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Abstract 12 

In this work, the degradation of azo dye methyl orange in model aqueous solutions byUVC 13 

light-inducedpersulfate oxidation was studied.Five operating parameters that mayinfluence 14 

decolorization kinetics were evaluated, namely, methyl orange (MO) (5-50 mg/L) and sodium 15 

persulfate (SPS) (50-150 mg/L) concentration, reaction time (up to 60 min), (un-buffered) 16 

solution pH (3-9) and the addition of NaCl (0-500 mg/L). The process was simulated applying 17 

and comparing two methodologies, namely a two-level factorial design and artificial neural 18 

networks (ANN).It was found thatMO concentration is the most influential parameter 19 

followed by the reaction time and SPS concentration, while solution pH and the addition of 20 

sodium chloride arestatisticallyless significant; this order of significance was predicted by 21 

both methodologies.ANNcan more accurately (i.e. in terms of R
2
, MSE and residuals) 22 

simulate the process than factorial design, although they need significantly larger sets of data 23 

and computational time.  24 

 25 

Keywords:process simulation;UVC/persulfate; azo dyes; decolorization; operating 26 

parameters 27 

28 
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1. Introduction 29 

Azo dyes and azo derivatives constitute about half of the global production of synthetic textile 30 

dyes because of their resistance to sunlight, water and other undesirable conditions. 
1-3

 Dye-31 

containing effluents is an environmental concern since the color leads to visual pollution, 32 

while some dyes may have carcinogenic and/or teratogenic effects on public health. 
1-

33 

4
Efficientdecolorization of wastewaters is one of the significant treatment problems as 34 

dyesare visible even at minute concentrations. Since most of the dyes are synthetic and 35 

designed to resist chemical and photochemical degradation, they are found to be resistant 36 

toconventional treatment processes.
1-6

 37 

Methyl orange (MO) is a commonly used, water-soluble azo dye. In general, 15% of MO is 38 

released from dyeing operation processes and ultimately enters the waste stream. 39 

In recent years, various efforts are being made to eliminate or effectively remove dyes; among 40 

them, advanced oxidation processes (AOPs) are a viable alternative option for the treatment 41 

of recalcitrant wastewaters.
7
 The most common AOPs that have been applied for the 42 

decomposition of dyes include photocatalysis,
8-11

 electrochemical oxidation,
12,13

 ozone 43 

oxidation,
14-16

Fenton and photo-Fenton oxidation,
17,18

 ultrasound
19,20

and the UV/H2O2 44 

process.
21,22

 45 

Just recently, sulfate radical-induced AOPs have gained increasing attention. The sulfate 46 

radical has a significantly high reduction potential of 2.6 V, slightly lower than that of 47 

hydroxyl radical (2.9 V).
23-26

Like the latter, it is non-selective and can quickly degrade most 48 

of the organic pollutants found in waters.
23,24

 49 

One of the advantages of persulfate is that it can be activated in many ways including the 50 

presence of transition metals (usually iron), heat, microwaves, alkaline conditions or 51 

ultraviolet radiation.
23-26 

52 

 53 
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Heat2

2 8 4UV
S O 2SO       (1) 54 

2 2 2 3

2 8 4 4S O Fe SO SO Fe       
  

(2) 55 

OH2 2

2 8 2 4 4 2S O 2H O 3SO SO O 4H


        
 

(3)  56 

 57 

In recent years, there is a growing interest in the research community regarding theapplication 58 

of statistical methods for the simulation and optimization of AOPs.
27,28

 Among them, the 59 

factorial design is often preferred due to a number of advantages such as simplicity, the 60 

relatively small number of experiments required and the possibility to interpret the physical 61 

meaning of the system.
27-30

On the other hand and as more and more computing power is 62 

becoming available, more complex, non-linear models,such as the artificial neural networks 63 

(ANN), are employedto simulate wastewater treatment.
31-33

 64 

In this perspective, the objective of the present study was to investigate the degradation of 65 

MOin model aqueous solutions by UVC light-activated persulfate oxidationwith regard to 66 

identification of the key operating parameters that influence decolorization kinetics. This was 67 

done applyingand comparing two statistical approaches, namely factorial design and ANN. 68 

 69 

2. Experimental and Analytical 70 

2.1 Chemicals 71 

Methyl Orange (C14H14N3NaO3S, CAS 547-58-0, Color Index Number: 13025)was purchased 72 

from Fluka and used as received. Sulfuric acid, sodium chloride and sodium hydroxide were 73 

purchased from Sigma-Aldrich, while sodium persulfate (SPS) was purchased from Riedel 74 

De Haen. Ultrapure water (Millipore) was used throughout the experimental procedure.  75 

 76 

2.2 UVC photodegradation experiments 77 
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UVC irradiation was provided by a 9 W, low pressure mercury lamp (Radium, Puritec, UVC - 78 

LPC 9), which emits predominately at 254 nm.The photon flux of the lamp was determined 79 

actinometrically using 2-Nitrobenzaldehyde
34

 and it was found equal to 4.57 × 10
−6

einstein/s. 80 

The UVC lamp was placed inside a cylindrical quartz glass sleeve. UVC irradiation 81 

experiments were conducted in an immersion well, batch type, laboratory scale, cylindrical 82 

reaction vessel (length: 310 mm, internal diameter: 73 mm, volume capacity: 600 mL) 83 

purchased from Ace Glass (Vineland, NJ, USA). The reaction mixture was placed in the 84 

cylindrical reaction vessel and the UVC lamp, with its quartz glass sleeve, was immersed 85 

inside the reaction mixture. Temperature was left uncontrolled during the course of the 86 

reaction and it varied between 24ºC and 28ºC. The external reaction vessel was covered with 87 

aluminium foil to reflect radiation exerting the outer wall of the reaction vessel. In a typical 88 

run, 600 mL of the aqueous solution were introduced in the reaction vessel and the 89 

appropriate amount of sodium persulfate and/or sodium chloride when required, was added to 90 

achieve the desirable oxidant concentration in the range 50-150 mg/L.  91 

The solution was magnetically stirred and subsequently the UVC lamp was turned on.  92 

At specific time intervals about 2 mL of the reaction solution were withdrawn in vials which 93 

were immediately placed in an ice bath (4°C) to quench any further reactions. 94 

 95 

2.1 Decolorization 96 

MO concentration was followed on a JASCO V530 spectrophotometer. The extent of 97 

decolorization (Dec) that had occurred was computed as follows: 98 

 99 



 


700

350

700

350

700

350

o

to

A

AA
Dec     (4) 100 

 101 
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whereAo and At is the absorbance at t=0 and t=t, respectively averaged over the 350-700 nm 102 

range; this was done to minimize the effect of a possible spectrum shifting due to pH change 103 

during the reaction. 104 

Total  organic carbon (TOC) was measured by direct injection into an Aurora 1030 W TOC 105 

analyzer. 106 

 107 

3. Results and discussion 108 

3.1 Application of two-level factorial design 109 

A statistical approach was chosen based on a factorial experimental design that would allow 110 

us to infer about the effect of the variables with a relatively small number of experiments.
27,28

 111 

The independent variables of the experimental design are presented in Table 1. Each one of 112 

the five variables received two values, a high value (indicated by the plus sign) and a low 113 

value (indicated by the minus sign).The substrate and oxidant concentration, reaction time and 114 

solution pH were chosen as independent variables since they typically affect the advanced 115 

oxidation of most organic contaminants, while NaCl was chosen since it constitutes a 116 

common chemical in dye-containing wastewaters. The range of these parameters was selected 117 

on the basis of preliminary experiments. 118 

The experimental design followed in this work was a full 2
5
 experimental set, which required 119 

32 experiments. The order each experiment was performed was selected randomly and is 120 

shown in Table 2, along with values of each independent variable for each run. 
27-29

 121 

In this work, the Lenth’s method was used for the assessment of the significance of the main 122 

and interaction effects in un-replicated factorial designs.
35

The method assumes that there are 123 

m independent effects, and that they all have the same variance. According to this method the 124 

pseudo-standard error (PSE) is estimated. First, the median of the absolute values of the 125 

effects is determined and then s0 = 1.5 × median. Subsequently, any estimated effect 126 
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exceeding 2.5 × s0 is excluded and the new median and PSE = 1.5 × median are 127 

calculated.
27,28

Once PSE has been obtained, it is multiplied by a factor t0.95,dthat is obtained 128 

from tables of quantiles of the t-distribution for common values of m and degrees of freedom, 129 

d = m/3, to estimate a margin of error (ME) for the effects.
27,28

 130 

All estimated effects (given in Table 3) greater than the ME, in absolute values, are deemed 131 

significant. On the contrary, all other effects can be attributed to random statistical error.
27

 132 

The Pareto chart is a useful presentation of the estimated effects and their statistical 133 

importance.
28,29

 The Pareto chart displays the absolute values of the effects in a bar chart, as 134 

well as the decision line for the ME. The Pareto chart of the effects for the MO 135 

photodegradation is shown in Fig. 1. There are five effects that are greater than the ME 136 

decision threshold. Among them, the three most significant ones are the MO initial 137 

concentration, the treatment time and the concentration of sodium persulfate (SPS). Treatment 138 

time and sodium persulfate has a positive effect on decolorization. This means that an 139 

increase in their level brings about an increase in the MO degradation. However, MO initial 140 

concentration yields a negative effect regarding decolorization both as individual effect and 141 

through its interaction with time and sodium persulfate, indicating that an increase in its level 142 

brings about a decrease in the photodegradation of the dye. A decrease of conversion with 143 

increasing substrate concentration is common in most AOPs and denotes kinetics below first 144 

order (usually approaching zero order). In brief, this is due to the fact that the concentration of 145 

reactive radicals is finite for a fixed set of operating conditions and can be assumed constant 146 

during the early stages of the reaction.
36

At relatively high substrate-to-radicals concentration 147 

ratios, the latter are likely to become the limiting reactant, thus explaining the observed 148 

behaviour. As the reaction proceeds, this effect may become more pronounced due to the 149 

parallel, competitive reactions of transformation by-products with the non-selective radicals. 150 

Another consequence of the increased dye concentration has to do with the fact that the 151 
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solution becomes less permeable to UVC light and, consequently, less sodium persulfate 152 

reacts to generate sulphate radicals.
21 

This is important since as can be seen in Fig. 1, an 153 

increase of sodium persulfate has a positive effect on decolorization. 154 

According to the factorial design analysis both pH and sodium chloride appear to be 155 

statistically insignificant for process efficiency at least for the range of parameters studied. 156 

According to Bennedsenet al.
37

 the presence of chloride can lead to different results since it 157 

can act either as radical scavenger or can participate in propagation reactions with oxidants 158 

and, thereby, not be entirely unproductive. The initial pH appears to have insignificant effect 159 

despite that fact that the production rate of sulphate radicals is pH-sensitive; however, as the 160 

solutions were not buffered to their initial pH values, pH either gradually dropped from basic 161 

to acidic or remained acidic during MO degradation, thus minimizing its effect. 162 

Based on the variables and interactions, which are statistically significant, a model describing 163 

the experimental response of MO photodegradation was constructed(R
2
=0.95) as follows: 164 

1 2 5

1 5 1 2

Dec (%)=-0.2547×X +0.0967×X 0.1237×X

                 -0.0882×X ×X -0.0775×X ×X +0.314



  

(5) 165 

where X1, X2 and X3 are the transformed forms of the independent variables MO, SPS and 166 

time, respectively according to:  167 

   (6) 168 

andZi are the original, untransformed values. 169 

Adequacy of the model was checked constructing the normal plot of residuals (Fig. 2).All 170 

points lie close to the straight line confirming that effects other that those considered in the 171 

model may be explained by random noise. 
27-29

 172 

It should be pointed out that the above linear model may be meaningful only for the range of 173 

conditions within which it has been developed. Since there are also other parameters that can 174 

influence the process (i.e. the water matrix including the presence of bicarbonates, residual 175 

2

2

lowhigh

lowhigh
i

i ZZ

ZZ
Z

X






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organic matter and other competitors for sulfate radicals), the above model should be used 176 

with particular caution. 177 

Finally, the relative significance of the input variables was evaluated as follows and the 178 

results are summarized in Table 4: 179 

 180 

i

i

X
Relative significance

X

       (7)   

 181 

 182 

where Xi is the estimated effect for each significant variable according to the Pareto chart, 183 

while Σxi is the sum of the effects of all significant variables (excluding the constant term). 184 

 185 

3.2ANN modelling 186 

A neural network consists of artificial neurons that are grouped into layers and interconnected 187 

in a variety of structures. The strength of these interconnections is determined by the weight 188 

associated with the neurons.
31-33 

In this work, a three-layered back propagation ANN was 189 

chosen comprising an input layer (independent variables), an output layer (dependent 190 

variable) and a hidden layer. A tangent sigmoid (tansig) transfer function was employed to 191 

activate the hidden layer, while a linear (purelin) function for the input/output layers. The 192 

Levenberg-Marquardt back propagation algorithm was chosen for training purposes.
32,33 

193 

The input layer includes five variables which are shown in Table 1 alongside the respective 194 

range of values, while MO decolorization is the dependent variable of the output layer. A set 195 

of 192 experimental data was divided into training (70%, 134 data), validation (15%, 29 data) 196 

and test (15%, 29 data) subsets in order to improve ANN generalization and to avoid a 197 

common problem related to ANN, i.e.overfitting. In this work the Neural Network Toolbox of 198 

Matlab R2011 mathematical software was employed for the prediction of MO degradation. 199 
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A crucial factor for the development of an ANN is the topology, i.e. the optimum number of 200 

neurons. This number can be derived minimizing the mean square error, MSE, which is 201 

defined as follows: 202 

N

)y(y

MSE

Ni

1i

2

expi,p redi,






      (8) 203 

whereyi,pred and yi,exp are the predicted and experimental values of the dependent variable, 204 

respectively and N is the number of data. 205 

In this work, a trial and error approach was followed, i.e. a series of topologies were 206 

employed, in which the number of neurons was varied between 1 and 10. Each topology was 207 

repeated at least 10 times to avoid random correlation due to the random initialization of the 208 

weights. As seen in Fig.3, MSE is 0.0172for just one neuron and it is minimized to 0.00176 209 

for five neurons; the resulting ANN is schematically illustrated in Fig. 4. 210 

Fig. 5a shows a comparison between the measured MO decolorization and the predicted 211 

values to test the precision of the ANN model; there are two lines corresponding to (i) the 212 

perfect fit, y=x (i.e. experimental and predicted values would be identical), and (ii) the actual 213 

fit with a regression coefficient R
2
=0.988, which implies a very good fit. 214 

Finally, the relative significance of the input variables was evaluated using the neural weight 215 

matrix and the following equation proposed by Garson
38

 and the results are summarized in 216 

Table 4. 217 

    (9) 218 

 219 

Where Ij is the relative significance of the j
th

 input variable on the output variable, Ni and Nh 220 

1 1

1 1 1

(( / ) )

( / )

m Nh Ni
ih ih ho

jm km mn

m k

k Ni m Nh Ni
ih ih ho

km km mn

k m k

w w w

Ij

w w w



 

 

  




 

 
 

 

  
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are the numbers of input and hidden neurons, respectively and w is the connection weight. 221 

The subscripts k, m and n refer to input, hidden and output neurons, respectively, while the 222 

superscripts i, h and o refer to input, hidden and output layers, respectively. For the range of 223 

parameters studied, [MO] is the most influential variable (33.5%) followed by reactiontime  224 

(27.3%) and [SPS] (23.2%), while pH and sodium chloride concentration are far less 225 

significant for the process. 226 

 227 

3.3Comparison between artificial neural networks and factorial design 228 

Fig. 5b shows a comparison between the measured MO decolorization values and those 229 

predicted by the ANN and factorial design approaches for representative runs.From a strictly 230 

“mathematical” point of view (i.e. in terms of R
2
, MSE and residuals),ANN simulate better  231 

the process, which is due to its non-linear behaviour, at least within the range of the operating 232 

parameters studied. In the case of the factorial design though, one should not ignore (i) the 233 

ease of interpretation of the results and the likely correlation with the physical meaning of the 234 

system under consideration, and (ii)the fact that reliable results can be produced using a very 235 

small number of experiments and measurements, thus saving time and reducing costs.  236 

Although ANN are generally considered as black box in the literature, it is interesting to 237 

notice that the sensitivity analysis shown in Table 4gives exactly the same order of the 238 

significant factors for both ANN and factorial design. This is also true when the factorial 239 

design results are re-analyzed ignoring all interactions (i.e. simple first order analysis). This is 240 

an indication that ANN can also be used to provide some valuable information about the 241 

nature of the system and not only as a tool to simulate and predict data series. 242 

 243 

4. Conclusions 244 

The major conclusions drawn from this study are summarized as follows: 245 
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- Process simulation was performed by means of factorial design and artificial neural 246 

networks. Methyl orange concentration is the most important parameter followed by the 247 

reaction time and sodium persulfate concentration, while the pH and the addition of 248 

sodium chloride appear to be statistically less significant 249 

- UVC/SPS is an effective process for the degradation of methyl orange.The optimal values 250 

of the operating parameters at the experimental conditions in question were found to be: 251 

[MO]=5 mg/L, [SPS]=150 mg/L, pH=3, without addition of sodium chloride and 10 min of 252 

treatment time. The decolorization of MO approached 100% under optimal conditions, 253 

while the TOC removal was 60%.The UV/SPS process seems to be competitive to 254 

otherphoto-assisted AOPs like the photo-Fenton process [17], where the time needed to 255 

achieve the degradation of 10 mg/L MO was 15 minand the UV/H2O2process [22] where 256 

the time needed to degrade 20 mg/L of the azo dye reactive orange 16 in the presence of 25 257 

mmol/L H2O2was 20 min. 258 

- Artificial neural networks have better performance than factorial design for the simulation 259 

of the process (R
2
=0.988 and 0.95for ANN and two-level factorial design, respectively), 260 

although they need significantly larger sets of data (i.e. 192 data points versus 32 for 261 

factorial design) and computational time. 262 

- Interestingly, the sensitivity analysis concerning the significance of the studied variables 263 

gives comparable results for both methodologies. 264 

 265 
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Table 1.Range of the factorial design and ANN input variables used in this work. 379 

Input variable Factorial design ANN 

[Methyl orange]  5 – 50  mg/L 5 – 50  mg/L 

[Sodium persulfate] 50 – 150 mg/L 50 – 150 mg/L 

Reaction time 3 – 10 min 0 – 60 min 

pH 3 – 9 3 – 9 

[Sodium Chloride]  0 – 500 mg/L 0 – 500 mg/L 

 380 

381 
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Table 2. Design matrix of the 2
5
 factorial design and observed response. 382 

 

Order of 

running 

experiments 

Level value of each variable in the experimental 

run 

Decolorization 

 

Measured 

(experimental) 

value 

(%) 

 

Factorial 

Model 
 

MO0 

 

SPS0 

 

pH0 

 

NaCl 

 

Time 

22 - - - - - 0.149 0.246 

 11 + - - - - 0.020 0.023 

  3 - + - - - 0.666 0.541 

27 + + - - - 0.034 0.008 

12 - - + - - 0.148 0.111 

10 + - + - - 0.026 -0.012 

21 - + + - - 0.485 0.534 

20 + + + - - 0.021 0.102 

19 - - - + - 0.331 0.272 

5 + - - + - 0.019 0.039 

32 - + - + - 0.345 0.503 

13 + + - + - 0.025 -0.040 

23 - - + + - 0.138 0.144 

31 + - + + - 0 0.011 

2 - + + + - 0.589 0.503 

25 + + + + - 0.042 0.060 

7 - - - - + 0.673 0.669 

18 + - - - + 0.056 0.093 

8 - + - - + 1 1.007 

30 + + - - + 0.108 0.121 

14 - - + - + 0.420 0.477 

4 + - + - + 0.113 0.001 

17 - + + - + 0.983 0.942 

9 + + + - + 0.112 0.157 

29 - - - + + 0.859 0.712 

24 + - - + + 0.069 0.126 

28 - + - + + 0.910 0.986 

1 + + - + + 0.125 0.089 

26 - - + + + 0.435 0.526 

6 + - + + + 0.014 0.040 

15 - + + + + 0.963 0.927 

16 + + + + + 0.159 0.132 

 383 

 384 

 385 

 386 

 387 

388 
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Table 3. Estimated effects of the 2
5
 factorial design for MO photodegradation. 389 

 

Effect MO 

photodegradation 

Average effect 

 

Main effects 

MO 

SPS 

pH 

NaCl 

Reaction time 

 

Two-factor interactions 

MO X SPS 

MO X pH 

MO X NaCl 

MO X Reaction Time 

SPS X pH 

SPS X NaCl 

SPS  X Reaction time 

pH X NaCl 

pH X Reaction time 

NaCl X Reaction time 

 

Three-factor interactions 

MO X SPS X pH 

MO X SPS X NaCl 

MO X SPS X Reaction time 

MO X pH X NaCl 

MO X pH X Reaction Time 

MO X NaCl X Reaction Time  

SPS X pH X NaCl 

SPS X pH X Reaction Time 

SPS X NaCl X Reaction Time 

pH X NaCl X Reaction Time 

 

Four-factor interactions 

MO X SPS X pH X NaCl 

MO X SPS X pH X Reaction Time 

MO X SPS X NaCl X Reaction Time 

MO X pH X NaCl X Reaction Time 

SPS X pH X NaCl X Reaction Time 

 

Five-factor interactions 

MO X SPS X pH X NaCl X Time 

 

Lenth’s PSE 

0.3140 

 

 

-0.5093 

0.1935 

-0.0463 

0.0006 

0.2475 

 

 

-0.1549 

0.0503 

-0.0052 

-0.1765 

0.0641 

-0.032 

0.0212 

0.0033 

-0.0289 

0.0081 

 

 

-0.0574 

0.0555 

0.0029 

-0.0132 

0.0349 

-0.0088 

0.0661 

0.0297 

0.0117 

-0.0263 

 

 

-0.0412 

-0.0273 

0.0021 

0.0156 

-0.0182 

 

 

0.0290 

 

0.0401788 

 390 
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Table 4.Relative significance of the input variables. 391 

Input variable Factorial design Factorial design 

(no interactions) 

ANN 

[MO] 38% 50.1% 33.5% 

[Sodium persulfate] 15% 19.2% 23.2% 

Reaction time 18% 24.7% 27.3% 

pH 3% 4.7% 8% 

[NaCl] 0.3% 0.3% 8% 

[MO]  x Time 14% - - 

[MO] x [Sodium 

persulfate] 

12% - - 

 392 

 393 

 394 

 395 

 396 

 397 

 398 

 399 

 400 

 401 

 402 

 403 

 404 

 405 
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Figure 1. Pareto chart of the effects for MO photodegradation. White bars: positive effects; 407 
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 415 

 416 

Figure 1. Pareto chart of the effects for MO photodegradation. White bars: positive 417 

effects; hatched bars: negative effects. The line is drawn at the margin of error (ME). 418 
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 421 

Figure 2. Normal probability plot of the residuals at 95% confidence interval 422 

for MOphotodegradation. 423 
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 426 

Figure 3.Optimization of number of neurons in relation to MSE. 427 
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 430 

Figure 4. Structure of the optimized ANN used in this work. 431 

 432 
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(a)  443 

 444 

(b)  445 

 446 

Figure 5. Comparison between measured and predicted values of the dependent 447 

variable. (a) ANN; (b) ANN versus factorial design. 448 
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