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Partial hydrolysis of poly(2-oxazoline)s yields poly[(2-oxazoline)-co-(ethylenimine)] copolymers that are 
of interest for a broad range of applications, from switchable surfaces, nanoparticles and hydrogels, to 
gene delivery and biosensors. In the present research, a fast and reproducible method is developed to 
obtain poly[(2-ethyl-2-oxazoline)-co-(ethylenimine)] (P(EtOx-co-EI)) copolymers via acid-catalyzed 
partial hydrolysis of poly(2-ethyl-2-oxazoline) (PEtOx). The hydrolysis kinetics were investigated by 1H-10 

NMR spectroscopy and size exclusion chromatography using hexafluoroisopropanol as eluent. It was 
found that the hydrolysis was greatly accelerated by increasing temperature from 100 ºC up to near-
critical water (275 ºC) using microwave reactors. The optimal hydrolysis with regard to speed and control 
over the final copolymer structure was achieved at 180 ºC, since the polymer was found to degrade and 
decompose above this temperature. In addition, control over the desired degree of hydrolysis of PEtOx 15 

was obtained by selecting the appropriate HCl concentration. Summarizing, this work reports on defining 
optimal conditions to achieve tailored P(EtOx-co-EI) copolymers in a fast and reproducible way, utilizing 
high temperatures and controlled acidic conditions.  

 
Introduction 20 

Cationic ring opening polymerization (CROP) of 2-alkyl-2-
oxazolines affords poly(2-alkyl-2--oxazoline)s (PAOx) with a 
narrow molecular weight distribution, tunable properties and 
excellent biocompatibility,1 mostly documented for the water-
soluble poly(2-methyl-2-oxazoline) and poly(2-ethyl-2-25 

oxazoline) (PEtOx), ascribed to their structural analogy with 
poly(peptide)s.2 Telechelic polymers are readily obtained by 
selection of initiator (typically alkyl halides, (pluri)tosylates, 
(pluri)nosylates, etc.) and end-capping agent (a nucleophile),3 
while side-chains can be tuned by modification of the 2-30 

substituent of the 2-oxazoline monomer.4 Block copolymers can 
be obtained by sequential one-pot monomer addition, as a result 
of the living character of the CROP of 2-oxazolines. The use of 
microwave synthesizers has exerted a tremendous impact on the 
polymerization of 2-oxazolines by reducing the polymerization 35 

times to minutes or even seconds, thus allowing for high-
throughput polymer synthesis and a systematic study of structure-
property relationships.5, 6 Therefore, PAOx have become a 
promising candidate for varying biomedical applications,7-10 
exhibiting higher synthetic versatility than the ubiquitous 40 

poly(ethylene glycol) (PEG).11, 12 

The hydrolysis of PAOx renders linear polyethylenimine (L-PEI), 
constituting the main method to synthesize well defined L-PEI 
with interesting solubility properties due to its crystallinity and 
pH responsiveness. Moreover, L-PEI has been widely studied as 45 

a successful non-viral vector for gene delivery, outperforming the 
gold standard branched-PEI in terms of toxicity,13-17 and in other 
high added-value biomedical applications.18 
The partial hydrolysis of PAOx results in poly[(2-alkyl-2-
oxazoline)-co-ethylenimine] (PAOx-co-PEI) copolymers that 50 

encompass both the interesting properties of PAOx and PEI while 
being less cytotoxic than L-PEI (see Scheme 1). These 
copolymers are responsive to external stimuli such as temperature 
and pH19, 20 finding applications in aqueous self-assembly, 
micellar catalysis, or drug delivery.21, 22 Indeed, the conjunction 55 

of PEI domains with stealth polymers such as PAOx or PEG has 
demonstrated to meet the DNA and RNA transfection efficiency 
of the commercial L-PEI, while reducing cytotoxicity and 
facilitating the introduction of targeting moieties for localized 
gene therapy.23-27  60 

The introduction of secondary amines throughout the PAOx 
backbone in PAOx-co-PEI also offers a reactive handle for 
further modification by post-polymerization functionalization, 
further expanding the synthetic versatility and polymer 
architectures attainable.28-31 For instance, PAOx graft copolymers 65 

can be readily synthesized by terminating living PAOx chains 
with the secondary amines present in PAOx-co-PEI 
copolymers.32 These secondary amines can also be used for 
cross-linking resulting in pH-responsive hydrogels and nanogels 
for biomedical applications, as recently reported by 70 

Lecommandoux et al.33 
As seen in the aforementioned applications, control over the  
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TMS. 
The samples were dried in a freeze-drier (Thermo-electron 
Corporation) equipped with a vacuum pump (Pfeiffer) and a Heto 
drywinner cooling system. 

Microwave Chemistry 5 

Single-Mode Reactor. The synthesis of poly(2-ethyl-2-
oxazoline), and the hydrolysis experiments were performed in a 
Monowave 300 microwave synthesizer, from Anton Paar GmbH, 
equipped with a MAS 24 auto sampler. Temperature was 
monitored with the built-in IR sensor. For the polymer synthesis, 10 

commercial caps were used. For the hydrolysis experiments, to 
ensure integrity of the microwave vials’ septa at high 
temperatures and pressures under acidic conditions, custom septa 
were used. They comprised one 22 mm Ø, 2mm thick PTFE disk, 
and a 22 mm Ø, 1mm thick silicon/PTFE septum placed 15 

underneath (Bartelt GmbH). 
 
Multi-Mode Reactor. The near critical water (NCW) 
experiments were carried out in a Multiwave 3000 multimode 
microwave reactor from Anton Paar GmbH. The instrument was 20 

fitted with two magnetrons, with continuous microwave output 
power from 0 to 1400 W. The cavity was fitted with an eight-
vessel rotor, with 80 mL quartz glass vessels dedicated for 
reactions at high pressure (80 bar controlled pressure) and 
temperature (300 °C). Accurate temperature measurement was 25 

achieved by inserting a thermometer into one reference vessel. 
Additionally, the surface temperatures of all vessels could be 
monitored by IR. Pressure was monitored by a load-cell-type 
simultaneous hydraulic pressure sensing system for all vessels, 
with monitoring of the highest pressure level and pressure 30 

increase. The reactor’s built-in electronics allowed reaction 
control in a temperature vs. time mode. After irradiation, the rotor 
was cooled to approximately 40 °C within 20 minutes. 
 
General Procedure for the MW-NCW Experiments. A quartz 35 

vessel (80 ml) fitted with a Teflon-coated stirring bar was loaded 
with a PEtOx 200 kDa solution (0.48 M amide concentration) 
containing NaCl (0.03 M), for a total volume of 15 ml. The vessel 
was sealed and inserted into the 8-position rotor at position 1. 
Another 80 mL quartz vessel was fitted with an identical stirring 40 

bar and filled with NaCl solution (0.03 M, 15 mL). After sealing, 
this vessel was placed at position 5. Additionally, two sealed 
vessels containing only NaCl 0.03M solution were placed at 
positions 3 and 7 (as the rotor top plate contains the hydraulic 
system for simultaneous pressure sensing it is important to charge 45 

the rotor symmetrically; four fitted positions are necessary to 
achieve a flat position of the plate to guarantee accurate pressure 
measurement). After the vessels had been fixed by tightening the 
screws of the rotor top plate, the temperature probe was inserted 
into vessel 1. Finally, the rotor was closed with the protection 50 

hood and placed inside the cavity of the microwave reactor. 

Kinetics investigations for the Hydrolysis of poly(2-ethyl-2-
oxazoline) (PEtOx) 3 kDa  

Synthesis of poly(2-ethyl-2-oxazoline) 3 kDa. PEtOx with a 
DPn of 30 was synthesized via cationic ring-opening 55 

polymerization of EtOx. A 4 M solution of the monomer was 
prepared in acetonitrile together with methyl tosylate, resulting in 
a monomer to initiator ratio of 30. The solution was heated for 40 
min. at 100 ºC under microwave irradiation, calculated to reach 
ln([M]0/[M]t) = 4 (98% conversion),31 cooled down to 40 ºC, and 60 

quenched by the addition of NaOH/H2O ensuring full 
deprotonation of the formed propionic acid making sure that it is 
not lost during solvent evaporation and can quantitatively be 

detected by NMR. The synthesized polymer was analyzed by 
SEC to determine the molar mass distribution and dispersity (Đ), 65 

and by 1H NMR spectroscopy in CDCl3 to ascertain near 
quantitative monomer conversion. The resulting homopolymer 
was dried under reduced pressure, redissolved in dichloromethane 
and purified by precipitation in cold diethyl ether.  
 70 
1H NMR (300 MHz, CDCl3, δ): 3.80 – 3.28 (4H, -CH2-CH2-N-), 
3.1 – 2.8 (3Hini, CH3-NCOCH2CH3), 2.45 – 2.13 (2H; -NCOCH2-
CH3), 1.15 – 0.95 (3H; -NCOCH2CH3). 
PEtOx30: Mn, 

1
H-NMR = 2900 Da. Mn, DMA-SEC = 6000 Da; ĐDMA-SEC 

= 1.07. Mn, HFIP-SEC = 3300 Da; ĐHFIP-SEC = 1.55. 75 

 
Acidic Hydrolysis of poly(2-ethyl-2-oxazoline) 3kDa. The 
hydrolysis kinetics were performed either in 4 mL pressure tubes 
(Ace glass Inc.) in an oil bath, or in a monomode microwave 
synthesizer. The desired total volume in each vial (2-5 ml 80 

microwave vial) was 3 mL with a concentration of 1M HCl(aq). 
Therefore 0.25 mL of a 36 wt.% (11.96 M HCl(aq)) solution was 
mixed with 2.75 ml of PEtOx 3 kDa stock solution (amide 
concentration = [A] = 0.48 M). The vials were heated for 
different times at temperatures ranging from 120 ºC to 220 ºC. 85 

Upon completion of the desired reaction time, the obtained 
reaction mixture was cooled down by compressed air and made 
basic with 1 mL of a 4 M NaOH(aq) solution to a pH of 8-9. 
Subsequently, the samples were freeze dried for HFIP-SEC and 
1H-NMR spectroscopy.  90 

To determine the hydrolysis kinetics at 180 ºC with different HCl 
concentrations, a stock solution of PEtOx 3kDa (0.53 M amide 
concentration) was prepared. A 18 mL portion was taken and the 
necessary amounts of 36 wt.% HCl(aq) were added, completing 
the volume to 20mL with milli-Q water to obtain the desired 95 

HCl(aq) concentration and 0.48 M amide concentration. The work 
up and analysis were performed analogously as for the hydrolysis 
with 1 M HCl concentration (vide supra). 
 
1H-NMR characterization to calculate the Hydrolysis 100 

Conversion. The conversion is calculated from 1H-NMR spectra 
in deuterated methanol, using the signals of the hydrolysis 
products. All the signals described for PEtOx are present, 
together with the signals correspondent to the respective 
hydrolysis products (see Scheme S1). 105 

P[(EtOx30-x)-co-(EI)x]: 
1H NMR (300 MHz, CD3OD, δ): PEtOx30 

+ hydrolysis products: 3.80 – 3.28 (4H, -CH2-CH2-N-), 3.00 – 
2.65 (4H, -NH-CH2-CH2-), 2.45 – 2.13 (2H; -NCOCH2-CH3), 
2.20 – 2.00 (CH3CH2COOH), 1.20 – 0.85 (3H, -NCOCH2CH3, 
3H, CH3CH2COOH).  110 

The calculation method used for determining the composition is 
based on the integral values (I), as displayed in the following 
equations: 

  

% Conv. PEtOx = 
Iሾܲܫܧ	ܾܾ݁݊݇ܿܽሿ

Iሾܲܫܧ	ܾܾ݁݊݇ܿܽሿ  Iሾܲݔܱݐܧ	ܾܾ݁݊݇ܿܽሿ
×100 

% Conv. PEtOx = 
Iሾܲܫܧ	ܾܾ݁݊݇ܿܽሿ

2ሺIሾݔܱݐܧ	ܪܥଶሿሻ  Iሾܲܫܧ	ܾܾ݁݊݇ܿܽሿ
×100 

The reported degree of hydrolysis was calculated by the average 115 

of the results obtained via these equations. The conversion values 
calculated from these equations were found to differ by less than 
5%. 
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