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Cross-stream migration of dilute soft particle suspensions under simple shear flow and Poiseuille flow between two parallel plates
is investigated with lattice Boltzmann-immersed boundary method. Competition between particle elastic contraction, fluid shear
forces, and fluid inertial stress drives particle migration to a particular steady state position. With small shear rate, the migration
velocity of hard and soft particles is captured by first order analysis of the Navier-Stokes equation. With moderate shear flow,
the qualitative dependence of the migration velocity and particle position on shear rate for both hard and soft particles deviate
from the predictions. In moderate Reynolds number (Re) shear flow, the observed hard sphere migration velocity has weaker
dependence on Re than predicted and also higher order dependence on the particle distance from the channel center. For soft
spheres, a migration-free zone is observed near the center at moderate Re and Weissenberg number (Wi). In Poiseuille flow, the
soft particle migrates away from the wall to an off-center position dependent on the particle deformation and inertia, in contrast
to hard sphere migration where the steady state position is independence of shear rate.

1 Introduction

The non-Newtonian rheological properties of soft colloidal
suspensions are mainly caused by the evolving particle struc-
ture under flow, such as aggregation, breakup, and particle de-
formation. The properties of these suspensions strongly de-
pend on the coupling between inter- and intra-particle struc-
ture and fluid forces. For example, the strong shear-thinning
of blood is due to red cell rouleaux break-up, red cell deforma-
tion and lateral migration away from the vessel walls. 1 Simi-
larly, shear-thinning and -thickening of polymer and colloidal
suspensions strongly depend on the evolution of aggregation
and molecular structural changes under flow shear force. 2,3

Understanding the structural evolution of these suspensions
is critical for understanding the micro-circulation and other
flow-related phenomena. 4–11

The complex dynamics of soft particle flow is known to de-
pend on the particle elasticity, shape, concentration and inter-
particle repulsion/attraction. In applications such as micro-
capsule drug delivery and microfluidic droplet reactors, con-
trolling particle shape and dynamics is critical for ensuring
delivery to the intended target via microflow12. In blood
micro-circulation, it is known that blood viscosity decreases
when the flow shear rate increases in micro-capillaries.1,13

This ’shear-thinning’ effect depends strongly on the diame-
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ter of the blood vessel relative to the cell size and the flow
shear rate. In addition, the dynamics of the spherical soft white
blood cells (WBC) are known to be coupled to the flow of the
biconcave discoid elastic red blood cells (RBC) and vice versa
4,6,11,14–19. To disentangle the complex interactions between
different components in blood flow, models for deformable
particles (DP) and fluid flow are needed to understand how
DP-fluid, DP-vessel and DP-DP hydrodynamic coupling af-
fect the fluid and particle motion.

Cross-stream lateral migration of soft deformable particles
can be attributed to the asymmetric hydrodynamic field pro-
duced by an elastic particle near a wall, and the unbalanced
fluid stress about the particle surface. For a deformable par-
ticle in a suspension, the competition between the particle
shape-restoring elasticity, the elastic relaxation time τrelax, and
the flow shear force, is one factor that determines the migra-
tion velocity. The deformation-driven migration force can thus
be characterized by the capillary number Ca = γ̇ηR/G, where
η is the fluid viscosity, R is the particle radius, G is the surface
elastic modulus, and γ̇ is the flow shear rate.. Equivalently, the
particle Weissenberg number Wi = τrelaxγ̇ also captures parti-
cle deformation and Wi is used in this study. For Wi > 1, the
shear force overcomes particle elastic contraction and strongly
deforms the particle. The flow field around a stretched, elas-
tically contracting soft particle near the wall results in a net
migration force that pushes it away from the wall. 20–23

In addition, particle inertia in flow also leads to migration
for finite particle Reynolds number Re = ργ̇R2/η ≥ 1, where
ρ is the fluid density.24–27 Re is characterized by the fluid
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velocity difference across the particle δU = γ̇R. It has been
shown that the difference between fluid velocity at the particle
surface and the particle velocity results in a particle surface
stress leading to cross-stream lateral migration.28 In simple
shear flow, the migration force pushes the particle towards the
steady state position at the channel center. In Poiseuille flow
the steady state position is off-center due to the curvature of
the flow velocity profile.

To understand the role of deformation- and inertia-driven
migration of soft particle suspensions, one needs to account
for not only how particle motion perturbs the fluid, but also
particle deformation due to fluid shear and hydrodynamic per-
turbations. Boundary integral formulation have extensively
studied droplet dynamics in Stokes flow29–35. However, ac-
curately modeling the interplay between particle deformation
and the fluid field can require a very fine surface mesh and
is very computationally expensive. Particle deformation and
dynamics are coupled with the hydrodynamic field need to be
resolved simultaneously. Recent advances in multi-scale ap-
proaches such as the immersed boundary method (IB) 36–38,
multi-particle collision method (MPC)39–41, dissipative par-
ticle dynamics (DPD)42,43 and lattice Boltzmann (LB)44–48

have significantly improved the efficiency of complex fluid
flow modeling based on individual particles. In this study,
we employ a combination of LB and IB to study the lateral
migration of a particle in simple shear and Poiseuille flow.

2 Method

We developed a coarse-grained model combining Lagrangian
particle dynamics49 and Eulerian LB fluid through immersed
boundary method (IB).36,46,47,50,51 The method has been
shown to capture the physical characteristics of particle defor-
mation in shear flow, inter-particle hydrodynamic forces, and
the near-wall hydrodynamic field around a shear-deformed
particle. 20 In order to understand the effects of shear-induced
near-wall deformation- and inertia-driven particle migration,
we examine particle migration in the simple scenario of a sin-
gle particle in shear flow and Poiseuille flow between two par-
allel plates with height H = 16R. An ensemble of one hun-
dred particle trajectories is performed until the particle dis-
tance from the wall reaches steady state, from small to moder-
ate Wi and Re. Particle and fluid fluctuations are not included
in order to directly determine the particle migration velocities.

LB is carried out on a three-dimensional cubic lattice with
19 discrete velocities (the D3Q19 model). The lattice spac-
ing is ∆x, the kinematic viscosity is ν = η/ρ = 1/6[∆x2/∆τ],
and ∆τ is the LB time step. Details of the LB method can be
found in recent reviews 45,52. LB models a compressible fluid,
where the fluid density could vary significantly at high veloc-
ities if the Mach number Ma = v f luid/vsound → 1. The error
due to fluid compressibility is of order (Ma2). In this study,

the fastest fluid velocities are kept to Ma < 0.4. The systemic
errors are considered by comparison to theoretical predictions.

The coarse-grained soft particle is constructed by account-
ing for the membrane elasticity with a two-dimensional closed
network of beads and springs. The beads interact with each
other via purely repulsive Weeks-Chandler-Andersen (WCA)
potential, given by

UWCA(r) =

{
4ε

[(σ
r

)12 −
(σ

r

)6
+ 1

4

]
r < 21/6σ ,

0 r > 21/6σ .
(1)

Neighboring beads are connected with finitely extensible non-
linear elastic (FENE) spring, given by

UFENE(r) =−
kl2

0
2

ln

[
1−

(
r
l0

)2
]
, r < l0. (2)

which is harmonic at small separation but restricts the sepa-
ration to within l0. The parameters of the potentials are cho-
sen to be σ = ∆x, l0 = 3∆x, ε = kBT . The spring constant
kσ2 = 0.017,0.17, and 2.83∆ε are chosen for particles with
different stiffness. ∆ε is the simulation energy unit.
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dH/2 
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y 
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B 

Fig. 1 Illustration of (a) a hard sphere in simple shear flow at a
position y from the wall, and its relative distance from the center is
d = (1−2y/H). (b) A deformed particle with long axis L and short
axis B in Poiseuille flow between 2 parallel plates.
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Bead positions on the spherical shell are acquired by trian-
gle tessellation, as shown in Fig. 1. The radius of the sphere is
R = 3.2∆x. A bending potential is imposed between all neigh-
boring triangular faces

Ubend = kbend (1− cosθ) , (3)

where θ is the angle between the surface normals of two
neighboring faces. kbend = 0.056,0.56,2.83∆ε are used for
kσ2 = 0.017,0.17,2.83, respectively. These parameters are
chosen such that the ratio between the bending and the elastic
moduli, characterized by the Föppl-von Kármán number Fv =
GR2/kbend, is less than 100 to ensure the buckling modes of
the coarse-grained particle are dampened.53,54

The triangular bending force is exerted on the four beads
with positions r1,r2,r3,r4 that constitute two adjacent trian-
gles r1 −r2 −r3 and r2 −r1 −r4. The bending forces on each
bead are given by

F1 =
kbend

σ
(r4 − r3) ·a

n1
n̂1 (4a)

F2 =
kbend

σ
(r4 − r3) ·a

n2
n̂2 (4b)

F3 =
kbend

σ

[
(r1 − r4) ·a

n1
n̂1 +

(r2 − r4) ·a
n2

n̂2

]
(4c)

F4 =
kbend

σ

[
(r3 − r1) ·a

n1
n̂1 +

(r3 − r2) ·a
n2

n̂2

]
, (4d)

where n1 = (r3 − r1)× (r4 − r1), n2 = (r4 − r2)× (r3 − r2),
and a = n̂2 × n̂1. The sign of θ is given by sinθ = (n̂2 ×
n̂1) · ê, where e = r4 − r3, then a = sinθ ê. Eq. (4) has the
expected directionality for a force that only affects the angle
but does not affect the translation, rotation, and shape of the
two triangles.

The particle volume and total surface area are conserved by
applying an isotropic pressure PV (t) and a surface dilatation
tension kA on the particle, given by

P = FV (t)/A = [kV (V (t)−V0)/V0]/A (5a)
FA(t) = kA(A(t)−A0)/A0 (5b)

where V (t) and V0 are the instantaneous and the rest parti-
cle volume, and A(t) and A0 are the instantaneous and rest
surface area. The constraint forces FV and FA are distributed
equally on all the beads that constitute the particle surface.
For the softest particle examined here, it was found that with
kV = 0.56∆ε/∆x and kA = 0.56∆ε/∆x, the particle volume and
area can vary up to 10% at the highest shear rate examined.
The total conservative forces acting on each bead is given by
FC =−∇U =FWCA+FFENE+Fbend+FV +FA. All beads have
mass mb = 36m0, where m0 is the simulation unit mass. The
velocity Verlet method is employed to project the bead trajec-
tories with the time step δ t = 0.1∆τ .

The shape of the particle is characterized by the Taylor de-
formation parameter D = (L−B)/(L+B), where L and B are
the longest and shortest particle axes during deformation, as
shown in Fig. 1b. The particle elasticity is characterized by
the surface elastic modulus G=stress/strain=δ fx/δRx, in unit
of ∆ε/∆x2. fx is an external stretching force in the x-direction
and δRx is the particle deformation along the direction of the
applied force. The orthogonal elastic modulus δ fx/δRz is
also measured. The particle elasticity is also characterized
by its deformation relaxation time τrelax, measured from the
relaxation of the particle stretch after shear deformation by
fitting [L(t)− Leq]

2 to exp(−2t/τrelax). Fig. 2a shows that
G ∼ k0.7±0.05. The inset shows that Fv < 100 for the regime
investigated in this study and particle buckling is not signifi-
cant. G is also found to very weakly depend on kbend , kV and
kA. The elastic relaxation time τrelax ∼ G−1.1±0.1 is also ob-
served, which give an approximate relation between Ca and
Wi, with Wi ≈ 15Ca.

The particle deformation D is known to be linearly depen-
dent on Ca under small shear for droplets and elastic cap-
sules.22,29 For the elastic particles considered in this study, D
is observed to be linearly proportional to Wi only for Wi < 1,
and D reaches a plateau under strong shear as the particle
stretches in the non-linear elasticity regime, as shown in Fig.
2b. The inset shows that D ≈ (25/4)Ca, which agrees with
theoretical prediction. 29 Under simple shear flow, the parti-
cle deformation is constant throughout the channel except near
the wall.

Hydrodynamic interactions is captured with the exchange
and propagation of frictional momentum between the fluid and
the DP45,55. Each bead on the DP experiences a friction force

F f =−ζ [ub(rb)−u f (rb)] (6)

where ub(rb) and u f (rb) are the bead and fluid velocity at the
bead position rb, respectively, and ζ = 3πησ = 56.4m0/∆τ
is the bead friction coefficient. The fluid velocity at posi-
tion rb is determined by a trilinear interpolation of the fluid
velocity on the neighboring lattice points nn that enclose rb,
u f (rb) = ∑r∈nn wru(r), where the weights wr are the coeffi-
cients of the normalized linear Lagrange interpolation poly-
nomial. The frictional momentum density ∆j =−F f δ t/∆x3 is
transferred to the fluid.

The beads are repelled from the walls with a repulsive po-
tential when the beads are within 1∆x of the walls. The parti-
cle elasticity and fluid velocity are independently varied in or-
der to investigate the contributions of particle inertia and par-
ticle deformation to particle migration. Three types of soft
particles, with the two-dimensional elasticity G = 0.4, 4.4,
and 44.0 ∆ε/∆x2 are chosen to identify the hydrodynamically-
induced migration fluxes due to particle inertia and deforma-
tion. With the simulation energy (∆ε) matched to the thermal
energy at room temperature and ∆x= 1µm, the elasticities cor-
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Fig. 2 (a) Particle long (symbols) and short (symbols with dashed
line)axis stretch elasticity as function of the spring constant for
kbend = 0.56 (circles) and kbend = 2.83 (squares). The solid symbols
indicate the chosen parameters for the hard and soft spheres
examined here. The dotted line shows the power law fit with
G ∼ k0.7. The inset shows Fv as a function of k. (b) Particle
deformation as a function of Wi and Ca (inset).

respond to 0.29, 2.9, and 29µN/m. For ∆x = 100µm, the elas-
ticities correspond to 2.9, 29, and 290mN/m. For comparison,
the elasticity of a red blood cell (diameter ≈ 6− 8µm) is ≈
6µN/m and the surface tension of water in air is ≈ 72mN/m.
The elastic properties of soft particles with size range between
µm and mm can be captured with the coarse-grained particle
model.

With the assumptions involved in LB and IB, systemic er-
rors can arise due to fluid compressibility and the momen-
tum transfer between the particle and the fluid. With the im-
mersed boundary method, the no-slip boundary condition is
imposed on the particle surface, and the friction momentum
is calculated based on first-order Lagrange interpolation of
the fluid velocity at the bead position from the lattice fluid

velocity. Thus, the accuracy of momentum coupling is of
O(∆x2). Furthermore, the fluid velocity from LB is of O(∆x2)
accuracy. The systemic error may be estimated by examining
the velocity field generated by a moving particle with veloc-
ity Up in a quiescent fluid inside a periodic domain. Com-
parison of the LB-IB solution is made with the results using
the lattice Boltzmann method with the fluid bounce-back con-
dition (LB-BB) at the fluid-particle interface. The accuracy
of LB-BB has been well characterized for colloidal hydrody-
namics, and it was found to accurately capture the drag force
acting on a colloid in flow up to particle Reynolds number
Rep = ρUpR/η ≈ 100.56,57 The fluid velocity field along the
direction orthogonal to the particle velocity is calculated us-
ing LB-IB and LB-BB. Fig. 3 shows that the results quantita-
tively agree for the range of particle velocities relevant to this
study. This shows that the immersed boundary method cap-
tures the fluid velocity field with the same order of accuracy
as the bounce-back condition. Furthermore, Fig. 3 shows that
the fluid field agree quantitatively with the prediction by Hasi-
moto 58 for a point particle in Stokes flow in a periodic domain
for Rep = 0.29. At higher Rep, the reduced fluid velocity cor-
respond to a increase in the fluid boundary layer around the
spherical particle. Fluid density variation inside and outside
the particles at the highest flow rates studied were found to be
less than 0.1 percent.

0 2 4 6
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0

0.1
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6π
 η

 U
 / 
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Ma=0.026
Ma=0.26
Ma=0.52

LB-IMB sphere-propsR2_vprofile
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(x-R)/R

0
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6π
 η

 U
 / 

F

LB-BB colloid_driven/R3.28

Fig. 3 Fluid velocity field along the velocity-normal at distance
(x−R)/R from a moving particle with velocity Up =Upŷ. Up is
chosen with Mach number Ma = 0.026 (circles), 0.26(triangles),
0.52 (squares), corresponding to Rep = 0.29,2.9,5.8. Results from
LB-IB are shown in empty symbols, and the results from LB-BB are
shown in filled symbols. Prediction for a periodic point force is
shown as the dashed line.
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3 Migration of hard and soft particles

We first examine the lateral migration of hard spheres. Shear-
induced inertial migration of hard spheres has been well-
studied experimentally and theoretically. 22,25,28,59 For small
but finite Re, the unbalanced surface stress due to particle in-
ertia leads to particle migration away from a wall boundary.
In contrast, a hard sphere in Stokes flow (Re = 0) does not mi-
grate. The inertia-driven migration effect has been exploited
to separate particles of different sizes and shapes. 22,24,25,59,60

First order theoretical analysis of the Navier-Stokes equation
in the limit of Re < (R/H)2 shows that the migration velocity
vli f t is proportional to Re 28, given by

vli f t

vm
=

1
6π

R
H

Re[G1(d)+αG2(d)] (7)

where vm = vwall ,α = 0 for simple shear flow and vm =
vmax,α =−4 for Poiseuille flow. G1(d) and G2(d) are numer-
ically integrated functions from the particle surface stress. 28

In simple shear flow, the lift velocity is expected to be linearly
dependent on the the particle distance from the channel center
(d = 1−2y/H) as the particle approaches center, with steady
state position at the center where vli f t = 0. In Poiseuille flow,
the lift velocity is expected to quadratically vary with d, with
zero crossings and steady state positions at d = 0.6 and −0.6.

LB-IB is employed to examine particle migration under
simple shear flow and Poiseuille flow. First, the predictions
for hard spheres are tested with a very stiff particle with
G = 44∆ε/∆x2 with moderate Re and negligible Wi. Under
simple shear flow, Fig. 4a shows the migration velocity is lin-
early dependent on d for d < 0.6 at lower Re, and the particle
steady state position is at the center. For Re < 0.1, the ob-
served vli f t from LB-IB are in quantitative agreement with eq.
7. Quantitative agreement is also found with the results of LB-
BB up to Re = 0.32. As Re increases, it is observed that the
relative migration velocity does not increase linearly with Re.
Furthermore, vli f t is found to become quadratically dependent
on d with the steady state position at the center, which is cap-
tured by both LB-IB and LB-BB. These differences with eq. 7
may be due to higher order inertial effects since the first order
analysis is strictly valid for Re < (R/H)2. For comparison to
experiments with 10 and 100µm particles, the shear rates for
Re = 1 are 104 and 100s−1, respectively.

Under pressure-driven flow, vli f t is found to have quadratic
dependence on d for d < 0.6 for the entire range of Re exam-
ined. LB-IB results agree quantitatively with O(Re) analysis
for Re = 0.032 and 0.16. It is observed that particles near the
central region will migrate towards the walls due to the nega-
tive vli f t , and the steady state position at d = 0.6 does not vary
with Re even for Re much larger than (R/H)2 as predicted.
For the results of LB-BB, more velocity oscillations are found
due to errors caused by the first order bounce back condition.
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Fig. 4 Lift velocity of a hard sphere with G = 44∆ε/∆x2 in (a)
simple shear for Re = 0.028 (squares), 0.07 (triangles), 0.14
(circles), 0.28 (*), 0.7 (+) and (b) pressure-driven flow for
Re = 0.032 (squares), 0.16 (triangles), 0.32 (circles), 0.65 (*) from
the composition of 100 initially randomly placed spheres.
Corresponding solid lines are the results of LB-BB. Dashed lines
show the predicted vli f t from eq. 7 ordered from bottom to top for
low Re to higher Re.

In the other limiting regime where particle inertia is small
and particle deformation is large, particle migration is driven
by deformation-induced hydrodynamic forces near a wall.
Under pressure-driven flow, DP deformation depends on the
local shear force and varies linearly as the particle migrates
towards the center at small shear rates, as shown in Fig. 5.
At higher Wi, particle deformation D plateaus near the wall,
where the shear rate is the highest, due to the non-linear elastic
spring. For Wi = 6.9, the highest shear rate examined, the par-
ticle stretches nearly 100%. Under simple shear flow, the lo-
cal shear rate is constant throughout the channel and the steady
state particle shape does not change except near the wall. Prior
studies have measured the migration velocity22,23,38,61. Un-
der simple shear flow, the migration velocity for droplets with
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equal inner and outer viscosity is found to be

vli f t

vwall
= 1.1D

(
R
H

)3

d[1+
8

(1−d2)2 ] (8)

The prefactor depends on the ratio between the inner and
outer fluid viscosity of the particle. To examine particle mi-
gration in the deformation-dominated regime, the migration
trajectories of a softer particle with G = 0.4 are examined.
vli f t exhibits quadratic dependence on d as shown in Fig. 6a,
as expected from eq. 8. The lift velocity for Wi = 0.15 and
0.3 agree quantitatively with eq. 8, but vli f t/vwall does not
increase proportionally with Wi as the shear rate further in-
creases. This may be due to the non-linear dependence of
particle deformation on shear force for large particle deforma-
tions, higher order Wi contributions, and the increased effect
of inertia driven migration.

0 0.2 0.4 0.6 0.8 1
d

0

0.2

0.4

0.6

0.8

D

A Soft Sphere in Shear Flow (100 trials)
50x50x50 φ

s
=0.002 H

fene
=30  K

B
=100  K

V
=100 kT=5.652e-3 nofluc

Fig. 5 Deformation of soft particles with G = 0.4∆ε/∆x2 under
pressure-driven flow for Re = 0.033 (squares), 0.065 (triangles),
0.165 (circles), 0.33 (*), 0.65 (+) and Wi = 0.35, 0.7, 1.7, 3.5, 6.9
ordered from bottom to top. The data set is from the composition of
50 initially randomly placed spheres. Data point spread is due to
initial particle shape change from sphere to ellipsoid under shear.

Under Poiseuille flow, Fig. 6b shows that the particle mi-
gration velocity have non-linear dependence on d for Wi <
1.0, and vli f t decays to 0 as d approaches 0 as shown in . First
order analysis has found the lateral migration velocity to be 23

vli f t

vmax
= 1.3D

(
R
H

)2

d (9)

From Fig. 5, it is observed that D decays linearly as d ap-
proaches 0. This dependence combined with eq. 9 shows
that vli f t should decay quadratically near the channel cen-
ter.22,23,38,61 However, Fig. 6b shows that the observed mi-
gration velocity increases faster than the quadratic dependence

on d for d > 0.4. This cannot be simply explained by the non-
linear elastic particle deformation near the wall. Indeed, the
non-linear elastic deformation near the wall should lead to a
weaker dependence on d instead of higher order dependence.
The stronger measured migration velocity may be due to ad-
ditional contributions to particle migration due to the particle
inertia. However, simply adding the inertial migration contri-
bution from eq. 7b does not lead to better agreement with the
measured migration velocity. Further analysis starting from
the migration velocity of a droplet near a wall 22,61 and ex-
tending to a particle in Poiseuille flow between two parallel
plates results in

vli f t

vmax
= 9D

(
R
H

)3 d(1+d2)

(1−d2)2 (10)

As shown in Fig. 6b, the additional dependence on (1+
d2)/(1−d2)2 appears to account for the stronger dependence
for a particle closer to the wall. The observed vli f t qualitatively
agrees with eq. 10 for Wi < 1, with the observed vli f t larger
than eq. 10 by a factor of 2.

At high Wi where the particle is strongly deformed near the
wall, it is found that closer to the wall, the dependence of vli f t
on d decreases. This is consistent with the smaller changes in
the particle deformation at higher shear rates near the wall, and
leading to weaker dependence of vli f t on d. In addition, vli f t
becomes negative as the particle approaches the channel cen-
ter, showing a migration flux away from the center for particles
near the center. This may be attributed to inertia-driven parti-
cle migration away from the center at the higher shear rates,
where negative vli f t is found near the channel center as shown
for hard spheres. Furthermore, as the particle moves cross-
stream towards the center, the projected cross-stream surface
area (Axz = ∑ni · (x̂+ ẑ)) decreases as the particle shape be-
comes less deformed. This leads to a gradient in the migration
friction and a migration flux away from the center. The posi-
tion at which vli f t = 0 also shifts towards the channel center
as the shear rate increases, which is due to the change in the
particle deformation for different Wi. This is in contrast to
hard sphere migration for which the steady state position is
independent of Re in Poiseuille flow.

We further examine particle migration under simple shear
and Poiseuille flow chosen such that Re ∼Wi < 1 for soft par-
ticles with G = 4.4∆ε/∆x2. In simple shear flow, the linear
combination of eqs. 7 and 8 is in quantitative agreement
with the observed vli f t at low shear rates as shown in Fig.
7a. Quadratic dependence of vli f t on d is found for Wi > 0.3,
where the particle is stretched by ≈ 10%. For Re = 0.7 and
Wi = 0.74, vli f t is found to quadratically decrease to zero at
y/H ≈ 0.3 and vli f t = 0 in the central region for d < 0.35. In
this region, there is no observed net lift force about the par-
ticle and the particle migrates neither towards nor away from
the center. Indeed, for Wi > 0.3, the migration-free region is
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Fig. 6 Lift velocity of a deformable particle with G = 0.4∆ε/∆x2 in
(a) simple shear Re = 0.014 (squares), 0.028 (triangles), 0.07
(circles), 0.14 (*), 0.28 (+) and Wi = 0.15, 0.3, 0.74, 1.5, and 3.0.
Dashed lines are the predictions of eq. 8 ordered from bottom to top
for low Re to higher Re. (b) In pressure-driven flow for Re = 0.033
(squares), 0.065 (triangles), 0.33 (*), 0.65 (+) and Wi = 0.35, 0.7,
1.7, 3.5, 6.9, from the composition of 50 initially randomly placed
spheres. The dashed lines show eq. 10 multiplied by a factor of 2
for the same Wi, ordered from bottom to top. The dotted line shows
eq. 9 for Wi = 0.35.

found to expand from the channel center as the shear rate in-
creases, as shown in Fig. 8. This is in stark contrast to the
inertia-dominated or deformation-dominated lateral migration
in simple shear flow, where the particle migrate to the chan-
nel center. It also differs from purely inertia or deformation-
driven migration results found in Poiseuille flow, where the
particles migrate to a specific position in the channel. One
possible explanation for the “migration-free” zone may be the
rotating motion of the particle surface. At all Wi examined
here, the soft particle appears to undergo tank-treading mo-
tion in simple shear flow. It has been previously suggested that

tank treading motion of an ellipsoidal particle also induces a
migration flux. 62,63 For the higher Wi where the particle does
not migrate, they appear to simply tank-tread at an inclined an-
gle, without lateral migration. The tank-treading frequency is
proportional to the shear rate, reaching as high as 10−2[1/∆τ].
The fluid perturbations due to tank treading motion at high
frequency may overcome the inertia- and deformation-driven
fluid stress gradient.
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(b)

Fig. 7 Lift velocity of a deformable particle with G = 4.4∆ε/∆x2 in
(a) simple shear for Re = 0.028 (squares), 0.07(triangles), 0.14
(circles), 0.28 (*), 0.7 (+) and Wi = 0.03, 0.074, 0.15, 0.3, and 0.74.
Dashed lines show the linear combinations of eqs. 7 and 8, ordered
from bottom to top. (b) pressure-driven flow for Re = 0.033
(squares), 0.065 (triangles), 0.33 (circles), 0.65 (*), 0.98 (+) and
Wi = 0.035, 0.17, 0.35, 0.70, 1.05. The figures are overlaid
composition of 100 trajectories of initially randomly placed spheres.

Under Poiseuille flow, soft sphere migration velocity is
quadratically dependent on d, similar to hard sphere migration
at small Wi and Re. The position at which vli f t crosses zero
shifts towards the center as the shear rate increases in contrast
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to inertia-driven migration of hard spheres. For Wi = 1.05,
vli f t appears to decrease linearly near the wall for d > 0.5, and
quadratically as the particle migrates closer to the channel cen-
ter. These differences may be attributed to particle deforma-
tion due to the shear force, and also the change of the particle
shape as the local fluid shear force decreases as the particle
moves from the wall towards the center. Near the wall, the
shear force is the strongest and the particle is deformed to an
ellipsoid. As the particle approaches the center, it becomes
more spherical. The change of particle shape introduces a
deformation-dependent particle drift away from the channel
center, which is more pronounced for softer particles.
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Fig. 8 Lift velocity of a deformable particle with G = 4.4∆ε/∆x2 in
simple shear for Re = 0.28 (*), 0.42 (solid triangles), 0.56 (solid
squares), and 0.74 (+) and Wi = 0.3, 0.44, 0.59, 0.74.

4 Conclusion

For droplets, vesicles, and capsules, inertial and deformation-
driven migration away from the channel walls in microfluidic
flow may be utilized to separate particles based on size and de-
formability. It is interesting to observe that particle migration
velocity in Poiseuille flow is 3 to 4 times faster than in simple
shear flow for hard and soft particles, which is due to the larger
fluid velocity change across the particle. This study also found
that for small Reynolds and Weissenberg number flow, the par-
ticle migration velocities are quantitatively captured by first-
order analysis of the Navier-Stokes equation in shear flow. For
hard spheres, theoretical analysis also captures the migration
velocity in Poiseuille flow. For very soft particles, the pre-
dictions of the deformation-driven particle migration velocity
in pressure-driven flow show a weaker dependence on d than
observed, but analysis based on the migration velocity near
a surface appears to be qualitatively consistent with the ob-
served migration velocity. For soft particles in shear flow, the
linear combination of the O(Re) and O(Wi) predictions cap-

tures the particle migration velocities under conditions where
particle inertia and deformation are small but not negligible.

At moderate Re and Wi, it is found that the particle mi-
gration velocities for hard and soft particles are smaller than
expected and do not increase linearly with Re and Wi. The
qualitative dependence of the migration velocity on the parti-
cle distance from the channel center also changes as Re ap-
proaches 1 and as Wi approaches 1. Under simple shear flow,
the migration velocity of a hard sphere has non-linear depen-
dence on d. For soft particles, the migration velocity becomes
zero in a central migration-free region. The steady state po-
sition of the particles remain at the channel center or in the
central region. It is suspected that this may be due to a com-
bination of (1) contributions from higher order inertia- and
deformation-driven flux, (2) fluid boundary layer around the
particle increaseat higher Re, (3) fluid field perturbation due
to particle tank-treading motion and (4) systemic errors due to
high fluid velocity. The cause will be investigated in future
studies.

Under pressure-driven flow, the steady state position of a
hard sphere is found to be weakly dependent or independent
on Re. For soft particle, the steady state position moves to-
wards the center as the shear rate and particle deformation
increases. This indicates that particles with different elastic-
ities can be separated by their distance from the center-line.
For hard spheres, different species with the same size will not
be separated in the stream, but particles of different sizes and
shapes may be separated. For soft spheres of the same size but
different elasticities, increased particle deformation results in
a steady state position closer to the center. With the parabolic
flow profile, this means that the soft particles would travel at
different velocities, which is being exploited for cell and par-
ticle flow-based fractionation in microfluidic devices.
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Nonlinear soft particle lift caused by inertia- and deformation-driven lateral migration, leading to 

migration-free zone in shear flow. 
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