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Low-Temperature Oxidation of Particulate Matter

Using Ozone

Yoshihiko Itoh*, Yuji Sakakibara and Hirofumi Shinjoh
TOYOTA CENTRAL R&D LABS., INC.
41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan

Low-temperature oxidation of particulate matter (RAés investigated using ozone, which has
high oxidation ability. Granular carbon was firsed as a model PM to investigate the influential
factors for PM oxidation with ozone. The PM colktfrom diesel exhaust using a diesel
particulate filter was then evaluated to deterntieeoxidation performance of ozone. Carbon
was effectively oxidized by ozone at low temperasuess than 573 K and the oxidation rate was
larger than ten times that for N@t 423 K; however, the oxidation rates were desgedy the
thermal decomposition of ozone and reaction witha$¢@n exhaust gas component. The
oxidation rate when using ozone could be calculati¢hl inclusion of these factors using the
Arrhenius equation. The PM oxidation charactersstiere similar to those for granular carbon.
The results indicate that oxidation with ozone @mising method for low-temperature PM

oxidation and optimized performance with ozone ddé achieved.

1. INTRODUCTION
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Diesel particulate filters (DPFs) used for the idhn of particulate matter (PM) emissions from
diesel engines require appropriate regeneratiotn@yxidation of PM accumulated in the DPF
because accumulated PM causes clogging of the WREh decreases engine performance and
efficiency by increasing exhaust backpressure. Atfin PM oxidation using high-temperature
exhaust gas by the addition of extra fuel into éxdaust system is generally used for DPF
regeneration, it is difficult to execute this medhfor low exhaust temperature, such as the
conditions experienced under traffic congestion.

NO, generated from NO contained in diesel exhausthgasbeen applied for the regeneration
of DPFs used with commercial diesel engihéfowever, high N@ concentrations are required
to achieve sufficient PM oxidation rates at low paratures. Moreover, the NO oxidation
performance of the oxidation catalyst is decreasedow temperatures, which leads to an
increase of NOx emissions.

Non-thermal plasma (NTP) has been proposed asitissoto this probleni This method has
potential for low-temperature PM oxidation with seaable energy consumption to generate
NTP, but it has not yet been applied practicallye do difficulties in the attachment of the
reactor setup to conventional exhaust systems, aaddPFs, and lack of reliability for high-
voltage electrode operation in the exhaust gas.

Ozone has higher activity as an oxidant than @ H,O,, and harmful effects to the
environment and human health are eliminated bythleemal decomposition of ozone t6.O
Ozone has low reactivity with carbon or PM unden@gpheric condition$however, it has been
reported that PM oxidation is promoted by oZoaed that ozone injection to diesel exhaust is
effective for direct PM oxidation by ozone or by N@enerated through the ozone-NO reaction.
There have been various PM oxidation rates repoireweh different investigations and the

essential PM oxidation properties of ozone underctinditions of diesel exhaust remain unclear
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because the quantitative effects of temperaturetla@dexhaust gas components have yet to be
clarified>® Therefore, we have investigated the applicabiityow-temperature PM oxidation
using ozone with particular focus on the effecttemperature and the presence of other

components contained in diesel exhaust gas.

2. EXPERIMENTAL
The experimental setup used in this study is ptegein Fig. 1. The PM oxidation properties of
ozone were investigated according to the followsteps. Firstly, to investigate the fundamental
oxidation properties of ozone, granular carbon lii<ia Chemical Co. Ltd., 1-1.7 mm pellets,
reagent grade, 3 mL) was used as a model PM witthed quartz (1-1.7 mm pellets, 7 mL).
Secondly, PM collected from the DFP (30 mm diamdtargth 50 mm, 0.155 cells/&mof an
automotive diesel engine (2 L displacement, 4-dgim direct injection) was evaluated. The
engine operation conditions were a torque of 302000 rpm and the amount of PM collected
was 80 mg. After the PM was collected, the DPF tvaat treated at 573 K for 1 h in air to
remove the soluble organic fraction (SOF). A stiaijow system was applied by modification
of the DPF, as shown by the PM in the DPF sectibkig. 1, to eliminate the effect of the
accumulated PM on the filter surfaces for consivitoxidation

A gas generator was used to mix N,O, NO, NQ, CsHg and CO as the model diesel exhaust
gas, in addition to an ozonizer (Nippon Ozone Cul.,LIO-1A6) The oxidation rate was
measured according to the CO and,Qfncentrations, which were measured using a non-
dispersive infrared analyzer (Shimadzu Corp., GOU&j. Ozone and other gas components
were measured using an ozone monitor (Ebara Jisu@y. Ltd., PG-620 PA) and an exhaust

gas analyzer (Horiba, Ltd., MEXA-9100D), respedijv@ he experimental conditions employed
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are shown in Tables 1 and 2 for PM carbon oxidafiRit and C ox.), the thermal decomposition
of ozone (@ decomp.) and the reaction of ozone with othercgasponents (@react.).

The accuracy for the ozone concentration measurmsmeas 1%, and that for other gas
components was within 2%. The temperature of thetien vessel for the oxidation of carbon or

PM in DPFs was controlled to within 1 K.

3. RESULTS AND DISCUSSION

3.1 FUNDAMENTAL STUDY ON THE OXIDATION OF CARBON USNG OZONE

The temperature dependence of the carbon oxidedierusing ozone is shown in Fig. 2. Carbon
was oxidized by ozone at low-temperature conditionder 573 K. The carbon oxidation rate

increased with the amount of supplied ozone (ioitne concentration) and had a maximum at
523 K. For quantitative evaluation, the oxidati@tes calculated using the Arrhenius equation

represented in Eq. 1 are also shown in Fig. 2.

r =79.883Co3, supe 22T, 1)

wherer is the rate of carbon oxidation (mmol/l§os supp.iS the amount of supplied ozone
(mmol/h), andT is the temperature (K).

However, the oxidation rates calculated using Egottespond well with the experimental
values for supplied ozone from 5 to 25 mmol/h (1®®30 ppm) at temperatures below 423 K.
The difference between the calculated and expetehesxidation rates increased with the
temperature at over 423 K. The calculated oxidatates increased monotonically with the

temperature, whereas the experimental values derted 573 K.



Page 5 of 17

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

111

RSC Advances

The thermal decompositiasf ozoneoccurs increasingly at higher temperature. Theali®n
between the calculated and experimental oxidatawesrmay be attributed to a decrease in the
amount of ozone reacting with carbon due to thera@tomposition. Thus, the thermal
decomposition properties of ozone were measureceilmpving carbon from the apparatus and

described using another Arrhenius equation:

Cos, 1=100@03, supp-22e**4T, (2)

whereCos, tis the amount of thermally decomposed ozone (nol/

Figure 3 shows that the ozone residual ratio deemeaver 400 K, which indicates significant
decomposition of ozone at higher temperatures &ndsa complete decomposition at over 573
K. Figure 4 shows the experimental and calculated 2lEtemperature dependence of the ozone
thermal decomposition rate. The experimental reszdtrespond well with that calculated from
Eqg. 2.

Figure 5 shows the temperature dependence of thercaxidation rate calculated using Eq.
3, which combines Egs. 1 and 2, compared with thgemmental carbon oxidation rates.
Equation 3 describes the decrease in the oxidatiten of carbon at higher temperatures with
good correspondence to the experimental resultsefoperatures up to 573 K. Therefore, the
temperature dependence of the carbon oxidation wateg ozone could be successfully

calculated with consideration of the thermal decosion of ozone.

r1=79.883Cos, supp- Cos, €228, )

whererr is the rate of carbon oxidation with the thermat@mposition of ozone (mmol/h).
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It appears that the carbon oxidation rate with ezndependent on the residual amount of
ozone at the carbon. These results indicate tlosetiyas components that have high reactivity
with ozone would decrease the carbon oxidation. rake rate constants for the reaction of
various gas components with ozone were reportdaeton the following order: NO > NO>
CsHs > SQ > CsHg > CH, > CO/*? Figure 6 shows the residual ratio of ozone reawién NO,
NO,, CsHg and CO; the results indicate that ozone is egtecehsumed by NO with the lowest
concentration, whereas CO has no affect on theemesidual ratioThe order of reactivity with
ozone was NO > N> CsHg > CO, which is consistent with previously reportedults’ ™2

Therefore, NO would significantly decrease the oarbxidation rate by ozone consumption.
The amount of the ozone consumption can be estihiateevaluating the ozone/NO reaction
ratio both experimentally and by calculation usiteg 4, and the results are shown in FigThie
reaction ratio was larger than 1 and increased wathperature, which may be due to the

formation of NQ and NOs in addition to NQ.13 The amount of ozone reaction with NO can be

described by Eqg. 5 using Eq. 4:

kos, no=0.65316 &90%89 (4)

Cos, no = Koz, no Cno, (5)

wherekos no is the 0zone/NO reaction ratiGos no is the amount of ozone reacted with NO
(mmol/h), andCyo is the amount of inlet NO (mmol/h).

Considering these results, the ozone-NO reactionuldvdbe faster than the thermal
decomposition of ozone. Therefore, ozone at thet imould be consumed by the ozone-NO
reaction before thermal decomposition could oc€ae amount of thermally decomposed ozone

with NO could thus be explained by Eq. 6. Consetiyethe carbon oxidation rate with NO
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could be explained by Eq. 7 from a combination g6.EL to 6. Figure 8 shows the calculated
results for the carbon oxidation rate using ozoowtaining NO from Eqg. 7, in addition to the
experimental results. The calculated results cpaed well with the experimental results for
ozone supplied at 15 to 25 mmol/h (560 to 930 pan®)23 K. Consequently, the oxidation rate
of carbon using ozone with consideration of theafbf NO reaction and thermal decomposition

is well described by Eq. 7:

Cos, 1,no= 1000(Cos, supp- Cos, no) 224 (6)

r7. no= 79.883Cos, supp- Coz, no- Cosz, 7, g2, (7)

where Cos, 1 no IS the amount of thermally decomposed ozone amadl tbacted with NO
(mmol/h), and ¥ no is the oxidation rate with thermal decompositiowl aeaction of ozone with
NO (mmol/h).

To simulate the exhaust gas, ion exchanged watsradded to the inlet Ngas; however,
water vapor contained in the exhaust gas had rextefin the rate of carbon oxidation using

ozone.

3.2 APPLICATION OF OZONE FOR PM OXIDATION
PM oxidation was conducted using ozone and compartddthe results for carbon oxidation,
and the results are shown in Fig. 9. The PM oxithatate using ozone was similar to that for
carbon at 373 and 423 K, which confirms that thd@a material used in this study was suitable
as a model material for PM oxidation.

The PM oxidation rates with various gas componah#23 K are shown in Fig. 10. The PM

oxidation rate with ozone decreased significantlythe presence of NO. For gas containing
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ozone and N@ the effect on the PM oxidation rate was less thahfor ozone and NO. Without
ozone, NO and N®showed extremely low efficiency for PM oxidation 423 K. Thus, PM
oxidation by NQ ! is ineffective under low-temperature conditions.the same temperature,
NO is completely oxidized to NOby reaction with ozone and the supplied ozonenigredy
consumed, so that the PM oxidation rate using oroméaining NO was similar to that for NO
without ozone.

From these results, the optimum amount of suppliExhe for effective PM oxidation could be
elucidated. Although these results show that ozeneffective for the oxidation of PM,
countermeasures to inhibit ozone consumption byottwne-NO reaction are required for the
effective utilization of ozone for PM oxidation. MQeduction, NO oxidation to NOor an
intermittent supply of high-concentration ozoneatee to NO would be effective for this
purpose.

In contrast, the PM oxidation rate using ozone mash higher than that reported previously
from thermogravimetric analysis (TGA)This would be presumed to enhance the thermal
decomposition of ozone and lower the contact priibalmf ozone and PM relative to this
experiment, due to the long residence time of ozortbe vessel and the small contact area of
PM on the TGA sample pan.

The specific ozone yields for an industrial ozoremegator are reported to be around 100
g/kWh!*** The oxidation rate of PM at 473 K in this studyswestimated to be 7-10 g/kWh
when including countermeasures for NO, which isilsimto PM oxidation by NTP.
Consequently, ozone is suitable for the regeneradioa DPF with consideration of the fuel
efficiency penalty (1%) with ozone generation.

High-temperature exhaust gas for high load durimgjree operation would cause a decrease in

the PM oxidation rate. This could be avoided bydang the exhaust gas temperature by setting
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the DPF near the tailpipe and/or by injecting caglair into the exhaust in front of the DPF. The
harmful effects of residual ozone to the environtreerd on human health could be removed by
setting an ozone decomposition catalyst after tR&.CAlthough this method has some problems

in practical application, we consider that thesald¢ e addressed with such solutions.

4. CONCLUSIONS

A high oxidation rate of carbon used as a model Rlbs achieved using ozone at low
temperature below 523 K. However, the thermal deuusition of ozone at temperatures
exceeding 523 K and the reaction of ozone with NOrelased the oxidation rate. The carbon
oxidation rate could be described with inclusionthese effects using an Arrhenius equation, and
this could be applied for the oxidation of PM. Téeesults indicate that the oxidation of PM
with ozone is a promising low-temperature PM oxmatmethod and that the optimum PM
oxidation performance applied for the actual exhasystems of diesel engines could be

estimated.
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228 Table 1. Inlet gas concentration
Concentration
O3 NO NG CsHs CcO @} H.O N2

229

230

231

(ppm)  (ppm)  (ppm) (ppm C)

(ppm) (%) (%)

PMand C ox. 0-930 0-550  0-550 -

O3 decomp. 0-930 - - -

Os react 400-930 0-550 0-5500-1000

- 10 3 balance

- 10 3 balance

0-1000 10 3 balance

Table 2. Inlet gas temperature and total gas fiate r

Inlet gas temperature

Total gas flow rate

(K) (L/min)
PM and C ox. 298-573 (steady-state) 10
O3 decomp. 298-573 (heating 10 K/min) 10
Oz react. 298-573 (steady-state) 10

12
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Figure 4. Experimental and calculated temperatepeddence of the ozone decomposition rate;

190-930 ppm ozone, 300-573 K.
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Figure 7. Calculated and experimental temperatapedence of ozone/NO reaction ratio; 550-

930 ppm ozone, 100-500 ppm NO.
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