

ORGANICCHEMISTRY

FRONTIERS

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard **Terms & Conditions** and the **Ethical guidelines** still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

6 7 8

9 10

11

12

13

14 15

16

17

18 19

20

21

22

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48 49

50

51

52

53

54

55

56

57

58 59 60

Organic Chemistry Frontiers

RSCPublishing

Review

Cite this: DOI: 10.1039/x0xx00000x

Received 00th January 2012, Accepted 00th January 2012

DOI: 10.1039/x0xx000000x

www.rsc.org/

Recent applications of chiral *N-tert*-butanesulfinyl imines, chiral diene ligands and chiral sulfur-olefin ligands in asymmetric synthesis

Han-Qing Dong, a† Ming-Hua Xu, *b Chen-Guo Feng, a Xing-Wen Sun, c Guo-Qiang Lin *a

This review highlights the recent applications of chiral *N-tert*-butanesulfinyl imines and chiral diene ligands, with bicyclo[3.3.0]octadiene and dicyclopentadiene skeletons, in asymmetric chemical transformations. The chiral sulfinamide-olefin products from allylation of *N-tert*-butanesulfinyl imines can be used as hybrid ligands for transition metal-catalyzed asymmetric reactions. The efforts in further exploration of chiral sulfur-olefin ligands are also discussed.

- 1 Introduction
- 2 Synthetic applications of chiral *N-tert*-butanesulfinyl imines
- $2.1 \, \mathrm{SmI_2}$ -mediated syntheses of chiral 1,2-diamines and β -amino alcohols
- 2.2 Lewis acid promoted $\it aza$ -Friedel-Crafts reaction toward $\it \alpha$ -chiral amines
- 2.3 Zn/In-mediated allylation toward chiral homoallylic amines
- 3 Synthetic applications of chiral diene ligands
- 3.1 Rhodium-diene catalyzed asymmetric addition to imines
- 3.2 Rhodium-diene catalyzed asymmetric conjugate additions
- 3.3 Palladium-diene catalyzed asymmetric Suzuki-Miyaura cross-coupling reactions
- 4 Development of chiral sulfur-olefin ligands for asymmetric reactions
- 5 Conclusion and outlook

1. Introduction

Asymmetric synthesis with both high level of selectivities and yields remains to be a challenge in spite of significant achievements in the past decades. Chiral *N-tert*-butanesulfinyl imines have been intensively investigated to generate enantioenriched 1,2-diamines and β -amino alcohols through SmI₂-induced homo-coupling and cross-coupling with nitrones and aldehydes. With our discovery of these useful transformations, we demonstrated their synthetic applicability by the total syntheses of (3*R*, 4*S*)-statine, D-*erythro*-sphinganine, (+)-febrifugine, (+)-CP-99,994 and (+)-L-733,060. Additionally, we studied the Zn/In-mediated allylation of *N-tert*-butanesulfinyl imines to provide a variety of chiral

homoallyic amines. ² In the meantime, we discovered a series of bicyclo[3.3.0]octadiene and dicyclopentadiene-based ligands, and successfully employed them in rhodium-catalyzed asymmetric addition to imines, α,β-unsaturated ketones/esters, nitroalkenes and α,β -unsaturated γ -lactams.³ In this review, we highlight our recent advancement on the allylation of chiral Ntert-butanesulfinyl imines, as well as novel asymmetric reactions using our chiral diene ligands. In addition, by combining N-tert-butanesulfinamide and olefin elements into one ligand molecule, an unprecedented type of sulfur-olefin hybrid ligand has been designed. Gratifyingly, the use of chiral sulfinamide-containing allylation products as ligands in rhodium-catalyzed asymmetric reactions proved to be successful (Figure 1). Furthermore, a variety of sulfur-olefin ligands were prepared and evaluated, and excellent enantioselectivities were achieved in a series of asymmetric arylation reactions of C=C, C=O and C=N bonds.4

Figure 1 Our footprints to chiral sulfur-olefin ligands

2. Synthetic applications of chiral *N-tert*-butanesulfinyl imines toward α -chiral amines

 Chiral *N-tert*-butanesulfinyl imine **1**, whether in *R* or *S* form, can be obtained from the corresponding enantiopure *R* or *S N-tert*-butanesulfinamide **2** (Figure 2). Pioneered by Ellman and co-workers, both enantiomers of imine **1** were applied in the preparation of a wide range of optically active amines. The investigations in this field were rooted in the SmI₂-mediated asymmetric synthesis of α , γ -substituted γ -butyrolactones. During the past years, we found that imine **1** could be subjected to SmI₂-mediated pinacol-type coupling reactions, Lewis acid promoted *aza*-Friedel-Crafts reactions, and Zn/In-mediated allylation reactions, producing a diverse range of new chiral skeletons in organic syntheses.

Figure 2 *N-tert*-butanesulfinyl imines and their synthetic precursors *N-tert*-butanesulfinamides

2.1 SmI_2 -mediated syntheses of chiral 1,2-diamines and β -amino alcohols

Scheme 1 SmI_2 -mediated couplings to provide chiral 1,2-diamines

Samarium(II) iodide (SmI₂), also known as Kagan's reagent, ⁷ is a mild one-electron donating agent. Upon treatment with 2 equivalents of SmI₂, N-tert-butanesulfinyl imines were converted to an anion, which could undergo homo-coupling to provide optically pure C_2 -symmetrical 1,2-diamines. 8 The preparation of C_2 -unsymmetrical 1,2-diamines requires crosscoupling with different imines. We found that nitrones (iminium ion equivalents) could be applied to achieve our goal. In this case, nitrone was first reduced by SmI₂ to generate an α aza nucleophilic anion, which subsequently attacked C=N bond of the N-tert-butanesulfinyl imine (Scheme 1).9 The success of cross-coupling with nitrones encouraged us to explore crosscoupling with aldehydes. Fortunately, such SmI2-mediated cross-coupling reactions could lead to corresponding chiral β amino alcohols in excellent diastereoselectivities and enantioselectivities. 10 The synthetic values of SmI2-mediated

coupling were demonstrated by the total syntheses of biologically important compounds D-*erythro*-sphinganine, (3*R*, 4*S*)-statine and (+)-febrifugine, as well as pharmaceutical agents (+)-CP-99,994 and (+)-L-733,060 (Scheme 2). ¹¹

Scheme 2 SmI_2 -mediated cross-coupling with aldehydes to provide chiral β -amino alcohols

2.2 Lewis acid promoted *aza*-Friedel-Crafts reaction of *N-tert*-butanesulfinyl imines

Most imines possess relatively poor electrophilicity, compared with the corresponding carbonyl compounds. ¹² However, *N-tert*-butanesulfinyl imines can provide suitable reactivity toward such nucleophilic addition in the presence of Lewis acid.

Scheme 3 Lewis acid catalyzed asymmetric *aza*-Friedel–Crafts reactions of *N-tert*-butanesulfinyl imine to indoles

5-F, 5-Cl, 5-Br, 6-F

Optically active non-proteinogenic amino acids are currently of great interest due to their significant biological activities, and extensive applications in organic synthesis and drug discovery. Asymmetric Friedel—Crafts alkylation of aromatic substrates with *N-tert*-butanesulfinyl glyoxylate imine **12** could be promoted by a proper transition metal-based Lewis acid catalyst, providing a convenient approach to access optically active non-proteinogenic amino acids. Under the optimal reaction conditions, *N-tert*-butanesulfinyl glyoxylate imine **12**

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16 17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

32

33

34

35

36

37

38

39

40 41

42

43

44 45

46 47

48

49

50

51

52

53

54

55

56

57

58 59 60 **Journal Name**

could react with a wide range of indoles bearing different substituents, affording α -(3-indolyl)glycines 13 in moderate to excellent yields and with good to excellent diastereoselectivities (Scheme 3).¹⁴

Scheme 4 Lewis-acid-catalyzed asymmetric *aza*-Friedel–Crafts reactions of *N-tert*-butanesulfinyl imine to arenes

Furthermore, a variety of arenes or heteroarenes were also suitable substrates for the reaction with *N-tert*-butanesulfinyl glyoxylate imine 12. With $In(OTf)_3$ as the optimal Lewis acid catalyst, the reaction could be accomplished at room temperature, providing a series of enantiomerically enriched α -arylglycines 14 in good yields and with excellent diastereoselectivities (up to 99% de) (Scheme 4). Highly stereoselective double Friedel–Crafts alkylation of 1,3-dimethoxybenzene was investigated, and the reaction proceeded smoothly, with 1 equivalent of $In(OTf)_3$, to afford dialkylation product in 43% yield. ¹⁵

9-Aminofluorene and its derivatives are known as important structural motifs in biological compounds. ¹⁶ A Lewis-acid-catalyzed asymmetric intramolecular *aza*-Friedel–Crafts reaction of *N-tert*-butanesulfinyl imine was designed to provide an efficient approach for the preparation of optically active 9-aminofluorenes. Bi(OTf)₃ proved to be the best Lewis acid catalyst in this case, giving the desired products in good yields and with high diastereoselectivities. It is notable that both optically pure diastereomers could be separated by silica gel flash chromatography (Scheme 5). ¹⁷

Scheme 5 Lewis acid catalyzed asymmetric intramolecular *aza*-Friedel–Crafts reactions of *N-tert*-butanesulfinyl imines

2.3 Zn/In-mediated allylation toward chiral homoallylic amines

Chiral *N-tert*-butanesulfinyl imines could be subjected to the diastereoselective additions of allyl metal reagents. Ellman group first applied allylmagnesium in the addition to chiral Ntert-butanesulfinyl imines. 18 Later, Foubelo group reported the corresponding diastereoselective allylation with allylindium reagents. 19 A six-membered ring transition state with metal cation was proposed to explain the high diastereoselectivities in these two reactions. Our group was also engaged in this kind of allylation, but under Zn/In-mediated process (Scheme 6). It is worthy to mention that either enantiomeric homoallylic amine could be achieved from a common chiral N-tert-butanesulfinyl imine by slightly tuning the reaction conditions. The reaction in HMPA with a small amount of water provided one major diastereomer, while a Lewis acid additive In(OTf)₃ in THF led to the preponderant formation of the other diastereomer. The two systems worked well for *N-tert*-butanesulfinyl imines derived from both aliphatic and aromatic aldehydes. Furthermore, the latter was successfully applied in the allylation of ketimines, giving the corresponding quaternary stereocenter-containing chiral homoallylic amines excellent diastereoselectivities. Two new acyclic transitionstates (TS-2 and TS-3), which differ from the previous sixmembered chair transition-state model (TS-1), were proposed to explain the stereochemical outcomes (Scheme 6). 20

Scheme 6 Zn-mediated allylation under two different systems

Scheme 7 In-mediated allylation in aqueous media

The In-mediated allylation could be conducted in aqueous media at room temperature, and saturated aqueous NaBr provided the best result. Both aryl and alkyl aldimines worked well, even in the open air, to afford the corresponding

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20 21 22

23 24

25 26

27

28

29

30

31 32

33

34

35

36

37

38

39

40

41 42 43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 homoallylic amines 17 in high yields and with excellent diastereoselectivities (Scheme 7). The synthetic utility of this method was demonstrated by the convenient preparation of enantioenriched allylglycine, as well as the synthesis of chiral 3-allyl isoindolinones.²¹

successful Zn/In-mediated allylation butanesulfinyl imines encouraged us to further explore the use of functionalized allylic bromide reagents, in which 3benzoyloxyallyl bromide (3-bromopropenyl benzoate), 3-(cinnamyl phenylallyl bromide bromide), 3-methyl-2ethoxycarbonylallylic bromide (ethyl 2-bromomethyl butenoate), as well as heterocyclic allylic bromide (3bromomethyl-5H-furan-2-one) proved to work well, providing diverse chiral allylation products in high yields and with excellent diastereoselectivities.

Figure 3 Direct α-hydroxyallylation approach

The reaction of *N-tert*-butanesulfinyl imines with 3benzoyloxyallyl bromide (3-bromopropenyl benzoate) 22 could generate various β -amino- α -vinyl alcohols. ²² The traditional methods to prepare optically active β-amino alcohols include asymmetric aminohydroxylation of olefins, ring-opening of epoxides and aziridines, nucleophilic addition to α hydroxyimines or α -aminocarbonyls, α -alkoxyenolate addition to imines, Mannich-type reactions of α -hydroxyketones and imines, as well as direct pinacol-type cross-coupling between carbonyls and imines.²³ This new strategy offers an alternative approach as shown in Figure 3. In this case, an α -hydroxyallyl carbanion 19 attacks an imine substrate, representing a very straightforward route to β -amino- α -vinyl alcohol derivatives 18.

Scheme 8 Zn-mediated benzoyloxyallylation to provide βamino-α-vinyl alcohols

The Zn-mediated reaction of 3-benzoyloxyallyl bromide and Ntert-butanesulfinyl imines proceeded well in different solvent systems, and a reversal of stereofacial selectivity was observed again, which has been found in the simple allylic addition as shown in Scheme 8. Two different transition state models (TS-1 and TS-3) were proposed for both reaction pathways (Scheme

9). High reaction yield and stereochemical control can be achieved by using HMPA as solvent in the presence of a small amount of water (Scheme 9). As for aromatic substrates where R were different substituted phenyl or naphthyl groups, the anti/syn ratio could be achieved up to 99:1, and diastereoselectivity up to 98% de. The decreased anti/syn ratio (78:22 to 79:21) and diastereoselectivity (80-87% de) were observed when the less sterically hindered N-sulfinyl imines, derived from 3-phenylpropanal, butanal and 3-methylbutanal, were used. Interestingly, the cyclohexyl imine provided the corresponding product with anti/syn ratio as 98:2 although the diastereoselectivity remained to be moderate (81% de). Notably, we found that the unpleasant solvent HMPA could be replaced by DMF with LiCl as an additive in this reaction.²⁴ In addition, the use of 1,3-dibromoprop-1-ene (i.e., replacing benzoyloxy group with bromo in compound 22) in this Zn-mediated aza-Barbier reaction was found to afford optically active trans- 2subtituted vinyl aziridines. 25

Scheme 9 Proposed reaction pathways for Zn-mediated benzoyloxyallylation

Scheme 10 Total synthesis of (-)-cytoxazone through asymmetric benzoyloxyallylation

The synthetic application of the above benzoylallylation was demonstrated by the efficient asymmetric synthesis of (-)-

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 **Journal Name**

cytoxazone, a selective modulator of Th2 cytokine secretion isolated from Streptomyces sp. 26 Allylation of methoxybenzaldehyde derived (S)-imine benzoyloxyallyl bromide could provide the corresponding antiproduct 24 in almost quantitative yield, with 98:2 anti/syn ratio and 92% de. Basic hydrolysis of benzoate and acidic cleavage of chiral sulfinyl group resulted in β-amino alcohol, which was with 1,1'-carbonyldiimidazole (CDI) to give treated oxazolidinone 25 in 89% overall yield. Ozonolysis of the double bond and subsequent reduction with sodium borohydride accomplished the total synthesis of (-)-cytoxazone (Scheme 10).

Scheme 11 Zn-mediated cinnamylation to provide β -aryl homoallylic amines

The reaction of *N-tert*-butanesulfinyl imines with 3-arylallyl bromide (cinnamyl bromide) 26 could lead to various β -aryl homoallylic amines 27.24 A dramatic lithium chloride effect on the stereocontrol of this reaction was observed after a careful study.²⁷ Under the optimal conditions, the imines were treated with 2 equivalents of zinc, 2 equivalents of (E)-1-bromo-4-(3bromoprop-1-enyl)benzene and 1 equivalent of LiCl in DMF, which was distilled from activated Al₂O₃, providing the corresponding homoallylic amines with syn/anti ratio up to 99:1 and diastereoselectivity up to 99% de (Scheme 11). It is noteworthy that the use of absolute anhydrous DMF, which was distilled from CaH2, could cause an obvious decrease in stereoselectivity (with syn/anti ratio of 90:10 and 92% de). The cinnamylation of a series of (R)-N-tert-butanesulfinyl imines was investigated. As for aromatic imines, the nature of aryl and heteroaryl R groups did not have major impact on the syn/anti ratios (95:5 to 99:1), as well as the diastereoselectivities (95-99% de). The reactions with imines derived from aliphatic aldehydes, such as cinnamaldehyde, 3-phenylpropanal and 3methylbutanal, also proceeded well, giving the corresponding syn-products 27 in 95-97% de. Interestingly, the reaction with either (E) or (Z)-cinnamyl bromide almost exclusively afforded the syn- isomer, with syn/anti ratios as 97:3 and 98:2 and diastereoselectivities as 99% and 97% de, respectively.

An attractive application of this cinnamylation method was to use N-sulfinyl α -imino ester 12 as an electrophilic substrate (Scheme 12). In this case, the reactions could provide chiral α -amino acid derivatives with a β -vinyl moiety, in higher yields and with better stereoselectivities without the additive LiCl.

Scheme 12 Preparation of β -vinyl-containing α -amino acid derivatives

The reaction of N-tert-butanesulfinyl imines with 3-methyl-2ethoxycarbonylallylic bromide (ethyl 2-bromomethyl butenoate) 29 could result in highly substituted γ -lactams bearing an α -methylene group (Scheme 13). ^{28 a} Under the optimal conditions, the imines were treated with 3 equivalents of zinc, 3 equivalents of (Z)-ethyl 2-(bromomethyl) butenoate and 5 equivalents of LiCl in DMF, followed by the cleavage of chiral auxiliary with 1N HCl in dioxane. This one-pot process could produce highly substituted α-methylene-γ-lactams in good yields (51-89%) with excellent trans/cis ratios (97.1:2.9 to 99.7:0.3 when R' = Me) and enantio- purities (92-99% ee). Various aromatic imines, including aryl and heteroaryl substitutions, afforded the corresponding products with excellent enantioselectivites and diastereoselectivities. The imines derived from aliphatic aldehydes, such as 3phenylpropanal, 3-methylbutanal, also gave excellent stereoselectivities although only moderate isolated yields were obtained. The synthetic application was demonstrated by the total synthesis of tubulysin V.28b As a complementary study for such a one-pot asymmetric synthesis of poly-substituted trans-αmethylene-γ-lactams, we achieved the highly efficient construction of cis-α-methylene-γ-lactams via Zn-mediated allylation of N-tertbutanesulfinyl using 3-(bromomethyl)coumarin as a precursor of allylic reagent. 28c

Scheme 13 One-pot preparation of highly substituted α -methylene γ -lactams

The successful application of *N-tert*-butanesulfinyl imines in the reaction with various linear allylic bromides, including 3-bromopropenyl benzoate, cinnamyl bromide and ethyl 2-bromomethyl butenoate, prompted us to explore the opportunity with heterocyclic allylic bromide. As shown in Scheme 14, 3-bromomethyl-5*H*-furan-2-one **31** could react with *N-tert*-butanesulfinyl imines, providing optically pure α -methylene- γ -butyrolactones bearing chiral amino moieties in the β -position. ²⁹ Under the optimal conditions, the imines were

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19 20 21

22 23 24

25

26

27

28

29

30

31

32 33

34 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

treated by 3 equivalents of zinc and 3 equivalents of 3bromomethyl-5H-furan-2-one in DMF, along equivalents of water, which likely played an important role to protonate the zinc salt of allylation adduct. The use of excessive water led to the decrease in reaction yield, due to the decomposition of allylic zinc reagent. The reactions produced a mixture of anti- and syn- isomers, which could be separated by silica gel flash chromatography. For the aryl and alkenyl imines, the reactions afforded the major anti- isomers with excellent diastereoselectivities (generally >99% de). However, the diastereoselectivity of the reaction with alkyl imine (derived from 3-phenylpropanal) significantly dropped to 76% de, due to the less steric hindrance of the alkyl substituent. Notably, the resulting α,β-unsaturated lactone skeleton from this asymmetric allylation could allow for further rhodium-catalyzed arylation, which introduced a new chiral center in stereospecific manner (Scheme 15).

Scheme 14 Zn-mediated allylation of *N-tert*-butanesulfinyl imines using 3-bromomethyl-5*H*-furan-2-one

Scheme 15 Rhodium-catalyzed arylation of *anti*-isomer to introduce another chiral center

In addition to these successful applications of various allylic bromide substrates, we recently conducted systematic research on the allylation of chiral N-tert-butanesulfinyl ketimines, which were less studied due to the relatively lower reactivity. Although the steric hindrance difference in the two sides of ketimines became less significant, moderate to excellent enantioselectivities were still achieved for this Zn-mediated allylation using THF as solvent (Scheme 16). A six-membered transition-state chair model was proposed for the stereochemical outcome in this case.³⁰

Scheme 16 Zn-mediated allylation of N-tert-butanesulfinyl ketimines

Zinc-mediated diastereoselective allylation of isatin-derived *N-tert*-butanesulfinyl ketimines was also achieved at room temperature, providing a highly practical asymmetric approach for the efficient synthesis of chiral tetra-substituted 3-aminooxindoles (Scheme 17).³¹

Scheme 17 Zn-mediated allylation of *N-tert*-butanesulfinyl ketimines

3 Synthetic applications of chiral diene ligands

Another part of research focus in our group is to discover new catalytic transformations based on chiral diene ligands. While pursuing the above carbon-carbon bond formation through aza Barbier-type allylation of *N-tert*-butanesulfinyl imines, we further explored the synthetic application of our unique diene highlighted in Figure 4. The nonbridged bicyclo[3.3.0]octadiene-based ligands were independently introduced by our group³² and Laschat group³³ in 2007. Both enantiomers in bicyclo[3.3.0]octadiene series could be prepared from commercially available cycloocta-1,5-diene, with a lipasecatalyzed enzymatic resolution as a key step. Later, a new family of chiral diend ligand based on dicyclopentadiene skeleton was also reported by our group. ³⁴ The synthesis of C_1 symmetric dicyclopentadiene-based ligands applied similar synthetic sequence using commercial dicyclopentadiene as starting material. In both cases, the kinetic resolution through lipase-catalyzed acetylation could lead to both enantiomers in >98% ee. Recently, chiral bicyclo[3.3.0]octadiene ligand was successfully incorporated into a polymer chain. Such immobilized chiral diene ligands demonstrated similar catalytic activity and could be recycled for multiple uses. 35

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60 **Journal Name**

Ar H Ar Ar H Ar

Bicyclo[3.3.0]octadiene ligands

dicyclopentadiene-based ligands

Figure 4: Our representative chiral diene ligands

3.1 Rhodium-diene catalyzed asymmetric addition to imines

Transition metal-catalyzed asymmetric reaction, including the design of efficient chiral ligands, is always an attractive topic in organic synthesis. Since the pioneering work on chiral diene ligands by Hayashi³⁶ and Carreira,³⁷ various diene ligands have been designed and evaluated in asymmetric catalysis, especially in rhodium- and iridium-catalyzed asymmetric reactions. In many cases, the diene ligands demonstrated stereoselectivity and catalytic activity than powerful phosphine ligands. 38 Our diene ligands in both series were successfully utilized in rhodium-catalyzed enantioselective arylation of Ntosyl imines with aryl boronic acids, and further extended to rhodium-catalyzed conjugate addition of α,β-unsaturated ketones/esters, nitroalkenes, and α,β -unsaturated γ -lactams. In addition to various rhodium-catalyzed reactions, successfully demonstrated synthetic utility of chiral palladiumdiene complexes in Suzuki-Miyaura cross-coupling reaction.

Our synthetic application C_2 -symmetric bicyclo[3.3.0]octadiene was the rhodium-catalyzed arylation of aryl N-tosyl imines with aryl boronic acids. 1c,39 The reaction was carried out with 2 equivalents of aryl boronic acid in the presence of 2 equivalents of triethylamine, 3 mol% of [RhCl(C₂H₄)₂]₂ and 3.3 mol% of chiral diene at 55 °C for 4-5 h (Scheme 18). A variety of aryl N-tosyl imines, regardless of their steric and electronic effects, could afford the corresponding diarylmethyltosylamides 41 with extremely high enantioselectivities (98-99% ee). In addition to substituted phenyl imines, other aromatic imines including furanyl, thienyl, naphthyl proved to be excellent substrates for this transformation. An attractive application of this asymmetric addition was to use 2-methoxycarbonyl phenyl imine 42 as reaction substrate, which could conveniently generate chiral phthalimidines (isoindolones) 43 in good yields and excellent enantioselectivities (Scheme 19). 30a Bicyclic heterocyclic imines, for example, N-tosyl and N-nosyl indolylimines, could also react with aryl boronic acids, providing a new enantioselective approach to the synthesis of α -aryl 2- or 3indolyl-methanamines.⁴⁰

Scheme 18 Catalytic asymmetric arylation of aryl *N*-tosyl imines with arylboronic acids

The arylation of aliphatic imines is much more challenging due to the low stability of the imines. 41 Although the arylation of aliphatic N-tosyl imines could also yield the corresponding under the above conditions in enantioselectivity (99% ee), the isolated yield was quite low (only 28% yield for imine substrate derived from propanal). Attempts to improve the reaction yield by switching the chiral diene ligand, as well as the additive, turned out to be fruitless. Thus a more reactive catalyst [Rh(OH)(L)]₂ and a neutral reaction condition were applied. This replacement significantly improved the arylation of N-tosylimine of propanal, providing the desired products in almost quantitative yield (99%), along with excellent enantioselectivity (>99% ee). 42 Under the optimal conditions, various aliphatic N-tosyl imines were treated with 2 equivalents of aryl boronic acids, rhodium-diene complex [Rh(OH)(L)]₂ (3 mol% Rh) and 4Å molecular sieves in dioxane, affording the corresponding chiral sulfonamides 45 in high yields (87-99%) and with excellent enantioselectivities (91 - >99% ee) (Scheme 20). Similar results were also achieved for *N*-nosylimine substrates.

R = H, 75% yield, 99% ee R = Br, 55% yield, 99% ee R = OMe, 85% yield, 99% ee

Scheme 19 Synthesis of chiral 3-aryl-2-tosyl-2,3-dihydroisoindolones

It is noteworthy that the imines with terminal functional groups such as Ph, BnO, Cl were also suitable substrates, giving the desired adducts in 87-99% yields and >99% ee. The products with terminal Cl substitution could be further cyclized upon treatment with potassium carbonate to form chiral 2-aryl pyrrolidine and piperidine derivatives 47 in a one-pot fashion (Scheme 21), and *N*-tosyl group in the cyclized products could be cleaved through the reduction with naphthalene/Li, affording useful optically pure 2-aryl pyrrolidine and piperidine building blocks.

Scheme 20 Catalytic asymmetric arylation of aliphatic *N*-tosyl imines with arylboronic acids

Scheme 21 One-pot synthesis of chiral 2-aryl pyrrolidine and piperidine derivatives

The C_1 -symmetric chiral dicyclopentadiene-based ligands were also applied in the rhodium-catalyzed arylation of aryl N-tosyl imines (Scheme 22). ⁴³ In this case, the additive of aqueous KHF₂ provided higher yields and better enantioselectivities than the use of Et₃N as base. Compared with the arylation using bicyclo[3.3.0]octadiene ligands, this new series led to the corresponding diarylmethyltosylamides **41** in higher yields (98-99%), but with slightly lower enantioselectivities (90-96% ee).

Scheme 22 Catalytic asymmetric arylation of aryl *N*-tosyl imines with arylboronic acids

Scheme 23 Catalytic asymmetric alkenylation of aryl *N*-nosyl imines with potassium alkenyltrifluoroborates

Scheme 24 Formal synthesis of (-)-aurantioclavine

In addition to these extensive studies on the arylation of imines, we also investigated the rhodium catalyzed alkenylation of arylimines. Due to relatively lower stability of alkenylboronates and possible competitive binding between chiral diene and alkenylation reagent/product, this reaction would be much challenging. Lam and co-workers reported the alkenylation of stable and relatively reactive cyclic imines. 44 The only single successful example with acyclic imines was provided by Shintani, Hayashi and co-workers during their research on the arylation of imines. 45 Our studies provide a more general approach toward this end. A variety of potassium alkenyltrifluoroborates were successfully added to various *N*-tosyl arylimines, providing the corresponding products in high yields and excellent enantioselectivies (Scheme 23). The power of this method was demonstrated by the short formal synthesis of natural product (-)-aurantioclavine (Scheme 24). 46

3.2 Rhodium-diene catalyzed asymmetric conjugate additions

In addition to the rhodium-catalyzed asymmetric arylation to aliphatic and aromatic imines, the chiral diene ligands also demonstrated excellent activity and stereoselectivity in rhodium-catalyzed asymmetric conjugate additions to α,β -unsaturated ketones/esters, nitroalkenes, and α,β -unsaturated γ -lactams.

As shown in Scheme 25, a series of aryl boronic acids could react with 2-cyclopentenone ($X = CH_2$, n = 1), 2-cyclohexenone ($X = CH_2$, n = 2), and cyclic α , β -unsaturated esters (X = O, n = 1, 2). The reactions proceeded under very mild conditions with 2 equivalents of boronic acid, 2.5 mol% of [RhCl(C_2H_4)₂]₂, 5.5 mol% chiral diene ligand at room temperature for 3 h, providing the corresponding chiral adducts **54** in excellent yields and enantioselectivities. ⁴⁷ In this case, the electron-donating or electron-withdrawing substitution at the phenyl boronic acids did not significantly affect the reaction yields and stereroselectivities. Interestingly, sterically more hindered 1-naphthylboronic acid and 2-tolylboronic acid led to slightly higher enantioselectivities (98% ee) for this conjugate addition.

Scheme 25 Catalytic asymmetric conjugate addition with cyclic α,β-unsaturated ketones/esters

The above bicyclo[3.3.0] octadiene ligand has two phenyl rings directly connected to two double bonds. It would be interesting to explore other ligands **L3-5** by moving the bulky substitutions from the double bonds to the adjacent carbon atoms. Due to multiple oxygen atom substitutions, such diene ligands are shown to be quite soluble in water (Figure 5).

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28 29

30

31

32 33

34 35

36

37

38

39

40

41

42

43

44

45 46

47 48

49 50

51

52

53

54

55

56

57

58

59 60 **Journal Name**

Figure 5 Solubility of chiral diene ligands in water

We tried rhodium-catalyzed asymmetric conjugate addition of cyclohexenone and phenyl boronic acid using the above ligands in aqueous media. The reactions were conducted with 2 equivalents of boronic acid, 2.5 mol\% of $[RhCl(C_2H_4)_2]_2$, 5.5 mol% chiral diene ligand at room temperature. To our delight, all three ligands L3-5 could lead to the corresponding adduct within 0.5 h, and the diketal ligand L3 was found to be optimal, providing high yield (96%) and excellent enantioselectivity (93% ee). 48 Encouraged by this, we explored such addition reaction with a variety of boronic acids (Scheme 26). Different from the results in Scheme 25, 2-cyclohexenone ($X = CH_2$, n =2) substrate afforded higher enantioselectivities than 2cyclopentenone (X = CH₂, n = 1) substrate, providing the corresponding adducts 54 with 93-95% ee and 80-86% ee, respectively. In addition, the sterically more hindered 1naphthylboronic acid and 2-methoxyphenylboronic resulted in significant loss in terms of stereoselectivities (52% ee and 69% ee, respectively). The reactions with cyclic α,β unsaturated ester (X = O, n = 2) also led to modest decrease of enantioselectivities (80-82% ee).

In contrast to the ineffectiveness of diphenyl diene ligand L1 for the linear α,β -unsaturated substrates, this hydrophilic diketal diene ligand L3 could promote such asymmetric conjugate additions to linear α,β -unsaturated ketones (Scheme 27). This transformation was also very sensitive to the steric factor of boronic acids, but in opposite direction. Sterically encumbered arylboronic acids, such as 2-chlorophenylboronic, 2-tolylboronic and 1-naphthylboronic acids, proved to be favored for higher enantioselectivities. To the best of our knowledge, this serves as the first example of asymmetric reaction employing a chiral metal-diene catalyst in water.

Scheme 26 Catalytic asymmetric conjugate addition with cyclic α,β -unsaturated ketones/esters

Scheme 27 Catalytic asymmetric conjugate addition with linear α,β -unsaturated ketones

The chiral dicyclopentadiene ligands could also induce excellent enantioselectivities for rhodium-catalyzed asymmetric conjugate addition. 49 As shown in Scheme 28, both cyclic and linear substrates could undergo this asymmetric addition, affording the corresponding adducts. In general, 2cyclohexenone ($X = CH_2$, n = 2) substrate afforded higher enantioselectivities (usually >96% ee) than 2-cyclopentenone and linear α,β-unsaturated ketone. The electronic properties of substitution groups at the phenyl ring of arylboronic acids did not affect the yields and enantioselectivities. However, the sterically hindered boronic acids. such 2as methoxyphenylboronic and 1-naphthylboronic acid, led to modest decrease in stereoselectivity, giving the corresponding adducts with 87% ee and 85% ee, respectively. As for the linear enone substrates, 2-methylphenylboronic acid afforded much higher enantiomeric excess (87% ee) than phenylboronic acid did (16% ee) although both reactions were accomplished in high yields (90-92%).

Scheme 28 Catalytic asymmetric conjugate addition with α,β -unsaturated ketones/esters

Scheme 29 Catalytic asymmetric conjugate addition with nitroalkenes

The rhodium-catalyzed asymmetric conjugate addition of boronic acids to nitroalkenes was also demonstrated with the chiral bicyclo[3.3.0] diene ligands. In this case, the addition of 3 equivalents of KHF₂ proved to be crucial for high yields and enantioselectivities, and the reaction was performed in toluene-water at 100 °C (Scheme 29). As for aromatic substituted nitroalkenes, the sterically hindered aryl boronic acids, such as 1-naphthylboronic and 2-tolylboronic acid, tended to afford higher enantioselectivities, giving the corresponding adducts 58 with 95% ee and 97% ee, respectively. The electron-withdrawing group at the phenyl ring

1

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44 45

46

47 48

49

50 51

52

53

54

55

56

57

58 59 60

of boronic acids could enhance the selectivity. In contrast, the electronic properties of the substitution at the phenyl ring of nitroalkene substrates 57 did not significantly affect the reaction selectivities. Interestingly, the aliphatic nitroalkene (R = cyclohexyl) and nitrostyrene (R = Ph) could give similar enantioselectivities (78% ee and 84% ee, respectively) when reacting with 4-anisylboronic acid. The reaction with linear 1nitrohexene (R = n-Bu) led to lower enantioselectivity (61% ee), but the selectivity could get enhancement to 86% ee when 4-methoxyphenylboronicboronic acid was replaced by sterically encumbered 2-tolylboronic acid. It is worth highlighting that our results represent the best enantioselectivity in the asymmetric addition of arylboronic acids to α unsubstituted nitroalkene substrates.

The synthetic utility of this highly selective asymmetric addition was exemplified by the following preparation of isoquinoline derivative (Scheme 30). The corresponding chiral adduct **59** from 4-fluorophenyl boronic acid could be conveniently converted, through a Bischler-Napieralski cyclization, to optically active (*S*)-4-(4-fluorophenyl)-6,7-dimethoxy-3,4-dihydroquinoline **61** in three steps.

Scheme 30 Synthesis of isoquinoline derivative

Scheme 31 Catalytic asymmetric conjugate addition with $\alpha,\!\beta\text{-unsaturated}\,\gamma\text{-lactam}$

Having established the rhodium-catalyzed asymmetric conjugate addition for α,β -unsaturated ketones/esters and nitroalkenes, we turned our focus to investigate α,β -unsaturated γ -lactam substrates. The studies showed that the *N*-Boc protection was crucial for this conjugate addition because the protection with either benzyl or 4-methoxyphenyl group led to inseparable alkene by-products, which were generated through

Mizoroki-Heck type coupling with aryl boronic acids. As shown in Scheme 31, a series of arylboronic acids successfully reacted with the N-Boc protected α,β -unsaturated γ -lactam 62 under optimal conditions, providing the corresponding adducts 63 in high yields and with excellent enantioselectivities (97-99% ee). The steric properties of arylboronic acids had little effect on the performance of the addition. However, electronwithdrawing groups (4-CF₃, 4-Cl, 4-Br) at the phenyl ring of boronic acids led to significant drop of the reaction yields in spite of excellent enantioselectivities. Fortunately, this issue was solved by switching the additive from Et₃N to KHF₂, which could dramatically shorten the reaction time and thus improved the yields from 56-78% to >97%. This transformation provided a facile access of chiral y-lactams, which could be applied in the synthesis of GABAB receptor agonist (R)baclofen and antidepressant (R)-rolipram.

Compared with arylboron reagents, the use of alkenylboron reagents is much less examined for the rhodium-catalyzed asymmetric conjugate addition. 52 Although many groups reported the addition of alkenylboron reagents to simple α,βunsaturated ketones,⁵³ their addition to α,β-unsaturated amides remains unexplored. Encouraged by the performance of our diene ligands in the conjugate addition to N-Boc protected α,β unsaturated γ-lactam, we turned our focus to extend arylboron reagents to alkenylboron reagents. Due to the low stability of alkenylboronic acids, we chose to apply potassium alkenyltrifluoroborates in the rhodium-catalyzed conjugate addition (Scheme 32).⁵⁴ As for the γ -lactam substrate **64** (n = 1), the reactions with a variety of alkenyltrifluoroborates all afforded excellent enantioselectivities (97-99% ee), but the reaction yields were dependent on both steric and electronic properties of alkenyltrifluoroborates. The reactions with more substituted alkenyltrifluoroborates or electron-rich alkenyltrifluoroborates generally led to higher yields. As for the δ -lactam substrate **64** (n = 2), the enantioselectivities were slightly lower (91-94% ee) while the yields remained to be high. In addition to the reactions with α,β -unsaturated lactams, alkenyltrifluoroborates could react with cyclic α,β-unsaturated ketones and esters 66. In the cases for the cyclic α,β unsaturated esters (lactones), the combination of dioxane and KF turned out to be better than toluene and Et₃N system.

3

4

5

6

7

8

9

10

11

12

13 14

15 16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34 35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 **Journal Name**

Scheme 32 Catalytic asymmetric conjugate addition with alkenyltrifluoroborates

Scheme 33 Synthesis of (-)-α-kainic acid

The synthetic application of this asymmetric transformation was demonstrated by the total synthesis of (-)- α -kainic acid, an alkaloid natural product first isolated in 1953 from Japanese marine algae digenea simplex.⁵⁵ As shown in Scheme 33, the γ-lactam with potassium of methylvinyltrifluoroborate, by the catalysis of the rhodium-(R,R)-diene complex, afforded the desired conjugate adduct 68in 82% yield and with 99% ee. The subsequent alkylation exclusively gave the trans- isomer 69, which was isomerized to cis- isomer 70 through a thermodynamic protonation process. Further manipulations of the amide functional group, through the reaction of an aminal intermediate 71 with TMSCN and the subsequent basic hydrolysis, completed the total synthesis of (-)- α -kainic acid.

3.3 Palladium-diene catalyzed asymmetric Suzuki-Miyaura cross-coupling reactions

Although diene ligands are widely applied in rhodium- and iridium-catalyzed asymmetric reactions, there were very few examples using chiral diene ligand in palladium-catalyzed asymmetric transformation. In 2005, a chiral diene – palladium complex was prepared and tested in enyne cyclization reaction. The desired product was generated, but existing in a racemic form and with low yield (35%). 56 The application of palladium-diene complex in asymmetric reactions faces the following two major challenges: First, palladium-catalyzed reactions often require the change of metal valence state in the catalytic cycle, which is different from rhodium-catalyzed transformations where the metal valence state usually keeps constant. Second, the diene ligands probably possess weaker binding affinity than phosphorus ligands to stabilize palladium in different oxidation states. With significant efforts in further expanding the synthetic application of our diene ligands, we found that bicyclo[3.3.0]octadiene ligands could form air-stable complexes with Pd(II) by treatment with PdCl₂(PhCN)₂ in benzene at room temperature overnight. From the screening of different ligands for Suzuki-Miyaura cross-coupling, the 3,5dimethylphenyl group substituted bicyclo[3.3.0]octadiene was found to provide the corresponding axially chiral biaryls in the

combination of good yields and enantioselectivities (Scheme 34). The Under the optimal conditions, a variety of aryl bromides and trifluoromethanesulfonates could react with aryl boronic acids in the presence of Pd-diene complex 75 (5 mol%) and free ligand (15 mol%) using 2.5 equivalents of Cs_2CO_3 as base in toluene. It is noteworthy that some reactions, for example, the coupling between 2-bromo-3-methylbenzaldehyde and 2-methylphenyl boronic acid, could occur at 0 °C to provide the corresponding biaryl in 97% yield and with 65% ee. To the best of our knowledge, this coupling reaction serves as the first successful application of chiral diene ligands in asymmetric palladium-catalyzed transformation.

Scheme 34 Catalytic asymmetric Suzuki-Miyaura cross-coupling

X-ray crystallography of two Pd-diene complexes were obtained by coordination with diphenyl- and di(3,5dimethylphenyl)- substituted dienes, respectively. Structural analysis confirms that our cis-fused bicyclic diene skeleton creates a wedge shape, providing an excellent chiral environment to coordinate with PdCl₂, which is quite similar to the Rh-diene complexes. 41 Detailed comparison of bond lengths and angles between free dienes and corresponding Pdcomplexes in the X-ray crystallography was conducted through a Dewar-Chatt-Duncanson model. The length of double bond in the complexes (1.37-1.38 Å) is longer than that in corresponding free ligand (1.32 Å), indicating a sp³ characteristic after binding with PdCl₂. In addition, the dihedral angle of the bicyclic diene unit shrinks (88-91° versus 107°) and creates a bite angle (85-86°) after binding with palladium. The dihedral angle in di(3,5-dimethylphenyl)-substituted diene complex (87.6°) is slightly smaller than that in diphenylsubstituted diene complex (90.8°), indicating di(3,5dimethylphenyl)-substituted diene results in stronger chelating affinity with PdCl2. The mechanism of this palladium-diene catalyzed asymmetric Suzuki-Miyaura cross-coupling was investigated using electrospray ionization mass spectrometry (ESI-MS/MS).⁵⁸ In all detected palladium species, the diene ligand was firmly associated with palladium, explaining the high enantioselectivities for this asymmetric transformation.

4 Development of chiral sulfur-olefin ligands for asymmetric reactions

The allylation of chiral *N-tert*-butanesulfinyl imines could generate a variety of enantiopure *N-tert*-butanesulfinyl homoallylic amines bearing different substitution patterns at the *C*-1 and *C*-2 positions. The chiral products from this

2

3

4

5

6

7

8

9

10

11

12

13

14 15

16 17

18

19

20

21 22

23 24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58 59 60

asymmetric allylation actually could serve as attractive olefinsulfur hybrid ligands.⁵⁹ As shown in Scheme 35, Xu observed a simple chiral *N-tert*-butanesulfinyl homoallylic amine **L8** led to excellent conversion for rhodium-catalyzed asymmetric arylation, affording the desired conjugate adduct in 99% yield and with 82% ee. The modification of either functional group involved in the ligand binding with rhodium, i.e., reduction of the olefin or elimination of sulfur chirality, resulted in detrimental effect on this asymmetric transformation. former (compound L9) did not generate any desired product, while the latter (compound L10) afforded the desired product in racemic form and with much lower yield (25%). observation indicates that the sulfinamide and allylic double bond are both involved in the coordination with rhodium during the catalytic process. In addition, the N-methyl analog (compound L11) resulted in very poor conversion, probably due to the unfavorable coordination geometry. This study represents one of the first examples using chiral sulfur-olefin ligands for transition metal-catalyzed asymmetric $transformation. ^{60} \\$

Scheme 35 Proof-of-concept studies on potential *N-tert*-butanesulfinyl homoallylic amine as ligand

With the encouraging results, we evaluated a series of *N-tert*butanesulfinyl homoallylic amines accumulated over the past decade as chiral ligands for this rhodium-catalyzed conjugate addition (Figure 6). Except the ligand L19, which gave quite poor yield (21%) and low enantioselectivity (-26% ee), other ligands promoted the asymmetric arylation in almost quantitative yields (99%) and with excellent enantioselectivities (82-95% ee). Interestingly, both diastereomers L8 and L12, regardless of the absolute configuration of the carbon chiral center, afforded the addition product displaying the same chirality with similar enantioselectivities (82% and 85% ee, respectively). The benzoates **L13-18**, which were generated by the asymmetric benzoyloxyallylation, all promoted the conjugate addition in high yield (99%) and with excellent enantioselectivities (94-95% ee). It is noteworthy that both antiisomers L17 and L18 led to the same chiral adduct in almost quantitative yield (99%) and with enantioselectivities (95% and 94% ee, respectively). A separate experiment with a mixture of two anti- isomers as ligand also demonstrated highly enantioselective formation of addition product in 99% yield and with 95% ee. In other words, the enantioselectivity of this conjugate arylation was mainly

controlled by the stereochemistry of chiral *N*-sulfinyl group. This observation provides great advantage for ligands **L17** and **L18** in rhodium-catalyzed asymmetric arylation as it can simply apply the products from zinc-mediated benzoyloxyallylation of corresponding chiral *N-tert*-butanesulfinyl imine regardless of its stereoselectivity outcome.

Figure 6 Sulfinamide-olefin ligands

With the simple and readily available chiral ligand L18, different substrates for the rhodium-catalyzed asymmetric arylation were examined. A variety of α,β-unsaturated cyclic carbonyl compounds, including 2-cyclohexenone, cyclopentenone, α,β-unsaturated δ-lactone and lactam, could undergo the 1,4-addition, affording the corresponding products in high yields (74-99%) and with excellent enantioselectivities (78-98% ee) (Scheme 36). The steric and electronic properties of aryl boronic acids appeared to have little influence on the reaction. Unfortunately, the reaction of linear enone (E)-2heptenone with phenyl boronic acid led to the desired product in low yield (51%) and stereoselectivity (38% ee). Our continuous work in this field revealed that a simpler ligand L21 also showed great catalytic activity and enantioselectivity for the conjugate addition to α,β -unsaturated cyclic carbonyl compounds.61

$$\begin{array}{c} O \\ X \\ Y \\ Y \\ Y \\ Y \\ Y \\ X = CH_2 \ (n = 1) \\ X = CH_2 \ (0, NBn \ (n = 2) \\ \end{array} \begin{array}{c} [RhCl(C_2H_4)_2]_2 / \, L18 \\ (3 \ mol^{9} \ Rh \) \\$$

Scheme 36 Asymmetric arylation of α,β-unsaturated cyclic carbonyl compounds catalyzed sulfinamide-olefin ligand.

With the above significant success in rhodium-catalyzed asymmetric 1,4-addition using chiral sulfur-olefin ligands, the exploration of this new ligand class and applied them in rhodium-catalyzed enantioselective 1,2-addition of arylboronic acids to α -ketoesters and α -diketones was expanded. ⁶² In the initial screening with methyl phenylglyoxylate and p-tolylboronic acid as reaction substrates (Scheme 37), it was found that a simple sulfur-olefin ligand **L21** could lead to 1,2-addition in high yield (90%) and with excellent

 Journal Name

enantioselectivity (85% ee). It is noteworthy that the chiral diene ligand (**L1**) and diphosphine ligand (BINAP) afforded the desired adduct with very low stereoselectivities (9% ee and 13% ee, respectively), in spite of excellent chemical yields (90% and 79%, respectively).

Scheme 37 Ligand screening (COE = cyclooctene, Bz = benzoyl)

The ester group in phenylglyoxylate showed some impact on the 1,2-addition in terms of chemical yield and enantioselectivity. Aromatic groups, such as phenyl, 4-chlorophenyl, 1-naphthyl and 2-naphthyl esters, afforded better enantioselectivities (92-95% ee), albeit with low yields (33-65%), due to basic hydrolysis when 0.5 equivalent of 1.5 M $\rm K_3PO_4$ was applied at 40 °C. Further optimization of base and reaction temperature led to the use of 2-naphthyl phenylglyoxylate as the best substrate, and the reaction could be accomplished at room temperature when 0.08 equivalent of 0.1 M KOH was applied, producing the desired tertiary α -hydroxyester in good yield (86%) and with excellent ee (94%).

With the identified optimal ester group and reaction conditions, the scope of different arylglyoxylates **78** and aryl boronic acids was investigated. As shown in Scheme 38, the 1,2-addition reactions consistently generated the corresponding adducts **79** in moderate to good yields (54-89%) and with excellent enantioselectivities (90-95% ee). It is noteworthy that both enantiomers could be obtained with high ee values by simply switching the corresponding Ar^1 and Ar^2 groups of the α -ketoesters and boronic acids.

$$\begin{array}{c} O \\ Ar^1 \\ \hline O \\ \hline 2-Np \\ \hline 78 \\ \hline \end{array} \begin{array}{c} [RhCl(COE)_2]_2 / L21 \\ (3 \text{ mol}\%) \\ \hline 1.5 \text{ eq. } Ar^2B(OH)_2 \\ 0.1 \text{ M KOH, THF, rt} \\ \hline 79 \\ \hline \\ Ar^1 \\ \hline \end{array} \begin{array}{c} O \\ 2-Np \\ Ar^2 \\ \hline \\ Ar^1 \\ \hline \\ Ar^2 \\ \\ Ar^2 \\ \hline \\ Ar^2 \\ \hline$$

Scheme 38 Catalytic asymmetric 1,2-addition of arylboric acids to α -ketoesters

This method could be extended to heteroaryl α -ketoesters. ^{60b} A variety of α -ketoesters including 3-indoleglyoxylates, 3-benzofuranglyoxylates and 3-benzothiopheneglyoxylates could react with arylboronic acids, affording corresponding quaternary carbon-containing heteroaromatic α -hydroxy esters in moderate to good yields with high enantiomeric excesses (up to 97%). As for the 1,2-addition to aliphatic α -ketoesters, moderate yields and enantioselectivities were also achieved despite the possible formation of enolate esters under basic reaction conditions. ^{60c}

This enantioselective 1,2-addition could also be applied to α -diketone substrates 80. 60a As shown in Scheme 39, the enantioselectivities for di-aryl α -diketones were generally quite high (95-99% ee), while the less hindered aliphatic diketone, biacetyl ($R^1 = R^2 = Me$), gave the desired adduct with only 63% ee. As for the unsymmetric α -diketone ($R^1 = Me$, $R^2 = Ph$), the 1,2-addition predominantly took place at the less hindered carbonyl group (8.5:1 regioselectivity), affording the major adduct with 80% ee. Several bicyclic heterocycles with quaternary carbon-containing chiral center were successfully obtained through short or one-pot chemical transformations from such 1,2-additions of properly designed α -ketoesters and α -diketones. 63

Scheme 39 Catalytic asymmetric 1,2-addition of arylboric acids to α -diketones

Inspired by the success of enantioselective addition of arylboron reagents to C=C and C=O double bonds using simple chiral sulfur-olefin ligands, the attention was turned to their applications in the asymmetric 1,2-addition to C=N double bonds to construct pharmacologically attractive chiral amines. Initially, we investigated the rhodium-catalyzed addition of arylboronic acids to cyclic N-sulfonyl α -iminoesters 82. Simple sulfur-olefins could successfully promote this arylation reaction. Under the optimized catalytic system, the reaction between a wide variety of cyclic N-sulfonyl α-iminoesters and arylboronic acids with diverse steric and electronic properties proceeded well, giving the corresponding addition products 83 mostly in high yields (up to 96%) and with excellent enantioselectivities (85–99% ee) (Scheme 40).64 Furthermore, the asymmetric arylation of a serial of other cyclic N-sulfonyl imines (84, 86, 88) were also subjected to this reaction. Although the reaction yields varied for different substrates, excellent enantioselectivities were observed in all examined cases. Notably, the benzo-fused six-membered cyclic imine 86 yielded particularly interesting CF₃-containing sulfamidates.

Chemistry Frontiers Accepted Mai

ARTICLE

R = H, 5,6-(CH)₄, 6-Me, 6-Cl, 7-OMe, 8-Me

Ph, 4-MeC₆H₄, 3-CIC₆H₄, 2-MeC₆H₄, 4-BrC₆H₄

[Rh(COE)2CI]2 (1.5 mol%) L25 (3.3 mol%) ArB(OH)₂ (1) KF (1.5 M)/toluene, rt or 60 °C EtO₂C CO₂Et 83 R = H, 5-OMe, 5-Me, 5-F, 5-Cl, 21 examples 5-t-Bu, 7-Cl, 6,7-(CH)₄ 35-96% yield, 85-99% ee [Rh(COE)₂Cl]₂ (1.5 mol%) **L25** (3.3 mol%) (2) Ar2B(OH)2 dioxane, MeOH, 80 °C Ar 85 12 examples = 4-MeOC₆H₄, 4-MeC₆H₄, 4-CIC₆H₄ 72-91% vield, 95-98% ee 3-MeCeHa, 3-CICeHa = Ph, 4-MeOC₆H₄, 4-MeC₆H₄ 4-CIC₆H₄, 3-MeC₆H₄, 0,,0 [Rh(COE)2CI]2 (1.5 mol%) `NH (3) ArB(OH)₂ KF (1.5 M)/toluene, 60 °C 87 4-MeC₆H₄, 4-FC₆H₄, 4-ClC₆H₄, 3-MeOC₆H₄, 2-MeC₆H₄, 1-Np, 2-Np 26-84% yield, 98-99% ee [Rh(COE)₂Cl]₂ (1.5 mol%) L25 (3.3 mol%) ArB(OH)₂ KF (1.5 M)/toluene, rt

Scheme 40 Catalytic asymmetric 1,2-addition of arylboric acids to cyclic *N*-sulfonyl imines.

96-99% vield, 99% ee

Scheme 41 Asymmetric arylation of 3,4-disubstituted thiadiazoles catalyzed by sulfoxide-olefin ligand.

The application of chiral ligand **L25** in the addition of arylboronic acids to 3,4-disubstituted thiadiazoles was also developed, providing direct access to chiral quaternary carbon-containing 1,2,5-thiadiazoline 1,1-dioxide derivatives (Scheme 41). The reactions proceeded under exceptionally mild conditions, giving the corresponding adducts in high yields and with excellent enantioselectivities.⁶⁵

Encouraged by the above results from chiral sulfinamide-olefin ligands, we designed and synthesized a new set of compounds with sulfinyl group serving as the only one chiral center to control the stereoselectivity. ⁶⁶ In this case, the chiral sulfinyl group and olefin were connected by a benzene ring in a 1,2-fashion (Figure 7). These new ligands were evaluated in the

rhodium-catalyzed 1,4-addition of phenylboronic acid to 2-cyclohexeneone.

Figure 7 Sulfoxide-olefin ligands

The ligand with terminal olefin (L26, R = H) could promote the addition reaction in high yield (98%), albeit with quite low enantioselectivity (8% ee). To our delight, most of ligands (L27-36) bearing R substituent displayed dramatically improvement in terms of enantioselectivities (70-95% ee). The bulky terminal group 1-naphthyl (L42) led to the desired product in only 4% yield and with 48% ee. The ligands with diphenyl (L43) and t-butyl groups (L44) at the olefin terminal only generated a negligible amount of product, suggesting that bulky R groups would disfavor the coordination with rhodium. Evaluation of different substitutions at the central benzene ring revealed that the introduction of multiple methoxy groups was beneficial for the reaction yield and enantioselectivity. The ligand L38, with 2,3,4-trimethoxybenzene ring connecting the sulfinyl and olefin moieties, could afford the desired adduct in 99% yield and with the highest enantioselectivity (95% ee). Further optimization of the base and reaction solvent for ligand **L38** led to the enantioselectivity of 97% ee along with 99% yield when aqueous K₂HPO₄ and THF were used in this rhodium-catalyzed asymmetric arylation.

With the best ligand **L38** and the optimal reaction conditions, we examined the substrate scope of this rhodium-catalyzed asymmetric conjugate arylation (Scheme 42). The reactions performed well for α,β -unsaturated cyclic carbonyl compounds, such as 2-cyclohexenone, 2-cyclopentenone, α,β -unsaturated δ -lactone, giving the corresponding adducts with excellent enantioselectivities (94-98% ee), regardless of the electronic and steric properties of arylboronic acids. Unfortunately, the reaction of linear enone (*E*)-2-heptenone with phenyl boronic acid led to the desired product in low yield (34%) and stereoselectivity (21% ee). The research results revealed that well-designed innovative *S*-stereogenic olefin ligands can be as useful as other classical chiral ligands in asymmetric transformations.

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30 31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57 58

59 60 **Journal Name**

Scheme 42 Asymmetric arylation of α,β -unsaturated cyclic carbonyl compounds catalyzed sulfoxide-olefin ligand.

Inspired by the success of the above initial research on chiral sulfur-olefin ligands, further explorations aimed to expand the application of these new novel ligands have been carried out by other groups and us, which were described in details in a recent review. ⁴

5 Conclusion and Outlook

Development of asymmetric synthesis with highly enantioselective control continues to be one of the main topics in organic synthesis. Synthetic methods based on chiral auxiliaries provide reliable approaches to access chiral compounds. Using *N-tert*-butansulfinamides as chiral auxiliary, we successfully developed three different kinds of stereoselective reactions to prepare enantiorich amines. SmI₂mediated homo-coupling and cross-coupling of N-tertbutansulfinyl imines with nitrones and aldehydes provide a simple and efficient way to synthesize enantiorich vicinal diamines and α -amino alcohols. As for the Zn/In-mediated allylation of *N-tert*-butansulfinyl imines, the stereoselectivity reversal can be controlled by switching reaction conditions. More complicated chiral compounds can be synthesized by using suitable multifunctional allyl bromide reagents. Highly diastereoselective intermolecular or intramolecular aza-Friedel-Crafts reaction has also been realized in the presence of proper Lewis acid catalysts.

In the meantime, highly enantioselective asymmetric transition-metal-catalyzed reactions were also pursued using structurally novel chiral diene as ligands. Two families of chiral diene ligands bearing bicyclo[3.3.0]octadiene or dicyclopentadiene skeleton were successful introduced. A variety of highly enantioselective rhodium-catalyzed reactions, including 1,2-addition to imines and 1,4-conjugate additions to several electron-deficient double bonds. The first successful application of chiral diene ligand in palladium-catalyzed cross-coupling reactions was also realized.

Inspired by the success in these two parts, we developed conceptually new chiral sulfur-olefin ligands. These easily accessible new ligands proved to be competent for a variety of rhodium-catalyzed reactions, especially in the addition to specific C=O and C=N double bonds, allowing for highly enantioselective construction of otherwise-difficult-to-access fully-substituted carbon stereocenters.

Despite many successful examples with chiral *N-tert*-butanesulfinamide auxiliary and chiral diene and sulfur-olefin ligands, there are still many challenges we have to face. The application of both chiral auxiliary and ligands requires further expansion to cover more useful and challenging substrates. A more comprehensive mechanistic study on the catalytic role of ligands, as well as the development of new effective ligands, is still under way. Nevertheless, we believe that the power of these asymmetric reactions will be further demonstrated in organic synthesis and drug development.

Acknowledgment

Financial support from the National Natural Science Foundation of China (21361162001, 21325209), Shanghai Commission of Science and Technology (13JC1406900, 14XD1404400) and the State Key Laboratory of Bioorganic and Natural Products Chemistry is greatly acknowledged. We highly appreciate the scientific contributions from our coworkers, whose names mostly appear in the references.

Notes and references

- ^a CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China. E-mail: lingq@sioc.ac.cn
- ^b State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. E-mail: xumh@simm.ac.cn
- ^c Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.
- † Present Address: Arvinas Inc., 5 Science Park, New Haven, CT 06511, USA

¹ (a) Noyori, R. *Asymmetric Catalysis in Organic Synthesis*, 2nd ed.; Wiley: New York, 1994. (b) Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H. *Comprehensive Asymmetric Catalysis*, Vols. I-III; Springer: Berlin, 1999. (c) Ojima, I. *Catalytic Asymmetric Synthesis*, 3rd ed.; John Wiley &Sons: Hoboken / NJ, 2010.

² G.-Q. Lin, M.-H. Xu, Y.-W. Zhong and X.-W. Sun, *Acc. Chem. Res.*, 2008, **41**, 831.

³ C.-G. Feng, M.-H, Xu and G.-Q. Lin, *Synlett*, 2011, 1345.

⁴ Y. Li and M.-H. Xu, Chem. Commun., 2014, **50**, 3771.

 ⁽a) J. A. Ellman, T. D. Owens and T. P. Tang, *Acc. Chem. Res.*, 2002, 35, 984.
 (b) J. A. Ellman, *Pure Appl. Chem.*, 2003, 75, 39.
 (c) C. H. Senanayake, D. Krishnamurthy, Z. H. Lu, Z. X. Han and I. Gallou, Aldrichimica Acta, 2005, 38, 93.
 (d) D. Morton and R. A. Stockman, Tetrahedron, 2006, 62, 8869.

⁶ (a) M.-H. Xu, W. Wang and G.-Q. Lin, *Org. Lett.*, 2000, **2**, 2229; (b) W. Wang, M.-H. Xu, X.-S. Lei and G.-Q. Lin, *Org. Lett.*, 2000, **2**, 3773; (c) M.-H. Xu, W. Wang, L.-J. Xia and G.-Q. Lin, *J. Org. Chem.*, 2001, **66**, 3953.

⁷ H. B. Kagan, *Tetrahedron*, 2003, **59**, 10351.

⁸ Y. W. Zhong, K. Izumi, M. H. Xu and G. Q. Lin, Org. Lett., 2004, 6, 4747.

1

3

4

5

6 7

8

9

10 11

12

13

14

15

16

17

18 19

20

21

22

23

24 25

26

27

28

29

30

31

32

33

34

35

36

37

38 39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60 ⁹ Y.-W. Zhong, M.-H. Xu and G.-Q. Lin, *Org. Lett.*, 2004, **6**, 3953.

- ¹⁰ Y.-W. Zhong, Y.-Z. Dong, K. Fang, K. Izumi, M.-H. Xu and G.-Q. Lin, *J. Am. Chem. Soc.*, 2005, **127**, 11956.
- ¹¹ (a) Y.-W. Zhong, Y.-Z. Dong, K. Fang, K. Izumi, M.-H. Xu and G.-Q. Lin, *J. Am. Chem. Soc.*, 2005, **127**, 11956; (b) R.-H., Liu, K. Fang, B. Wang, M.-H. Xu and G.-Q. Lin, *J. Org. Chem.*, 2008, **73**, 3307; (c) R. Wang, K. Fang, B.-F. Sun, M.-H. Xu and G.-Q. Lin, *Synlett*, 2009, 2301
- ¹² M. Lombardo and C. Trombini, *Chem. Rev.*, 2007, **107**, 3843.
- ¹³ (a) Amino Acids, Peptides, and Proteins in Organic Chemistry, ed. A. B.
 Hughes, Wiley-VCH, Weinheim, 2009, vol. 1 and 2; (b) G. C. Barrett and D.
 T. Elmore, Amino Acids and Peptides, Cambridge University Press,
 Cambridge, 1998; (c) F. P. J. T. Rutjes, L. B. Wolf and H. E. Schoemaker, J.
 Chem. Soc., Perkin Trans. 1, 2000, 4197.
- ¹⁴ D.-M. Ji and M.-H. Xu, Chem. Commun., 2010, 46, 1550.
- ¹⁵ Y. Li, D.-M. Ji and M.-H. Xu, Org. Biomol. Chem., 2011, 9, 8452.
- ¹⁶ (a) S. Ni, Y. Yuan, J. Huang, X. Mao, M. Lv, J. Zhu, X. Shen, J. Pei, L. Lai, H. Jiang and J. Li *J. Med. Chem.* 2009, **52**, 5295; (b) M. Sabbah, L. Soul re, S. Reverchon, Y. Queneau, A. Doutheau, *Bioorg. Med. Chem.* 2011, **19**,4868; (c) X.Zhang, Y. He, S. Liu, Z. Yu, Z.-X. Jiang, Z. Yang, Y. Dong, S. C. Nabinger, L. Wu, A. M. Gunawan, L. Wang, R. J. Chan, Z.-Y. Zhang, *J. Med. Chem.* 2010, **53**, 2482.
- ¹⁷ Y. Li and M.-H. Xu, Asian J. Org. Chem., 2013, 2, 50.
- ¹⁸ D. A. Cogan, G. C. Liu and J. Ellman, *Tetrahedron*, 1999, **55**, 8883.
- ¹⁹ F. Foubelo and M. Yus, *Tetrahedron-Asymmetry*, 2004, **15**, 3823.
- ²⁰ X.-W. Sun, M.-H. Xu and G.-Q. Lin, Org. Lett., 2006, **8**, 4979.
- ²¹ X.-W. Sun, M. Liu, M.-H. Xu and G.-Q. Lin, Org. Lett., 2008, **10**, 1259.
- ²² M. Liu, X.-W. Sun, M.-H. Xu and G.-Q. Lin, *Chem. Eur. J.*, 2009, **15**, 10217.
- ²³ For reviews on the synthesis of β-amino alcohols: (a) D. J. Ager, I. Prakash and D. R. Schaad, *Chem. Rev.*, 1996, **96**, 835. (b) C. H. Senanayake, *Aldrichim Acta*, 1998, **31**, 3. (c) S. C. Bergmeier, Tetrahedron, 2000, **56**, 2561. (d) G. Mlostoń, E. Obijalska and H. Heimgartner, *J. Fluorine Chem.*, 2010, **131**, 829.
- ²⁴ M. Liu, A. Shen, X.-W. Sun, F. Deng, M.-H. Xu and G.-Q. Lin, Chem. Commun., 2010, 46, 8460.
- ²⁵ W.-J. Liu, Y.-H., Zhao and X.-W. Sun, *Tetrahedron Lett.* 2013, **54**, 3586.
- ²⁶ (a) H. Kakeya, M. Morishita, H. Kobinata, M. Osono and H. Osada, J. *Antibiot.*, 1998, **51**, 1126; (b) H. Kakeya, M. Morishita, H. Kobinata, T. Morita, K. Kobayashi and H. Osada, *J. Org. Chem.*, 1999, **64**, 1052.
- ²⁷ For related study, see: L. R. Reddy, B. Hu, M. Prashad and K. Prasad, *Org. Lett.*, 2008, **10**, 3109.
- ²⁸ (a) A. Shen, M. Liu, Z.-S. Jia, M.-H. Xu and G.-Q. Lin, *Org. Lett.*, 2010, **12**, 5154; (b) R. Wang, P. Tian and G.-Q. Lin, *Chin. J. Chem.*, 2013, **31**, 40. (c) Y. Tan, X.-D. Yang, W.-J. Liu and X.-W. Sun, *Tetrahedron Lett.*, 2014, **55**, 6105.
- ²⁹ A. Shen, Z.-T. He, H.-J. Yu, Y. Fukui, P. Tian and G.-Q. Lin, *Synlett*, 2013, **24**, 1649.

- ³⁰T. Guo, R. Song, B.-H. Yuan, X.-Y. Chen, X.-W. Sun and G.-Q. Lin, *Chem. Commun.*, 2013, **49**, 5402.
- ³¹ D. Chen and M.-H. Xu, Chem. Commun., 2013, **49**, 1327.
- ³² Z.-Q. Wang, C.-G. Feng, M.-H. Xu and G.-Q. Lin, *J. Am. Chem. Soc.*, 2007, **129**, 5336.
- ³³ S. Helbig, S. Sauer, N. Cramer, S. Laschat, A. Baro and W. Frey, *Adv. Synth. Catal.*, 2007, **349**, 2331.
- ³⁴ C. Shao, H.-J. Yu, N.-Y. Wu, C.-G. Feng, and G.-Q. Lin, *Org. Lett.*, 2010, **12**, 3820.
- ³⁵ H.-Y. Yang and M.-H. Xu, Chin. J. Chem. 2013, **31**, 119.
- ³⁶ T. Hayashi, K. Ueyama, N. Tokunaga and K. Yoshida, *J. Am. Chem. Soc.*, 2003, **125**, 11508.
- ³⁷ C. Fischer, C. Defieber, T. Suzuki and E.M. Carreira, *J. Am. Chem. Soc.*, 2004, **126**, 1628.
- ³⁸ Reviews of chiral olefin ligands: (a) C. Defieber, H. Grutzmacher and E. M. Carreira, *Angew. Chem. Int. Ed.*, 2008, **47**, 4482. (b) J. B. Johnson and T. Rovis, *Angew. Chem., Int. Ed.*, 2008, **47**, 840. (c) R. Shintani and T. Hayashi, *Aldrichimica Acta*, 2009, **42**, 31. (d) X. Q. Feng and H. F. Du, *Asian Journal of Organic Chemistry*, 2012, **1**, 204.
- ³⁹ Reviews on arylation of imines: (a) C. S. Marques and A. J. Burke, *Chemcatchem* 2011, **3**, 635; (b) P. Tian, H.-Q. Dong and G.-Q. Lin, *ACS Catal.*, 2012, **2**, 95.
- ⁴⁰ H.-Y. Yang and M.-H. Xu, Chem. Commun., 2010, 46, 9223.
- ⁴¹ M. Trincado and J. A. Ellman, Angew. Chem. Int. Ed. 2008, **47**, 5623.
- ⁴² Z. Cui, H.-J. Yu, R.-F. Yang, W.-Y. Gao, C.-G. Feng and G.-Q. Lin, *J. Am. Chem. Soc.*, 2011, **133**, 12394.
- ⁴³ C. Shao, H.-J. Yu, N.-Y. Wu, C.-G. Feng and G.-Q. Lin, *Org. Lett.*, 2010, **12**, 3820.
- ⁴⁴ Y. F. Luo, A. J. Carnell and H. W. Lam, *Angew. Chem., Int. Ed.*, 2012, **51**, 6762.
- ⁴⁵ R. Shintani, M. Takeda, Y.-T. Soh, T. Ito and T. Hayashi, *Org. Lett.*, 2011, 13, 2977.
- ⁴⁶ Z. Cui, Y.-J. Chen, W.-Y. Gao, C.-G. Feng and G.-Q. Lin, *Org. Lett.*, 2014, **16**, 1016.
- ⁴⁷ C.-G. Feng, Z.-Q. Wang, P. Tian, M.-H. Xu and G.-Q. Lin, *Chem. Asian J.*, 2008, **3**, 1511.
- ⁴⁸ C.-G. Feng, Z.-Q. Wang, C. Shao, M.-H. Xu and G.-Q. Lin, *Org. Lett.*, 2008, **10**, 4101.
- ⁴⁹ C. Shao, H.-J. Yu, C.-G. Feng, R. Wang and G.-Q. Lin, *Tetrahedron Lett.*, 2012, **53**, 2733.
- ⁵⁰ Z.-Q. Wang, C.-G. Feng, S.-S. Zhang, M.-H. Xu and G.-Q. Lin, *Angew. Chem. Int. Ed.*, 2010, **49**, 5780.
- ⁵¹ C. Shao, H.-J. Yu, N.-Y. Wu, P. Tian, R. Wang, C.-G. Feng and G.-Q. Lin, Org. Lett., 2011, 13, 788.
- ⁵² For rhodium-catalyzed asymmetric conjugate addition of alkenyl silicon and zirconium reagents, see: (a) S. Oi, Y. onma, Y. Inoue, *Org. Lett.* 2002, **4**,

3

4

5 6

7

8

9

10

11

12 13

14

15

16

17

18 19 20

21

22

23

24

25 26

27

28

29

30

31 32

33

34

35

36 37 38

39 40

41

42

43

44 45

46

47

48 49

Journal Name

667; (b) S. Oi, A. Taira, Y. Honma, Y. Inoue, Org. Lett. 2003, 5, 97; (c) Y. Otomaru, T. Hayashi, Tetrahedron: Asymmetry 2004, 15, 2647; (d) Y. Nakao, J. Chen, H. Imanaka, T. Hiyama, Y. Ichikawa, W.-L. Duan, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2007, 129, 9137; (e) S. Oi, T. Sato, Y. Inoue, Tetrahedron Lett. 2004, 45, 5051.

- 53 For selected examples: (a) Y. Takaya, M. Ogasawara, T. Hayashi, Tetrahedron Lett. 1998, 39, 8479; (b) A. Duursma, J. G. Boiteau, L. Lefort, J. A. F. Boogers, A. H. M. de Vries, J. G. de Vries, A. J. Minnaard, B. L. Feringa, J. Org. Chem. 2004, 69, 8045; (c) R. T. Stemmler, C. Bolm, J. Org. Chem. 2005, 70, 9925; (d) G. Lalic, E. J. Corey, Tetrahedron Lett. 2008, 49, 4894; (e) K. Okamoto, T. Hayashi, V. H. Rawal, Org. Lett. 2008, 10, 4387. ⁵⁴ H.-J. Yu, C. Shao, Z. Cui, C.-G. Feng and G.-Q. Lin, Chem.—Eur. J.,
- 2012, 18, 13274.
- ⁵⁵ S. Murakami, T. Takemoto and Z. Shimizu, J. Pharm. Soc. Jpn. 1953,
- ⁵⁶ M.A. Grundl, J.J. Kennedy-Smith and D. Trauner, Organometallics, 2005, 24, 2831.
- ⁵⁷ S.-S. Zhang, Z.-Q. Wang, M.-H. Xu and G.-Q. Lin, *Org. Lett.*, 2010, **12**, 5546.
- ⁵⁸ X.-S. He, S.-S. Zhang, Y.-L. Guo, H.-Y. Wang and G.-Q. Lin, Organometallics, 2012, 31, 2945.
- ⁵⁹ S.-S. Jin, H. Wang and M.-H. Xu, Chem. Commun., 2011, 47, 7230.
- 60 (a) T. Thaler, L.-N. Guo, A.K. Steib, M. Raducan, K. Karaghiosoff, P. Mayer and P. Knochel, Org. Lett., 2011, 13, 3182; (b) G.-H. Chen, J.-Y. Gui, L.-C. Li and J. Liao, Angew. Chem., Int. Ed., 2011, 50, 7681; (c) F. Xue, X.-C. Li and B.-S. Wan, J. Org. Chem., 2011, 76, 7256. (d) X. Q. Feng, Y. Z. Wang, B. B. Wei, J. Yang and H. F. Du, Org. Lett., 2011, 13, 3300.
- 61 S.-S. Jin, H. Wang, T.-S. Zhu and M.-H. Xu, Org. Biomol. Chem., 2012,
- 62 (a) T.-S. Zhu, S.-S. Jin and M.-H. Xu, Angew. Chem. Int. Ed., 2012, 51, 780; (b) H. Wang, T.-S. Zhu and M.-H. Xu, Org. Biomol. Chem. 2012, 10, 9158; (c) T.-S. Zhu and M.-H. Xu, Chin. J. Chem. 2013, 31, 321.
- ⁶³ (a) Y. Li, D.-X. Zhu and M.-H. Xu, *Chem. Commun.*, 2013, **49**, 11659. (b) T.-S. Zhu, J.-P. Chen and M.-H. Xu, Chem.—Eur. J., 2013, 19, 865.
- 64 (a) H. Wang, T. Jiang and M.-H. Xu, J. Am. Chem. Soc., 2013, 135, 971; (b) H. Wang and M.-H. Xu, Synthesis, 2013, 45, 2125.
- 65 H. Wang, Y. Li and M.-H. Xu, Org. Lett. 2014, 16, 3962.
- 66 W.-Y. Qi, T.-S. Zhu and M.-H. Xu, Org. Lett., 2011, 13, 410.