numbers. In Fig. 3, the downward shift in C=N stretch is found in all catalysts, 22 which implies the successful coordination of azomethine nitrogen to the metal centre³⁴. 23 Furthermore, the C=O group of L is also be expected to coordinate with the metal ion through 24 its oxygen atom and it is confirmed by the shift in their stretching frequency to the lower 25 region. The evident stretching bands for M-N and M-O may be superimposed with the sharp 26

RSC Advances Accepted Manuscript

Si-O-Si bending vibration modes noted at 460 cm⁻¹. Besides, the existence of characteristic
 bands of silica support in the FT-IR spectra of SiO₂-NH₂, L and all catalysts, show that the
 fundamental structure of the parent silica support could not be disturbed even after the organo modification and catalysts' formation.

UV-Vis. spectroscopy is the best selection to assign the geometry of the metal complexes 5 around the metal centre. The DR UV-Vis. spectra of L and catalysts are illustrated in Fig. 4 6 7 while the same for silica gel and SiO_2 -NH₂ are presented in supplementary file (ESI). In general, for the aromatic ring containing Schiff base ligands, two types of electronic transitions 8 are suspected (π - π * and n- π * transitions). The UV-Vis. spectrum of L (Fig. 4a) displays two 9 such characteristic absorption bands below 400 nm. The band at 220 nm is due to π - π * 10 transition (characteristic of π -bonds of aromatic ring, C=N and C=O groups). Another expected 11 band at 340 nm is assigned to $n-\pi^*$ transition, characteristic of non-bonded electrons available 12 on nitrogen (C=N) and oxygen (C=O). 13

The UV-Vis. spectra of catalysts 1 and 2 reveal similar pattern, however they are found 14 to be different from that of the catalyst 3. As found in UV-Vis. spectrum of L, characteristic 15 bands for π - π * and n- π * transitions at around 220 and 340 nm, respectively are discovered in 16 UV-Vis. spectra of catalysts also. A new band at 450 nm can be attributed to the ligand to 17 metal charge transfer (LMCT). It suggests the coordination of L with the metal ions. This 18 coordination behaviour of L is further endorsed by the appearance of new significant d-d 19 transition band of the metal ions. Catalyst 1 shows a broad band centred at 600 nm which 20 21 might be attributed to d-d transition of Cu(II) (Fig. 4b). The d-d transitions with very close energy may overlap together and lead into the emergence of very broad single d-d band. 22 Similarly, catalyst 2 shows the d-d transition as a broad band centred at 600 nm (Fig. 4c). For 23 catalyst 3, this characteristic d-d band is perceived at 520 nm (Fig. 4d) and it is not much broad 24 like catalysts 1 and 2. The entry of this characteristic d-d transition band in UV-Vis. spectra of 25

all the catalysts confirms the FT-IR investigation to assure the formation of catalysts and
 suggesting an approximate square planar geometry³⁵⁻³⁷.

The changes in the silicon environment of silica gel after modification have been studied 3 by ²⁹Si CP MAS NMR technique. For the unmodified silica gel, the anticipated characteristic 4 peaks are regularly appeared at ~110, ~105 and ~90 ppm which can be allocated to ((SiO)₄Si) 5 silica sites, ((SiO)₃SiOH) terminal silanol sites and ((SiO)₂Si(OH)₂) geminal silanol groups, 6 7 respectively. Among them, the peak at 110 ppm is predominant owing to the abundance of ((SiO)₄Si) silica sites³⁸⁻⁴¹. Fig. 5a and 5b show ²⁹Si NMR spectra of L and catalyst 1, 8 respectively. In these spectra, the intense peak at 109 ppm, corresponds to (((SiO)₄Si)) silica 9 sites. In contrast, the other two expected peaks are less intense. Importantly, in the ²⁹Si NMR 10 spectra of both L and catalyst 1, an additional broad peak is seen at ~60 ppm owing to the 11 formation of new of ((SiO)₃SiC) sites⁴². These observations are indications of the covalent 12 modification of silica gel backbone through the reaction between terminal and geminal surface 13 silanol groups. Though these peaks are found in ²⁹Si NMR spectra of both L and catalyst 1, 14 their position and intensity are slightly unequal which may be due to the consequence of Cu(II) 15 coordination with L. 16

The wide angle PXRD patterns of unmodified silica gel, SiO₂-NH₂ and all catalysts are 17 shown in Fig. 6. The obtained patterns of all the compounds display a similar broad band 18 centred at 22° as the substantiation to amorphous nature and topological structure of SiO₂ 19 support^{38, 43, 44}. On comparison with unmodified silica gel (Fig. 6a), the intensity of this 20 characteristic peak, in PXRD patterns of all modified silica gels, is found to be decreased along 21 with line broadening. This decrease in intensity is perhaps assigned to the filling of pores of 22 silica surface by metal ions or reduction in X-ray scattering contrast between the channel wall 23 of silicate frame work and L. Furthermore, no new peaks are acquired after amino 24 modification, imine modification and catalysts' formation. It can be ascribed that the 25 amorphous nature of silica is maintained even after modification reactions. However, this 26

RSC Advances Accepted Manuscript

amorphous nature is not maintained in case of catalyst 1 as evidenced by the new peaks
 appeared in Fig. 6d, which means that the crystallinity of L gets enhanced after metallation
 with Cu(II) ions.

ESR spectra of catalysts 1 and 2 (given in Fig. 7a and 7b, respectively) were recorded at 4 77 K temperature and employed to verify the geometry around central metal ions of the 5 catalysts. The resultant spectra are found to be typical for axial nature and the detected g 6 factors are in the order of $g_1 > g_{\perp} > 2.0023$ for both the catalysts. In case of catalyst 1, this order 7 indicates that the unpaired electron most probably dwells in the $d_x^2 - d_y^2$ orbital and it is likely to 8 be square planar geometry as conferred in UV-Vis. spectroscopy⁴⁵. The g_1 value seems to be 9 less than 2.3 and it is a clear indication for the covalent character of Cu-L bond as suggested by 10 Kivelson and Niemon⁴⁶. The exchange coupling factor (G) can be expressed by the subsequent 11 equation: 12

13 $G = (g_1-2) / (g_{\perp}-2)$

As reported earlier, for the parallely aligned or slightly misaligned local axes, the G value is greater than 4.0 whereas it is less than 4.0 for appreciably misaligned local axes with considerable exchange coupling. From the ESR spectrum of catalyst 1, the calculated G value is 7.0 and hence only the negligible exchange coupling could be possible^{47, 48}. On the other side, catalyst 2 displays a very broadened ESR spectrum, perhaps due to differences in the relaxation parameters and the spin-spin interaction between Co(II) ions⁴⁹.

Fig. 8 depicts the TG-DTG patterns of L and all the catalysts studied. In Fig. 8a, L exhibits three mass loss stages correspond to desorption of physically adsorbed water molecules (0-110 °C), decay of organic contents (160-370 °C) and dehydroxylation of surface silanol groups (370-700 °C). Similar thermal decomposition steps are observed also in TG-DTG curves of all the catalysts (Fig. 8b-8d). But the calculated % weight loss values are not comparable as in the case of L and most probably it is due to the coordination of metal ions with L. Significantly and contrary to L, metal complexes exhibit a new weight gain step above

In order to find out the difference between the size and surface morphology of SiO₂-NH₂ 5 and its modified forms (L and catalysts), SEM study has been employed. The SEM 6 7 photographs are given in Fig. 9. For comparison, SEM photograph of unmodified silica gel is given in supplementary file (ESI). Silica gel display clear surface and there is no evidence for 8 the presence of any adsorbed particles in its surface. After modification with APTES, the 9 surface shows the presence of adsorbed particles as seen in SEM image of SiO₂-NH₂ (Fig. 9a). 10 The number of particles in the surface is found to be enhanced upon organo-modification of 11 SiO₂-NH₂ with isatin for the formation of L. This noteworthy change in surface (Fig. 9b) can 12 further confirm the formation of L. In general, the modification of porous silica gel with 13 organic functionalities may assist the effective adsorption of metal ions^{50, 51}. In fact, as 14 evidenced by the SEM images of catalysts, the metal ions are adsorbed via complex formation 15 throughout the surface of L in a dispersed manner. To confirm the dispersion of metal ions, the 16 magnified SEM image of catalyst 1 is also illustrated in Fig. 9f. This uniform metal ions' 17 scattering on to L perhaps provide the greater surface area for the better catalytic activity of 18 catalysts. Throughout the modification process, silica gel particles do not lose their lumpy 19 20 shape.

Fig. 10 demonstrates the 2D and 3D AFM images of catalyst 1 in two different magnifications for the further investigation of surface properties, and particularly particles dispersion. From the AFM images, it is obvious that the particles are found to be emerged as the cone shaped heaps. They are not agglomerated and well strewn with each other. These observations supplement the surface information obtained from the SEM images.

26

RSC Advances Accepted Manuscript

1

2 **3.2.** Catalytic study

Owing to the commercial advantages of cyclohexane oxidation, it has been selected as the 3 model reaction to study the catalytic properties of catalysts 1, 2 and 3. As it leaves only water 4 as the by-product, H₂O₂ was employed as oxidant. According to Corma et al, the role of 5 solvent in the catalytic reactions is sometimes crucial as it develops different phases into 6 7 uniform and thus upholding mass transportation. The solvents can affect the intermediate species which further alter the reaction mechanism and also take part in tuning the surface 8 properties of catalysts and reaction path-ways⁵². By comparison, acetonitrile was found to be 9 the effective solvent than others as evidenced by the literature^{17, 53}. Hence, in this study also the 10 catalytic cyclohexane oxidation was performed in acetonitrile. 11

Catalyst 1/2/3 catalysed oxidation of cyclohexane mainly yields cyclohexanone and cyclohexanol. In gas chromatograph analysis also, there is no evidence for other products. After the completion of catalytic reactions, acid-base titration was also carried out with the product mixture to check the formation of acidic product (adipic acid). On cooling the product mixture, no white precipitate was developed. This observation and acid-base titration results suggested that no adipic acid was formed. So the general pictorial representation of cyclohexane oxidation to cyclohexanol and cyclohexanone is made as in Fig. 11.

19 3.2.1. Effect of temperature

When the cyclohexane oxidation was attempted at room temperature (25 °C), only negligible cyclohexane conversion was obtained. Therefore, the reaction temperature was raised stepwise to find the optimum reaction temperature. Upon increasing the reaction temperature, the cyclohexane conversion efficiency was increased up to 70 °C irrespective of the catalyst. Further increase of temperature after 70 °C could not show any significant change in the cyclohexane conversion. This may be due to the fact that 70 °C is closer to the boiling point of cyclohexane. Consequently, 70 °C was fixed as the most favourable temperature to supply

adequate energy to cross over the energy barrier of cyclohexane oxidation reaction. The
 catalytic activity of catalysts 1, 2 and 3 at different temperature between 30 to 80 °C is given in
 Fig. 12. Reaction temperature has shown meaningful effect only on cyclohexane conversion %
 and no such effect detected on product selectivity.

5 **3.2.2.** Effect of reaction time

The catalytic activity of all catalysts was independently studied in cyclohexane oxidation for 6 7 12 h. In order to explore the effect of reaction time on cyclohexane conversion efficiency, the aliquots from the reaction media were taken out between the time intervals of 2 h. The 8 cyclohexane conversion efficiency exhibited by all catalysts at the time intervals of 2 h is 9 provided in Table 1. All the complexes showed increase in catalytic activity with the increase 10 of time. However, further increase of time after 12 h could not show any improved conversion 11 efficiency. Unlike reaction temperature, reaction time has considerably changed both 12 cyclohexane conversion % and product selectivity. In particular, the notable observation from 13 the time dependant catalytic study of catalysts is that the cyclohexanone selectivity increased 14 with the increase of reaction time irrespective of all the complexes. On the other hand, the 15 cyclohexanol selectivity has been found to decrease with the increase of reaction time. This 16 confirms that cyclohexane is first oxidized into cyclohexanol and subsequently to 17 cyclohexanone. 18

19 Catalyst 1 showed better catalytic efficiency compared to catalysts 2 and 3. In detail, it demonstrates 49% cyclohexane conversion at 12 h, with 27% cyclohexanol and 73% 20 21 cyclohexanone product selectivity. Catalysts 2 and 3 also revealed comparatively adequate cyclohexane conversion (40 and 37%, respectively). The higher catalytic efficiency of catalyst 22 1 can be attributed to its effectiveness in decomposing hydrogen peroxide. Though the 23 catalytic efficacy of catalysts 2 and 3 is similar, catalyst 2 yielded better cyclohexanone 24 selectivity (14% cyclohexanol & 86% cyclohexanone). The variation in product selectivity 25 may be due to the nature of the metal ions in the catalysts. The coordinatively unsaturated 26

RSC Advances Accepted Manuscript

1 metal ion species such as Co(II), Ni(II) and Cu(II) present in their corresponding catalysts play
2 a crucial role on promoting the catalytic performance. The adequate catalytic activity of all the
3 studied catalysts (1, 2 and 3) may be due to their coordination with the dispersed pre-installed
4 imine sites of imine modified silica gel (L). Two blank experiments were also accomplished
5 separately, one without oxidant and another any without catalyst but kept other conditions
6 unchanged. The obtained product yield was very meagre. It supports the role of catalysts
7 (metal ion species) in cyclohexane oxidation reaction as very extensive.

⁸ 3.2.3. Catalytic recyclability

9 The salient feature of supported complex catalyst is their stability in the successive catalytic 10 run. To study the stability of the catalysts, catalyst 1 was opted as it showed superior catalytic 11 activity than other two catalysts. The catalyst 1 was filtered off after the first catalytic run, 12 washed with ethanol and ether, and re-employed in the next catalytic run. The reusability of 13 catalyst was explored by carrying out five consecutive catalytic run by maintaining all other 14 conditions unaltered.

The results of this reusability study are illustrated in Fig. 13. Cyclohexane conversion 15 efficiency of the catalyst has been seemed to be well comparable throughout the catalytic 16 cycle. Comprehensively, the catalyst lost only 3% of its original catalytic activity at fifth 17 catalytic run and selectivity of the products was also comparable in each catalytic run. It 18 proves the excellent stability of catalysts covalently immobilized on silica gel. This catalytic 19 study suggests that no copper ion has been leached out of the surface of silica gel inside the 20 21 catalytic solution. This is also being suggestive of the stability of silica supported complex. Further, the FT-IR spectra of the fresh catalyst and the used catalyst were compared and both 22 of them were found to be similar. These experiments substantiate that the reported catalysts are 23 heterogeneous in nature due to the silica support afforded via covalent approach. 24

In comparison, the silica supported catalysts depict superior catalytic performance in cyclohexane conversion than our previously reported corresponding chitosan supported

14

catalysts⁵⁴. Perhaps it could be due to the well dispersed surface of silica supported catalysts
 than that of chitosan supported analogues. Also these silica supported catalysts are proved to
 have better recyclability than corresponding chitosan supported catalysts.

4 4. Conclusion

In summary, Cu(II), Co(II) and Ni(II) catalysts derived by coordination reaction with imine 5 modified silica gel were proved to be highly dispersed as deliberated by SEM and AFM 6 studies. This high dispersive nature of reported catalysts forced us to apply them in 7 cyclohexane oxidation using hydrogen peroxide oxidant. The formation of catalysts was 8 confirmed by spectral techniques such as EDS, FT-IR, DR UV-Vis., PXRD and ²⁹Si CP MAS 9 10 NMR have been employed to explore the structure of ligand (L) and catalysts, and they successfully confirmed their formation. UV-Vis. and ESR spectroscopic methods together 11 suggested the square planar geometry to the catalysts irrespective of metal ions. The weight 12 gain noticed in TG-DTG curves of the catalysts further confirmed the coordination of metal 13 ions to silica support. Among the catalysts studied, Cu(II) catalyst (catalyst 1) displayed 14 superior catalytic behaviour (49% cyclohexane conversion) than other two catalysts. However, 15 in terms of selectivity, Co(II) catalyst (catalyst 2) is proposed as the better catalyst as it yielded 16 86% cyclohexanone. Regardless of catalysts, the increase of reaction time leads to higher 17 cyclohexanone selectivity due to the subsequent oxidation of cyclohexanol. The reported 18 covalently silica supported catalysts were established as stable, simple, inexpensive, easily 19 prepared and best heterogeneous catalysts as they maintained their original catalytic behaviour 20 for repeated catalytic runs. Therefore, in green approach, these catalysts may open a new 21 avenue for cyclohexane oxidation with hydrogen peroxide. 22

23 Acknowledgement

STDM expresses his gratitude for financial aid (Sanction No: (2010/34/8/BRNS/772)
sanctioned by Department of Atomic Energy-Board of Research in Nuclear Sciences (DAEBRNS), Government of India, Mumbai to carry out this work. RA thanks DAE-BRNS for the

RSC Advances Accepted Manuscript

	RSC Advances							
1	finan	cial support in the form of Junior and Senior Research Fellowships. PK acknowledges						
2	Depa	Department of Science and Technology (DST) for DST-INSPIRE faculty fellowship and						
3	Soph	Sophisticated Analytical and Instrumentation Facility, Indian Institute of Technology Bombay,						
4	Mumbai, India for helping with characterization facilities. All the authors are deeply grateful to							
5	Mr.	K. Saravanan, CSIR-CSMCRI, Bhavnagar, India for his valuable contribution in						
6	discussing the catalytic results.							
7	Ref	References						
8	1.	A. E. Shilov and G. B. Shul'pin, Chem. Rev., 1997, 97, 2879-2932.						
9	2.	R. Sheldon, Metal-catalyzed oxidations of organic compounds: mechanistic principles						
10		and synthetic methodology including biochemical processes, Elsevier, 2012.						
11	3.	R. Zhao, D. Ji, G. Lv, G. Qian, L. Yan, X. Wang and J. Suo, Chem. Commun., 2004,						
12		904-905.						
13	4.	N. V. Maksimchuk, K. A. Kovalenko, V. P. Fedin and O. A. Kholdeeva, Chem.						
14		Commun., 2012, 48, 6812-6814.						
15	5.	T. F. Silva, G. S. Mishra, M. F. G. da Silva, R. Wanke, L. M. Martins and A. J.						
16		Pombeiro, Dalton Trans., 2009, 9207-9215.						
17	6.	R. Whyman, Applied organometallic chemistry and catalysis, Oxford University Press,						
18		2001.						
19	7.	C. González-Arellano, A. Corma, M. Iglesias and F. Sánchez, Adv. Synth. Catal., 2004,						
20		346 , 1316-1328.						
21	8.	M. B. Gawande, P. S. Branco and R. S. Varma, Chem. Soc. Rev., 2013, 42, 3371-3393.						
22	9.	D. Lončarević, J. Krstić, J. Dostanić, D. Manojlović, Ž. Čupić and D. Jovanović, Chem.						
23		Eng. J., 2010, 157 , 181-188.						
24	10.	L. Martins, M. P. de Almeida, S. Carabineiro, J. Figueiredo and A. Pombeiro,						
25		<i>ChemCatChem</i> , 2013, 5 , 3847-3856.						

- L. Martins, A. Martins, E. Alegria, A. Carvalho and A. Pombeiro, *Appl. Catal. A*, 2013,
 464, 43-50.
- 3 12. S. Carabineiro, L. Martins, M. Avalos-Borja, J. Buijnsters, A. Pombeiro and J.
 4 Figueiredo, *Appl. Catal. A*, 2013, 467, 279-290.
- 5 13. G. Fink, B. Steinmetz, J. Zechlin, C. Przybyla and B. Tesche, *Chem. Rev.*, 2000, 100,
 6 1377-1390.
- 7 14. H. Guo, X. Liu, Q. Xie, L. Wang, D.-L. Peng, P. S. Branco and M. B. Gawande, *RSC Advances*, 2013, 3, 19812-19815.
- 9 15. S. Uruş, M. Dolaz and M. Tümer, J. Inorg. Organomet. Polym., 2010, 20, 706-713.
- 10 16. J. Zhao, W. Wang and Y. Zhang, J. Inorg. Organomet. Polym., 2008, 18, 441-447.
- 11 17. S. Alavi, H. Hosseini-Monfared and M. Siczek, J. Mol. Catal. A, 2013, 377, 16-28.
- 12 18. P. T. Tanev, M. Chibwe and T. J. Pinnavaia, *Nature*, 1994, **386**, 321.
- 13 19. A. Stein, B. J. Melde and R. C. Schroden, *Adv. Mater.*, 2000, 12, 1403-1419.
- S. Attia, A. Shames, I. Zilbermann, G. Goobes, E. Maimon and D. Meyerstein, *Dalton Trans.*, 2014, 43, 103-110.
- 16 21. C. Freire, C. Pereira and S. Rebelo, *Catalysis*, 2012, 24, 116.
- 17 22. F. Hoffmann, M. Cornelius, J. Morell and M. Fröba, *Angew. Chem. Int. Ed.*, 2006, 45, 3216-3251.
- 19 23. C. E. Song and S.-g. Lee, *Chem. Rev.*, 2002, **102**, 3495-3524.
- 20 24. A. Corma and H. Garcia, Adv. Synth. Catal., 2006, 348, 1391-1412.
- 21 25. J. P. Reynhardt, Y. Yang, A. Sayari and H. Alper, *Chem. Mater.*, 2004, 16, 4095-4102.
- 22 26. A. Schätz, M. Hager and O. Reiser, Adv. Funct. Mater., 2009, 19, 2109-2115.
- 23 27. A. K. Singh, V. Gupta and B. Gupta, Anal. Chim. Acta, 2007, 585, 171-178.
- 24 28. S. Chang, L. Jones, C. Wang, L. M. Henling and R. H. Grubbs, Organometallics, 1998,
- **17**, 3460-3465.

- Page 18 of 35
- 29. M. A. Ali, H. J. Hj Abu Bakar, A. Mirza, S. Smith, L. Gahan and P. V. Bernhardt,
 Polyhedron, 2008, 27, 71-79.
- 3 30. G. F. Caramori, R. L. Parreira and A. M. D. C. Ferreira, *Int. J. Quantum Chem.*, 2012,
 112, 625-646.
- 5 31. J. M. Campos-Martin, G. Blanco-Brieva and J. L. Fierro, *Angew. Chem. Int. Ed.*, 2006,
 6 45, 6962-6984.
- 32. G. Diaz, R. Perez-Hernandez, A. Gomez-Cortes, M. Benaissa, R. Mariscal and J. Fierro, *J. Catal.*, 1999, **187**, 1-14.
- 9 33. Z. Huang, F. Cui, H. Kang, J. Chen, X. Zhang and C. Xia, *Chem. Mater.*, 2008, 20, 5090-5099.
- 11 34. S. Jana, B. Dutta, R. Bera and S. Koner, *Langmuir*, 2007, 23, 2492-2496.
- 35. W.-J. Zhou, B. Albela, P. Perriat, M.-Y. He and L. Bonneviot, *Langmuir*, 2010, 26, 13493-13501.
- 36. C. Brückner, V. Karunaratne, S. J. Rettig and D. Dolphin, *Can. J. Chem*, 1996, 74, 21822193.
- 16 37. F. Feigl, *Chemistry of specific, selective and sensitive reactions*, Academic Press, 1949.
- 17 38. P. Yin, Y. Tian, Z. Wang, R. Qu, X. Liu, Q. Xu and Q. Tang, *Mater. Chem. Phys.*, 2011,
 18 129, 168-175.
- 39. C. Pereira, J. F. Silva, A. M. Pereira, J. P. Araújo, G. Blanco, J. M. Pintado and C. Freire,
 Catal. Sci. Tech., 2011, 1, 784-793.
- 40. T. Yokoi, H. Yoshitake, T. Yamada, Y. Kubota and T. Tatsumi, *J. Mater. Chem.*, 2006,
 16, 1125-1135.
- 41. M. A. B. Meador, E. F. Fabrizio, F. Ilhan, A. Dass, G. Zhang, P. Vassilaras, J. C.
 Johnston and N. Leventis, *Chem. Mater.*, 2005, 17, 1085-1098.
- 42. X. Wang, G. Wu, W. Wei and Y. Sun, *Catal. Lett.*, 2010, **136**, 96-105.

- 43. N. An, W. Zhang, X. Yuan, B. Pan, G. Liu, M. Jia, W. Yan and W. Zhang, *Chem. Eng.* J., 2013, 215, 1-6.
- 3 44. J. Wang, J. Sun, Y. Li and F. Wang, *Luminescence*, 2013.
- 4 45. S. Deshpande, D. Srinivas and P. Ratnasamy, J. Catal., 1999, 188, 261-269.
- 5 46. D. Kivelson and R. Neiman, J. Chem. Phys., 2004, 35, 149-155.
- 6 47. B. Hathaway and D. Billing, Coord. Chem. Rev., 1970, 5, 143-207.
- 7 48. R. Dudley and B. Hathaway, J. Chem. Soc. A, 1970, 1725-1728.
- 49. J. Evans, A. Zaki, M. El-Sheikh and S. El-Safty, J. Phys. Chem. B, 2000, 104, 1027110281.
- 10 50. S. Uruş, S. Purtaş, G. Ceyhan and T. Erkenez, Sep. Purif. Technol., 2013, 118, 432-447.
- 11 51. S. Uruş, S. Purtaş, G. Ceyhan and F. Tümer, *Chem. Eng. J.*, 2013, **220**, 420-430.
- 52. A. Corma, M. Camblor, P. Esteve, A. Martinez and J. Perezpariente, *J. Catal.*, 1994, 145, 151-158.
- 14 53. C. K. Modi and P. M. Trivedi, *Arabian J. Chem.*, 2013.
- 15 54. R. Antony, S. Theodore David, K. Saravanan, K. Karuppasamy and S. Balakumar,
- 16 *Spectrochim. Acta A*, 2013, **103**, 423-430.
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- . -
- 25
- 26

1	Figure Captions				
2	Fig. 1 Schematic showing the synthetic route of imine modified silica gel (L) and catalysts				
3	Fig. 2 FT-IR spectra of silica gel (a), amino modified silica gel, SiO_2-NH_2 (b) and imine				
4	modified silica gel, L (c)				
5	Fig. 3 FT-IR spectra of imine modified silica gel, L (a) and catalysts viz 1 (b), 2 (c) and 3 (d)				
6	Fig. 4 DR UV-Vis. spectra of imine modified silica gel, L (a) and catalysts viz 1 (b), 2 (c) and				
7	3 (d)				
8	Fig. 5 29 Si CP MAS NMR spectra of imine modified silica gel, L (a) and catalyst 1 (b)				
9	Fig. 6 XRD patterns of silica gel (a), amino modified silica gel, SiO_2-NH_2 (b), imine				
10	modified silica gel, L (c) and catalysts viz 1 (d), 2 (e) and 3 (f)				
11	Fig. 7 ESR spectra of catalyst 1 (a) and catalyst 2 (b)				
12	Fig. 8 TG-DTG patterns of imine modified silica gel, L (a) and catalysts viz 1 (b), 2 (c) and 3				
13	(d)				
14	Fig. 9 SEM photographs of amino modified silica gel, SiO ₂ -NH ₂ (a), imine modified silica				
15	gel, L (b) and catalysts viz 1 (c), 2 (d) and 3 (e). Magnified SEM image of catalyst 1 (f)				
16	Fig. 10 2D (a) and 3D (b) AFM images (10X10 μ m); 2D (c) and 3D (d) AFM images				
17	(2.5X2.5 µm) of catalyst 1				
18	Fig. 11 Schematic showing catalytic cyclohexane oxidation into cyclohexanol and				
19	cyclohexanone				
20	Fig. 12 Effect of temperature on cyclohexane oxidation catalysed by Cu(II), Co(II) and Ni(II)				
21	catalysts containing imine modified silica gel, L				
22	Fig. 13 Recyclability of catalyst 1. Reaction conditions: cyclohexane 5 mmol, 10 mmol 30%				
23	H_2O_2 , 0.05 g catalyst, 10 ml CH ₃ CN, 70 °C and 12 h				
24	Table Captions				

- 25 Table 1 Product yield and selectivity % in cyclohexane oxidation catalysed by Cu(II), Co(II)
- 26 and Ni(II) catalysts containing imine modified silica gel, L

157x135mm (96 x 96 DPI)

Schematic showing the synthetic route of imine modified silica gel (L) and catalysts 135x137mm (300 x 300 DPI)

FT-IR spectra of silica gel (a), amino modified silica gel, SiO2-NH2 (b) and imine modified silica gel, L (c) 274x242mm (96 x 96 DPI)

FT-IR spectra of imine modified silica gel, L (a) and catalysts viz 1 (b), 2 (c) and 3 (d) 169x117mm (150 x 150 DPI)

DR UV-Vis. spectra of imine modified silica gel, L (a) and catalysts viz 1 (b), 2 (c) and 3 (d) 155x132mm (96 x 96 DPI)

29Si CP MAS NMR spectra of imine modified silica gel, L (a) and catalyst 1 (b) 229x116mm (96 x 96 DPI)

XRD patterns of silica gel (a), amino modified silica gel, SiO2-NH2 (b), imine modified silica gel, L (c) and catalysts viz 1 (d), 2 (e) and 3 (f) 158x124mm (150 x 150 DPI)

ESR spectra of catalyst 1 (a) and catalyst 2 (b) 238x96mm (96 x 96 DPI)

TG-DTG patterns of imine modified silica gel, L (a) and catalysts viz 1 (b), 2 (c) and 3 (d) 275 x 192 mm (96 x 96 DPI)

SEM photographs of amino modified silica gel, SiO2-NH2 (a), imine modified silica gel, L (b) and catalysts viz 1 (c), 2 (d) and 3 (e). Magnified SEM image of catalyst 1 (f) 308x155mm (96 x 96 DPI)

2D (a) and 3D (b) AFM images (10X10 μm); 2D (c) and 3D (d) AFM images (2.5X2.5 μm) of catalyst 1 334x273mm (96 x 96 DPI)

Schematic showing catalytic cyclohexane oxidation into cyclohexanol and cyclohexanone 385x142mm (96 x 96 DPI)

Effect of temperature on cyclohexane oxidation catalysed by Cu(II), Co(II) and Ni(II) catalysts containing imine modified silica gel, L 215x176mm (150 x 150 DPI)

Recyclability of catalyst 1. Reaction conditions: cyclohexane 5 mmol, 10 mmol 30% H2O2, 0.05 g catalyst, 10 ml CH3CN, 70 °C and 12 h 214x180mm (150 x 150 DPI)

	Time (h)	Conversion (%)	Selectivity (%)	
Catalyst			Cyclohexanol	Cyclohexanone
1	2	8	71	29
	4	16	62	38
	6	30	50	50
	8	41	41	59
	10	46	35	65
	12	49	27	73
2	2	6	67	33
	4	13	54	46
	6	24	45	55
	8	33	31	69
	10	39	22	78
	12	40	14	86
3	2	5	69	31
	4	11	59	41
	6	20	52	48
	8	31	40	60
	10	35	28	72
	12	37	21	79

Reaction conditions: cyclohexane 5 mmol, 10 mmol 30% H_2O_2 , 0.05 g catalyst, 10 ml CH₃CN and 70 °C