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A facile route which opened a narrow band gap to hydrogenate reduced graphene oxide (RGO) with borane 
was reported.  
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Reduction of RGO by BH3: Facile Route to Partially 

Hydrogenated RGO Preparation  

Miao Zhang,a Danyun Xu,a Junyi Ji,a,b Yuhong Wang,a Yang Li,a Guoliang Zhang,a 
Fengbao Zhanga and Xiaobin Fan* a

We demonstrated a facile borane hydrogenation route to 

hydrogenate reduced graphene oxide (RGO). This strategy 

is simple and might be scaleable for mass production of 

partially hydrogenated RGO with a band gap of ~1.8 eV.  

Graphene, with two-dimensional structure and unique electronic 

properties, is considered to be a promising material for next-

generation electronic devices.1 However, the applications of 

graphene in many semiconductor devices have been hampered by its 

inherent zero band gap. As one of the effective methods2, 3 on 

electronic modification, hydrogenation is an elegant strategy to 

introduce a band gap into graphene. In theory, by changing the 

hybridization of all the carbon atoms from sp2
 to sp3 and removing 

the conducting π-bands, fully hydrogenated graphene (i.e. graphane) 

with a band gap of ~3.5 eV can be obtained.4 Of particular interest is 

that the band gap will decrease with H coverage, and a tunable band 

gap may be observed in partially hydrogenated or polyhydrogenated 

graphene.5, 6 The first experimental attempt was carried out by Geim 

et al in 2009 with hydrogen and dc plasma excited between two 

electrodes, and control of the electronic properties by hydrogenation 

was also revealed.7 Later, catalytic hydrogenation of graphene over 

Ni/Al2O3 catalysts8 and Birch reduction with lithium−liquid 

ammonia9 have been demonstrated to be efficient methods to 

hydrogenate graphene. However, more accommodating, efficient, 

and scaleable approaches for hydrogenated graphene preparation are 

still highly desirable.  

    In this study, we report that RGO could be readily reduced by BH3, 

and partially hydrogenated RGO with a band gap of ~1.8 eV could 

be readily obtained after hydrolysis reaction (Scheme 1).  

The reduced graphene oxide used here was prepared by exposing 

the graphene oxide to a sudden thermal shock at 300°C to remove 

most of the oxide functional groups.10 The reaction between BH3 

(~40 mL, 1M inTHF) and RGO (~50 mg) was carried out at 5°C for 

3 h under an atmosphere of nitrogen. Then, acetic acid (~40 mL) was 

added to the mixture at 18°C for the hydrolysis reaction.11 Three 

hours later, the hydrogenated graphene (HG) was isolated and 

purified by intensively washing with ethanol and deionized water, 

and followed by drying in a vacuum freezing dryer.  

 
Scheme 1  Illustration for the partially hydrogenated graphene 

preparation. 

 

The obtained HG showed no observable difference in morphology 

when compared with the RGO before the hydrogenation. The 

scanning electron microscopy (SEM) images of the solid samples 

(Fig. 1a, b) revealed that both the RGO and HG displayed crumpling 

features with a clear two-dimensional sheet structure. Transmission 

electron microscopy (TEM) images (Fig. 1c, d) of RGO and HG on 

top of the TEM grids showed very small optical contrast. Actually, 

they appeared transparent under TEM, suggesting their exfoliated 

natures.  
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Fig. 1   SEM images of (a) RGO and (b) HG, and TEM images of (c)  

RGO and (d) HG. 

 

Fourier transform infrared spectroscopy (FTIR) provided a direct 

evidence for the successful hydrogenation of the graphene sheet. 

Compared with previous studies on hydrogenated graphene that was 

prepared by other methods,8 the obtained HG here showed two 

prominent bands at 2850 cm–1 and 2920 cm–1 (Fig. 2), which 

corresponded to the stretching modes of H bonded to olefinic carbon 

and the bending modes of H bonded to aromatic carbon. 

3400 3200 3000 2800 2600 2400

 RGO

 HG

T
ra

n
s
m

it
ta

n
c
e
 (

a
.u

.)

Wavenumbers (cm
-1
)

2850
2920

 

 

 
Fig. 2   FTIR spectra of RGO (black) and HG (red). 

 

As shown in Fig. 3 (black), the typical characteristic of reduced 

graphene oxide was recognized by a sharp π* band (1s-π* transition) 

at 288.4 eV and a relatively broad 1s-σ* transition starting from 

299.8 eV in carbon K-edge region. After the hydrogenation, the σ* 

band became narrow, and its triquetrous feature suggested the 

increase of sp3 hybridization. Quantitative analysis of the sp2 - and 

sp3 -C bonds was given by the double window method (Fig. S2, 

Supporting Information).12 The percentage of sp2 hybridized atoms 

in RGO converged to a value of 0.124, whereas HG gave a value of 

only 0.115, supporting the decrease of sp2 carbon percentage.13 

Another interesting difference in EELS was an obvious shift to lower 

energy after the hydrogenation, due to a reduction in the density of 

the HG.14 Specifically, Sofo et al had reported that the C–C bond 

length would stretch from 1.42 Å to 1.52 Å after hydrogenation.4 

And according to our calculations (Supporting Information), this 

change might result in a decrease of the surface density from 0.76 

mg m–2 to 0.66 mg m–2.Raman spectra as an aid test also supported 

this result (Fig. S1, Supporting Information). 
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Fig. 3   EELS spectra of RGO (black) and HG (red). 

 

 
Fig. 4   TGA data of RGO (black) and HG (red). 

 

To evaluate the coverage of H atoms, thermo gravimetric analysis 

(TGA) was carried out. According to previous studies,15 the 

dehydrogenation of hydrogenated graphene starts as low as 75°C–

100°C and thus our TGA test started from 40°C and ended in 

1000°C. As shown in Fig. 4, weight loss of HG ended in ~850°C10 

and the difference between RGO and HG is ~7% (weight loss of 

RGO is ~2%), which could be attributed to the release of hydrogen 

and the absorbed species. As comparison, release of hydrogen from 

the sample prepared by Birch reduction was about 6wt%.9  

As theoretical studies had revealed that the band gap of the 

partially hydrogenated graphene would be correlated to the H 

coverage, the HG samples were also characterized by solid–state 

UV–vis spectroscopy (Fig. 5). Note that the RGO used here showed 

a small band gap (~0.8 eV), different from the theoretical 0 eV in 

ideal graphene. After the hydrogenation, however, the band gap of 

the HG here was opened to be ~1.8 eV according to the method of 

Tauc’s equation.16, 17 A theoretical study by Jijun Zhao et al reported 

that the band gap reached ~2 eV with a hydrogen coverage of 85%,5 

while the Birch reduction opened a large band gap close to 

theoretical maximum (~4 eV)9. Considering the relatively lower 

coverage of H in the HG, the smaller band gap here was reasonable 

and might be promising in semiconductor devices.  
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Fig. 5   UV-vis spectra of RGO and HG. 

Conclusions 

Hydrogenation of reduced graphene oxide is an elegant strategy to 

introduce a band gap into RGO for its applications in many 

semiconductor devices. In this study, we reported a facile new route 

(borane hydrogenation) to hydrogenate RGO. We found that 

partially hydrogenated graphene (HG) could be readily obtained by 

the reduction of RGO with BH3, followed by the hydrolysis reaction 

in acetic acid. Different from the existing methods, this strategy is 

simple and might be scaleable for mass production in industry. 

Notably, UV–vis spectroscopy demonstrated a band gap of ~1.8 eV 

in the obtained HG, which might find possible applications in many 

semiconductor devices.  
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