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A one-pot, two step synthesis of highly substituted imidazoles 

has been carried out in good to excellent yield for the first 

time via a cascade intermolecular aza-SN2’-intramolecular 

aza-Michael addition involving a variety Morita-Baylis-

Hillman acetates of nitroalkenes and amidines in the presence 

of DABCO at room temperature. The synthetic and biological 

utility of the products has been demonstrated. In particular, 

some of the imidazoles exhibited potent activity against T. 

cruzi, the etiological agent of Chagas disease.  

Imidazole is an important heterocycle which is an integral part of 

numerous bioactive compounds and natural products.1 Amino acid 

histidine, neurotransmitter histamine, purine bases adenine and 

guanine and anti-ulcer agent omeprazole possess an imidazole 

moiety. Various biological properties of imidazoles,2 such as 

antibacterial, antifungal, analgesic, antitubercular, anticancer, anti-

HIV, antiarthritic and antitumor, to name a few, have been 

extensively investigated.3 Imidazole containing peptides for the 

treatment of eye and skin diseases4 and many imidazole based 

marine alkaloids5 have been reported in the literature. The role of 

imidazoles as co-ordinating ligands6 and as precursors to stable 

carbenes7 and ionic liquids8 is well-documented. 

   Since the early reports on the synthesis of imidazoles by Debus,9 

Radziszewski10 and Robinson11 via a three component reaction of 

1,2-dicarbonyl compound, aldehyde and ammonia, and Bredereck 

synthesis using α-haloketones/diketones and formamide,12 many 

multi-component reactions13 and several new approaches involving 

reaction of α-haloketones with amidines,14 and metal-mediated15-17 

reactions have offered access to functionalized and fused 

imidazoles.18 The reactions of amidines with electrophiles such as α- 

haloketones,14 acetylenes16 and nitroalkenes17 are indeed powerful 

methods. But, the lachrymatory nature of haloketones and the 
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requirement of metal catalysts, often in conjunction with an oxidant, 

in the reaction with acetylenes and nitroalkenes as well as limited 

functional group diversity are obvious drawbacks. 

   In the last few years, synthesis and evaluation of imidazoles 

against Trypanosoma cruzi, a parasite that causes Chagas disease 

have been described (Figure 1).19 Potential compounds were 

obtained from redox centre modification of quinones by the reaction 

with aromatic aldehydes in the presence of ammonium acetate.20-21 

Some of them (Figure 1) exhibited high activity against T. cruzi, 

with IC50/24 h = 37.0 and 15.4 µM, respectively.21 Studies on the 

mechanisms of action of these compounds demonstrated a 

mitochondrial swelling, abnormal chromatin condensation and 

kDNA disruption, as well as the presence of autophagy-related 

structures, suggesting the induction of this process in the parasite 

death. Ultrastructural, flow cytometric, and biochemical analysis 

suggested that these imidazoles interfere with the energetic 

metabolism especially in the mitochondrion and also induce DNA 

fragmentation.22  

 

Fig. 1 Imidazoles with potent activity against T. cruzi 

   In view of the above, we envisioned a convenient entry into highly 

substituted and potentially bioactive imidazoles involving a one-pot 

reaction of Morita-Baylis-Hillman (MBH) acetates of nitroalkenes 

with amidines under mild conditions. The remarkable 1,2- and 1,3-

bielectrophilic character of nitroallylic acetates has inspired us and 

others in the synthesis of several heterocycles23 and carbocycles24 in 

recent years.25 However, construction of imidazole skeleton by 

exploiting the bielectrophilic reactivity of MBH acetate 1 with a 1,3-

binucleophile such as amidine 2 and studies on their biological 

properties remain unreported hitherto.26 
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   We began our investigations by treating MBH acetate27 1a with 

amidine hydrochloride 2a in the presence of 1.5 equiv of KOH in 

methanol (Table 1, entry 1). Although the reaction was complete in 2 

min, the reaction mixture was too complex for further analysis. 

Changing the solvent from methanol to THF was found beneficial as 

the desired product 3a was isolated in 50% yield (entry 2). Since the 

role of base was primarily to neutralize amidine hydrochloride 2a, it 

did not appear necessary to use a strong base such as KOH for this 

purpose. Therefore, we screened milder inorganic bases such as 

Cs2CO3 and K2CO3 (entries 3-4) and an organic base DABCO 

(entries 5-9). Use of 2.5 equiv of Cs2CO3 in THF was found suitable 

for the reaction which delivered imidazole 3a in 90% yield in 7 h 

(entry 3). Same amount of K2CO3 (2.5 equiv) in THF did not 

improve the yield (89%) and required longer reaction time (entry 4). 

Subsequently, we switched to amine base DABCO (2.5 equiv) in 

THF which provided imidazole 3a in 92% yield in 7 h (entry 5). 

Different solvents were then screened for the DABCO mediated 

reaction of MBH acetate 1a with amidine hydrochloride 2a (entries 

6-8). Considerable rate acceleration was observed, though without 

further improvement in the yield (92%), when the reaction was 

conducted in acetonitrile (entry 6). Solvents such as dichloromethane 

and toluene were not found suitable for our reaction both in terms of 

the reaction time and the isolated yield (entries 7 and 8). Lower yield 

(79%) and longer reaction time (12 h) were encountered when the 

base loading was lowered from 2.5 equiv to 1.5 equiv (entry 6 vs 

entry 9). Finally, 2.5 equiv DABCO in acetonitrile (entry 6) was 

identified as the optimal reaction condition for treating various MBH 

acetates 1 with amidinium salts 2 for the synthesis of substituted 

imidazoles 3-4 (Tables 2-3). 

Table 1 Optimization of reaction conditionsa  

 

Entry Base (equiv) Solvent Time % Yieldb 

1 KOH (1.5) CH3OH 2 min -c 

2 KOH (1.5) THF 40 min 50 

3 Cs2CO3 (2.5) THF 7 h 90 

4 K2CO3 (2.5) THF 12 h 89 

5 DABCO (2.5) THF 7 h 92 

6 DABCO (2.5) CH3CN 3 h 92 

7 DABCO (2.5) DCM 30 h 38 

8 DABCO (2.5) toluene 48 h 60 

9 DABCO (1.5) CH3CN 12 h 79 
aReactions were carried out with 0.2 mmol of MBH acetate 1a and 

0.24 mmol of amidine 2a. bAfter silica gel column chromatography. 
c Complex mixture. 

   Under the above optimized conditions, the scope of MBH acetate 1 

was first investigated using amidinium salt 2a (Table 2). MBH 

acetates bearing electron donating substituents at unhindered 

positions or no substituent in the aromatic ring 1a and 1c-f afforded 

corresponding imidazoles 3a and 3c-f in excellent yield (86-92%, 

entries 1, 3-6). On the other hand, those bearing hindered aryl 

groups, ortho-substituted and fused, 1b and 1j, respectively, 

delivered the imidazoles 3b and 3j in much lower yield (67-68%, 

entries 2 and 10). Similar yields were encountered for imidazoles 3g-

i which resulted from MBH acetates possessing deactivating haloaryl 

substituents 1g-i (65-68%, entries 7-9). Imidazoles bearing 

heteroaryl substituents 3k and 3l could be synthesized in 74% and 

62% yields, respectively, from MBH acetates 1k and 1l (entries 11-

12). Finally, representative examples of styrenyl and alkyl 

substituted imidazoles 3m and 3n were synthesized from MBH 

acetates 1m and 1n in 58-67%  yield (entries 13-14). 

Table 2 Scope of MBH acetates for the synthesis of imidazolesa 

 

 

 

Entry 1, R Time (h) 3 % Yieldb 

1 1a, 4-MeOC6H4 3 3a 92 

2 1b, 2,4-(MeO)2C6H3 4 3b 68 

3 1c, 3,4-(MeO)2C6H3 3 3c 86 

4 1d, 3,4-(OCH2O)C6H3 2 3d 91 

5 1e, 4-MeC6H4 3 3e 91 

6 1f, C6H5 4 3f 89 

7 1g, 4-FC6H4 2 3g 68 

8 1h, 4-ClC6H4 0.5 3h 67 

9 1i, 3-BrC6H4 0.5 3i 65 

10 1j, 1-Naphthyl 4 3j 67 

11 1k, 2-Furyl 7 3k 74 

12 1l, 2-Thienyl 2 3l 62 

13 1m, PhCH=CH 1.5 3m 58 

14 1n, Cyclohexyl 1 3n 67 
aReactions were carried out with 0.2 mmol of MBH acetate 1, 

0.24 mmol of amidine 2a and 0.5 mmol of DABCO. bIsolated 

yield after silica gel column chromatography. 

 

   Having investigated the scope of MBH acetates 1 in the synthesis 

of highly substituted imidazoles, we proceeded to demonstrate the 

scope of amidines 2 by treating a representative MBH acetate 1f 

with various amidines 2b-h (Table 3). Besides 2a (Table 2), reaction 

of various aromatic amidines 2b-2e with MBH acetate 1f was first 

investigated. Although aromatic amidine 2c with a strong electron 

withdrawing NO2 group provided a complex mixture  (entry 2), those 

with weakly electron donating (2b, entry 1) and withdrawing (2d-2e, 

entries 3-4) groups did indeed react well to give the products 4a and 

4c-d in good to excellent yield (entries 1 and 3-4). While parent 

formamidine 2h furnished a complex mixture (entry 7), other 

aliphatic amidines 2f-g reacted with MBH acetate 1f and provided 

imidazoles 4e-f in good to moderate yield (entries 5-6). 

Table 3 Scope of amidinesa 

 

  
Entry 2, R Time (h) 4 % Yieldb 

1 2b,4-MeC6H4 2 4a 69 

2 2c, 4-NO2C6H4 - 4b -c 

3 2d, 4-ClC6H4 1.5 4c 54 

4 2e, 3-ClC6H4 1 4d 88 

5 2f, CH3 1 4e 62 

6 2g, CH3S 1.5 4f 32 

7 2h, H - 4g -c 
aReactions were carried out with 0.2 mmol of MBH acetate 1f, 

0.24 mmol of amidine 2 and 0.5 mmol of DABCO. bIsolated 

yield after silica gel column chromatography. cComplex 

reaction mixture. 
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   A plausible mechanism for the formation of imidazoles of type 3 

or 4 is depicted in Scheme 1. Neutralization of amidinium salt 2 by 

DABCO and subsequent reaction of the free amidine 2 as 

binucleophile with MBH acetate 1 in an SN2’ fashion generates 

intermediate I, which on  intramolecular aza-Michael reaction in a 5-

exo-trig manner results in the initial cyclized product imidazoline II. 

A base facilitated elimination of HNO2 from imidazoline II affords 

the imidazoles 3 or 4. An alternative 6-endo-trig cyclization pathway 

leading to a dihydropyrimidine is not observed in these reactions. 

 
 

Scheme 1 Proposed mechanism for the formation of imidazoles  

 

   After synthesizing a library of imidazole derivatives, a 

representative imidazole 3d was subjected to LAH reduction to 

afford alcohol 6d in 74% yield whose structure was confirmed 

by single crystal X-ray analysis (Scheme 2). Basic hydrolysis of 

3a and 3d delivered imidazole carboxylic acids 5a and 5d in 

84% and 79% yields, respectively. The acids 5a and 5d were 

further converted to amides 7a and 7d in 75% and 72% yields, 

respectively, by treating with PCl5 followed by ammonia (g).   

 

Scheme 2 Synthetic transformations of imidazole esters   

 

Trypanocidal Activity Studies. The potential of our imidazole 

derivatives as trypanocidal compounds has been investigated by 

screening them against trypomastigote forms of T. cruzi (Table 4). 

The structures were separated into four different groups: (a) 

imidazoles with phenyl groups bearing electron withdrawing 

substituents; (b) imidazoles with R1 or R2 modified by alkyl, non-

aromatic, naphthalene and methylthio substituents; (c) imidazoles 

with heterocyclic substituents such as safrole-like, furan and 

thiophene ring, and, finally; (d) imidazoles with  phenyl groups 

bearing electron donating groups.    

   In general, imidazoles bearing electron withdrawing groups 

3f-g, 3i and 4d were less active than the standard drug 

benznidazole (IC50/24 h = 103.6 ± 0.6 µM), with IC50/24 h in 

the range of 187.5-561.7 µM. The imidazoles with modified R1 

or R2 such as 3j, 3m-n, 4e-f were also considered inactive or 

moderately active, e.g. 3n with IC50/24 h = 172.0 µM. The 

presence of heterocyclic ring was not beneficial in enhancing 

the trypanocidal activity and all the compounds 3d, 3k, 3l and 

6d were inactive against trypomastigote forms of T. cruzi. 

Finally, we observed the relevance of the presence of electron 

donating groups in the phenyl ring. All the imidazoles, viz. 

methoxy- and methyl- substituted ones, exhibited significant 

trypanocidal activity with the exception of 3c, which showed 

moderate activity. The activity of imidazoles with methoxy 

substituents 3a and 3b (IC50/24 h = 111.9 and 102.0 µM, 

respectively) is comparable to that of benznidazole, the drug 

used clinically against T. cruzi. Compound 3e was very active 

against T. cruzi with IC50/24 h = 51.1 µM. This substance is 

two times more active than benznidazole which is a very 

significant result and we are motivated to carry out further 

studies against the parasite that causes Chagas disease. 

 

Table 4 Activity (IC50/24 ha/µM) of imidazoles against the 

trypomastigote form of T. cruzi 

   
aMean ± SD of at least three independent experiments. 
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Conclusions 
Highly substituted imidazoles have been synthesized through a 

one-pot cascade reaction involving a [3+2] annulation of 

amidines with nitroallylic acetates. The annulation comprised 

an intermolecular aza-SN2’ substitution followed by an 

intramolecular aza-Michael addition. The imidazoles 

synthesized by the above methodology have been screened for 

their activity against parasite Trypanosoma cruzi that causes 

Chagas disease. While two of the compounds exhibited activity 

comparable to that of the standard (benznidazole), one of the 

compounds was two times more active thus prompting further 

studies in this area which will be reported in due course. 
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