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A new class of 9-amino-(9-deoxy) cinchona alkaloid-derived chiral phase-transfer catalysts bearing 

amino groups was developed by using the known cinchona alkaloids as starting materials. Due to the 

transformation of 9-hydroxyl group into 9-amino functional group, the catalytic performances were 

significantly improved by comparison with the corresponding first generation of phase-transfer catalysts, 

and the excellent yields (92–99%) and high enantioselectivities (87–96 %ee) were achieved in the 10 

benchmark asymmetric a-alkylation of glycine Schiff base. Based on the special contribution of amino 

group to high yield and enantioselectivity, the possible catalytic mechanism was conjectured. 

Introduction 

Phase-transfer catalysis (PTC) has long been recognized as a pra-

ctical and versatile methodology for organic synthesis in both in-15 

dustry and academia owing to its operational simplicity, mild rea-

ction condition, environmentally benign nature, and suitability for 

large-scale synthesis.1 Nowadays, various natural and non-natural 

asymmetric phase-transfer catalysts with excelent catalytic perfo-

rmances, such as cinchona alkaloid-derived quarternary ammoni-20 

um salts 2 and chiral N-spiro ammonium salts,3 have been develo-

ped, particularly in the last 20 years. Especially, the numerous 

structural modifications of cinchona alkaloid-derived quarternary 

ammonium salts concentrated on quinuclidine nitrogen atom and 

9-hydroxy group achieved excellent catalytic performance. Up to 25 

now, three successful generations of cinchona alkaloid-derived 

quarternary ammonium salts were reported. The simple N-benzyl 

cinchona alkaloid ammonium salts, introduced by O’Donnell in 

1989, were recognized as the first generation.4 Later the same 

group reported that the second generation of N-alkyl-O-alkyl cin-30 

chona alkaloid derivatives could lead to remarkably higher enan-

tiomeric excess.5 Finally, the most efficient third generation of N-

9-anthracenylmethyl-O-allyl quarternary ammonium salts were 

developed independently by Lygo and Corey,6 which achieved a 

breakthrough in the high enantioselectivity of alkylation and con-35 

jugate addition owing to the steric effect of the bulky 9-methylan-

thryl group.7  

 Despite all these successful results, there is always a need for 

new catalyst structures. Due to the available access to the first ge-

neration, the structural modification only at the quinuclidine ni-40 

trogen atom was expected to accomplish high and satisfactory ca-

talytic performance. Fortunately, two successful examples achie-

ved the considerably improved enantioselectivity in the asymme-

tric benzylation of N-(diphenylmethylene)glycine tert-butyl ester 

by using an aryl ketone and a benzotriazole moiety in substitution 45 

for N-benzyl substituent.8 Recently, Dixon reported bifunctional 

9-amino-(9-deoxy)-epi-cinchona-derived PTC catalysts bearing 

phase-transfer components (ammonium salts) and H-bond donor 

components (urea, amide and sulphonamide) through the structur-

al modifications of 9-amino group.9 In the enantioselective nitro-50 

Mannich reaction of amidosulfones, the good reactivity and high 

stereoselectivities (up to 24:1 dr and 95% ee) were obtained 

under optimal conditions. In this paper, we described our efforts 

toward the design of a family of new 9-amino-(9-deoxy)cinchona 

alkaloid-derived PTC catalysts bearing primary amino group with 55 

different configurations at the 9-position and N-benzyl substitu-

ents (Scheme 1), which could achieve the similar efficient cataly-

tic performances (92–99% and 87–96 %ee) as the third genera-

tion of N-9-anthracenylme-thyl-O-allyl quarternary ammonium 

salts in the benchmark enantioselective benzylation of N-(diphen-60 

ylmethylene)glycine tert-butyl ester.  
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Scheme 1 The synthetic route to 9-amino-(9-deoxy)cinchona alkaloid-

derived N-benzyl ammonium salts 

Results and discussion 

Synthesis of PTC catalyst 

Four 9-amino-(9-deoxy)cinchona alkaloids 1a-d bearing different 5 

substituent groups (R1, R2, R3 and R4) and possessing (8R, 9R), 

(8S, 9S)-configurations were prepared in 75–81% yields by Mis-

tunobu reaction according to the references. 10 After the primary 

amino group at the 9-position was protected by using Boc2O, N-

Boc-protected 9-amino-(9-deoxy)cinchona alkaloid-derived am-10 

monium salts 3a1‒d1 and 3a2‒d2 could be precipitated out and 

filtered from the reaction mixture in 60-80% yields upon the qua-

rternization of quinuclidine nitrogen atom using 4-(trifluorome-

thyl) or 3, 5-bis(trifluoromethyl)benzyl bromides, respectively in 

toluene at 65 ºC for 12 h. Finally, the targeted PTC catalysts a1‒ 15 

d1 and a2‒d2 bearing different substituents and (8R, 9R), (8S, 9S)-

configurations were prepared in 90–95% yields by the deprotec-

tion of N-Boc-amino group using TFA at room temperature for 3 

h (Scheme 1). 

The effect of aromatic substituent and configuration on 20 

catalytic performance 

Using PTC catalyst b2 as an example, the effect of solvent, temp-

erature, used amount of catalyst and species of base on catalytic 

performances were investigated in detail and offered the optimum 

conditions: 10 mol% b2, -40 ºC, 50% KOH and 12 h (ESI†). Thus, 25 

under these optimum conditions, the PTC catalysts a1–d1 and a2–

d2 with different structures including substituent groups and con-

figurations at 8, 9-positions were evaluated in the enantioselec-

tive benzylation of N-(diphenylmethylene)glycine tert-butyl ester. 

 From Table 1, it was found that the PTC catalysts b1, b2, d1 30 

and d2 with (8S, 9S)-configurations gave the better catalytic per-

formances including the yields (42–97%) and enantioselectivities 

(50–91 %ee) in ether/water biphasic system than the catalysts a1, 

a2, c1 and c2 with (8R, 9R)-configurations. It was worthy noting 

that the catalysts c1, c2, d1 and d2 (R1 = OCH3) produced the low-35 

er yields and enantioselectivities owing to their poor organoso-

lubilities in ether, compared with the catalysts a1, b1, a2 and b2 

(R1 = H). In addition, all catalysts a1–d1 and a2–d2 afforded good 

to excellent yields in toluene/water biphasic system (79–98%). 

Especially, the catalysts c1, c2, d1 and d2 (R1 = OCH3) afforded 40 

the improved enantioselectivities (65–79 %ee) in toluene/water 

biphasic system owing to their good organosolubilities in toluene 

(entries 5–8). Unfortunately, it was found the catalysts a1, a2, b1 

and b2 (R1 = H) gave the relatively lower enantioselectivities in 

toluene, although the good to excellent yields (80–98%) could be 45 

achieved. On the other hand, the modifications at the quinuclidine 

nitrogen atom would be effective in improving the enantioselecti-

vity. The PTC catalysts a2–d2 (R1 = OCH3) bearing 3, 5-bis(triflu-

oromethyl)benzyl moieties gave the better yields and enantiosele-

ctivities than the PTC catalysts a1-d1 (R1= H) with a 4-(trifluoro-50 

methyl)benzyl group, both in toluene/water and ether/water biph-

asic systems. 

 Taking into account the above mentioned considerations of the 

substituents attached to aromatic rings (R1, R2, R3 and R4) and the 

spatial configurations at 8 and 9-positions, (8S, 9S)-9-amino-(9-55 

deoxy)cinchonidine-derived ammonium salt (b2) bearing 3, 5-bis 

(trifluoromethyl) benzyl moieties produced the enantiomeric pro-

duct tert-butyl 3-phenyl-2-(diphenylmethyleneamino)propanoate 

in ether/water biphasic system with the highest enantioselectivity 

(91 %ee) in 97% yield (entry 4) . 60 

Table 1 The benchmark enantioselective benzylation of N-

(diphenylmethylene)glycine tert-butyl ester catalyzed by a1-d1 and a2-d2
a 

Entry Cat.                Yield (%)b %eec 

1 

 
a1 

(8R, 9R) 

 

 

76 
80d 

 

 

23 (S) 
30 (S) 

2 

 
a2 

(8R, 9R) 

 

 

85 
88d 

 

 

71 (S) 
67 (S) 

3 

 
b1 

(8S, 9S) 

 

 

94 
91d 

 

 

50 (R) 
43 (R) 

4 

 
b2 

(8S, 9S) 

 

 
97 

98d 

 

 
91 (R) 

85 (R) 

5 

c1 
(8R, 9R) 

 

 
37 

79d 

 

 

 
5 (S) 

30 (S) 

6 

 
c2 

(8R, 9R) 

 

 
43 

87d 

 

 
31 (S) 

77 (S) 

7 

d1 
(8S, 9S) 

 

 
42 

83d 

 

 
51 (R) 

65 (R) 

8 

d2 
(8S, 9S) 

 

 
48 

89d 

 

 
63 (R) 

79 (R) 

a
 Reaction conditions:N-(diphenylmethylene)glycine tert-butyl ester (0.1 

mmol), -40 ºC, 2 mL ether, 0.4 mL 50% aq. KOH, 10 mol% PTC Cat., 12 h. 
b
 

Isolated yield. 
c 
Determined by chiral HPLC with Daicel Chiralpak OD-H 65 

column. 
d
 Toluene as solvent. 
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Table 2 The scope of the enantioselective α-alkylation of N-

(diphenylmethylene)glycine tert-butyl ester using different electrophilesa 

Entry Product Time 

(h) 

Yield (%)b %eec 

1  

 
                     1 

 

 

5 

 

 

99 

 

 

90 (R) 

2 

 
                     2 

 
 

5 

 
 

99 

 
 

95 (R) 

3 

 
                     3 

 

 

5 

 

 

93 

 

 

96 (R) 

4 

 
                      4 

 

 
5 

 

 
97 

 

 
90 (R) 

5 

 
                      5 

 
 

5 

 
 

94 

 
 

90 (R) 

6 

 
                     6 

 

 

5 

 

 

92 

 

 

91 (R) 

7 

 
                      7 

 

 
4 

 

 
99 

 

 
90 (R) 

8 

 
                     8 

 
 

5 

 
 

96 

 
 

92 (R) 

9 

 
                     9 

 

 

8 

 

 

95 

 

 

91 (R) 

10 

 
                     10 

 

 
5 

 

 
92 

 

 
92 (R) 

11 

 
                  11 

 

 

8 

 

 

99 

 

 

96 (R) 

12 

 
                   12 

 

 
5 

 

 
99 

 

 
89 (R) 

13 

 
                    13 

 
 

10 

 
 

93 

 
 

87 (R) 

a Reaction conditions: N-(diphenylmethylene)glycine tert-butyl ester (0.1 

mmol), -40 ºC, 2 mL ether, 0.4 mL 50% aq. KOH, 10 mol% cat. b2. 
b Isolated 

yield. c 
Determined by chiral HPLC with Daicel Chiralpak OD-H column. 5 

The comparative kinetics of catalyst b2 with the 3rd 
generation PTC catalyst 

To assess the comparative catalytic performances of 9-amino-(9-

deoxy)cinchona alkaloid-derived catalysts and the 3rd generation 

of N-9-anthracenylmethyl-O-allyl quarterary ammonium salts, the 10 

stereoselectivities and yields during the course of catalytic react-

ion were monitored by using HPLC. The famous O-Allyl-N-(9-

anthracenylmethyl)cinchonidinium bromide (1) and as-synthesiz-

ed (8S, 9S)-9-amino-(9-deoxy)cinchonidine-derived ammonium 

salt b2 were selected as representative samples. Under the same 15 

catalytic reaction conditions (-40 ºC, ether, 50% aq. KOH, 10 mol% 

Cat., 12 h), the yield and enantioselectivity profiles of tert-butyl 

3-phenyl-2-(diphenylmethyleneamino)propanoate plotted versus 

time during the whole process were shown in Fig. 1. From Fig. 1, 

(8S, 9S)-9-amino-(9-deoxy)cinchonidine-derived PTC catalyst b2 20 

gave the better yields (up to 98%) and somewhat lower enantiose-

lectivities (91 %ee) than O-Allyl-N-(9-anthracenylmethyl)cincho-

nidinium bromide (1) during the whole process. 

 

 25 

 

 

 

 

 30 

 

 

 

 

 35 

 

 

 

 

Fig.1 The yield and enantioselectivity profiles of the catalysts b2 and 1 40 

plotted versus time during the experiment 

Application in α-alkylation using different electrophiles 
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With the optimum conditions in hand, the scope of the catalyst b2 

with respect to various electrophiles was surveyed in the enantio-

selective α-alkylation of N-(diphenylmethylene)glycine tert-butyl 

ester. 

 From Table 2, it was found that the various substituted aroma-5 

tic aldehydes, both with electron-withdrawing (-CF3 and -F) and 

electron-donating (-CH3) substituents, could produce the corres-

ponding α-alkylation products with the high enantioselectivities 

(90–96 %ee) in 92–99% yields (entries 1-11). Especially, when 

the aromatic aldehydes bearing o-CF3, o-F and o-CH3 were emp-10 

loyed as electrophiles, the slightly lower yields and higher enan-

tioselectivities were observed owing to the sterically hindered and 

confined interaction between the o-substituents of electrophiles 

and the catalyst (entries 3, 6 and 10).8 Furthermore, the good en-

antioselectivities in the enantioselective alkylation of N-(diphen-15 

ylmethylene)glycine tert-butyl ester with allyl bromides (89 %ee 

and 87 %ee) were also achieved in the presence of catalyst b2 

(entries 12 and 13).  

Mechanism investigation 

It is generally admitted that the enantioselective α-alkylation of 20 

N-(diphenylmethylene)glycine tert-butyl ester under basic condi-

tions follows an interfacial mechanism.1a The first step is the in-

terfacial deprotonation of the α-proton of N-(diphenylmethylene) 

glycine tert-butyl ester with the bases such as KOH to give the 

corresponding metal enolate. Subsequently, the ion-exchange be-25 

tween of enolate anion and the PTC catalyst (Q*+X-) generates a 

lipophilic chiral onium enolate. Finally, the nucleophilic substitu-

tion with an alkyl halide affords the optically active monoalkyla-

tion product with the concomitant regeneration of the catalyst. Of 

particular importance to enantioselective α-alkylation is the gene-30 

ration of highly reactive chiral onium enolate through sufficiently 

fast ion-exchange and effective shielding of one of two enantioto-

pic faces of enolate anion. 

 

 35 

 

 

 

 

 40 

 

 

 

 

 45 

 

 

 

 

 50 

 

 

  

Scheme 2 The possible catalytic mechanism of (8S, 9S)-9-amino-(9-

deoxy)cinchona alkaloid-derived N-benzyl ammonium salts b2 55 

In order to elucidate the mechanism of the enantioselective α-

alkylation of N-(diphenylmethylene)glycine tert-butyl ester cata-

lyzed by the catalyst b2, the corresponding first generation of 

PTC catalysts b1
' and b2

' with the same (8S, 9S)-configurations as 

b1 and b2 (Table 3), was synthesized and selected as a compara-60 

tive trial (see ESI†). From Table 3 (entries 1 and 2), it was fou-

nd that the catalysts b1
' and b2

' afforded the various α-alkylation 

products with the disappointed enantioselectivities (14–54 %ee) 

in moderate to good yields (62–86%). Furthermore, when the 

amino functional group (-NH2) in b2 was replaced by aminometh-65 

yl -NHCH3 and carbamate -NCO2C(CH3)3, the catalyst e bearing 

a secondary amine moiety only produced  tert-butyl 3-phenyl-2-

(diphenylmethyleneamino)propanoate with the low enantioselect-

ivity (56 %ee) in 45% yield (entries 3), and 2b2 with a carbamate  

moiety NHCO2C(CH3)3 exhibited no catalytic activity owing to 70 

the acidity of the remaining hydrogen on the nitrogen atom (entr-

ies 4). Therefore, it was confirmed that the primary amino functi-

onal group (-NH2) in b2 at the 9-position played a key role in 

controlling the stereochemical course and the yield of the reaction. 

Table 3 The enantioselective benzylation of N-(diphenylmethylene)gly-75 

cine tert-butyl ester catalyzed by b1
', b2

', e and 2b2
a 

Entry Product Cat. Yield (%)b %eec 

1 3 

 

4 
         

10 

 

11 

 

 

 

68 

 
69 

 

62 
 

65 

26 

 
14 

 

22 
 

20 

2 3 

 

4 

 

10 

 

11 
 

 

86 

 

85 
 

83 

 
81 

54 

 

53 
 

45 

 
45 

3 

  

45 56.2 

4 

 

 

- - 

a Reaction conditions: N-(diphenylmethylene)glycine tert-butyl ester (0.1 

mmol), -40 ºC, 2 mL ether, 0.4 mL 50% aq. KOH, 10 mol% Cat., 12 h. b 

Isolated yield. c 
Determined by chiral HPLC with Daicel Chiralpak OD-H 

column.
  80 

 

Based on the prominent role of primary amino group in contro-

lling the catalytic process and the mechanism which ever reported, 

a possible catalytic mechanism of (8S, 9S)-9-amino-(9-deoxy)cin-

chonidine-derived ammonium salt b2, was conjectured and depi-85 

cted in Scheme 2. The first step was the interfacial deprotonation 

of N-(diphenylmethylene)glycine tert-butyl ester with base (KOH) 

to produce corresponding metal enolate. Subsequently, a chiral li-

pophilic onium enolate m with -N‒H...N intramolecular hydrogen 

bond was generated through the fast ion-exchange of enolate ani-90 

on with the catalyst b2. The intermediate m could go deep into 

the organic phase and resulted in the improved yield of α-alkyla-

tion. Meanwhile, the intermediate m could shield one of two ena-
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ntiotopic faces of enolate anion and thus achieved the aim to con-

trol the stereochemical course. Instead of primary amino group (-

NH2) with hydroxyl (-OH), secondary amino (-NHCH3) and car-

bamate -NCO2C(CH3)3 groups, the formation of intramolecular 

hydrogen bond in the intermediate m could be retarded and resul-5 

ted in the weakened enantioselectivity and yield. Finally, the nu-

cleophilic substitution with an alkyl halide afforded the optically 

active α-alkylation product with the concomitant regeneration of 

catalyst b2 (H2N-Q*+X-).  

Conclusion 10 

In summary, we developed a family of novel 9-amino-(9-deoxy) 

cinchona alkaloid-derived N-benzyl ammonium salts with differ-

ent substituents and configurations by the transformation of 9-

hydroxyl into 9-amino functional group. Among them, (8S, 9S)-

9-amino-(9-deoxy)cinchonidine-derived ammonium salts with (8 15 

S, 9S)-configuration and N-[3,5-bis(trifluoromethyl)benzyl] gro-

up could achieve the same excellent yields and enantioselectivi-

ties as the third generation of cinchona alkaloid-derived phase-

transfer catalysts in the enantioselective alkylation of N-(diphen-

ylmethylene)glycine tert-butyl ester. Furthermore, it was confir-20 

med that the primary amino functional group (-NH2) played a key 

role in controlling the stereochemistry of the catalytic reaction 

and the yield. 

Experimental 

General methods 25 

All commercially available chemicals were used without further 

purification. Four 9-amino-(9-deoxy)-epi-cinchona alkaloids 1a–

d were synthesized according to the reference and ascertained by 
1H and 13C NMR.10 

TLC, where applicable, was performed on pre-coated alumin-30 

ium-backed plates and spots were made visible by using UV 

fluorescence (λ = 254 nm). The melting points were determined 

with X-4 binocular microscope melting-point apparatus (Beijing 

Tech Instruments Co., Beijing, China) and the thermometer was 

not calibrated. Fourier transform infrared spectra were recorded 35 

on a Perkin-Elmer Model GX Spectrometer using a KBr pellet 

method with polystyrene as a standard. Low-resolution mass spe-

ctra (MS) performed on mass spectrometer (Brucker Daltonics, 

USA, Brucker Co.) with HCT ultra ion trap. High resolution mass 

spectra (ESI) were recorded on a Bruker Apex IV FTMS spectro-40 

meter. 1H and 13C NMR spectra were performed on a Bruker AV-

300 NMR instrument at 300.1 and 75.0 MHz respectively, in 

which all chemical shifts were reported downfield in ppm relative 

to the hydrogen and carbon resonances of TMS and chloroform-

d1, respectively. Optical rotations were measured on a Perkin-45 

Elmer 343plus polarimeter, concentrations (c) were given in g per 

100 mL of solution. The enantioselectivities were determined by 

chiral HPLC analysis (Daicel Chiralpak OD-H or Phenomenex 

Lux 5u Amylose-2; hexane/ dioxane = 95:5; flow rate: 0.5 mL/ 

min; 25ºC; 254 nm). The absolute configuration was determined 50 

by comparison of the HPLC retention time with the reported 

samples. C, H, N elemental analysis was obtained from a 

FLASHEA1112 automatic elemental analyzer instrument (Italy). 

General procedure of N-Boc-9-amino-(9-deoxy)-epi-cinchona 

alkaloids 2a-d 55 

 The THF solution (20 mL) containing 9-amino-(9-deoxy)-epi-

cinchona alkaloid 1a (1.47 g, 5.0mmol) was added to a 100 mL 

round-bottom flask and cooled to 0-5 ºC. Subsequently, the THF 

solution (20 mL) containing Boc2O (1.31 g, 6.0 mmol) was added 

dropwise and stirred at 0-5 ºC for 6 h. After the solvent was eva-60 

porated under reduced pressure, the residue was subjected to flash 

column chromatography by gradient elution with CHCl3/ CH3OH 

(v/v= 60/1→30/1→15/1→5/1) to obtain the pale yellow and oily 

liquid 2a. 

 2a:1.7 g, 86%; 1H NMR (300.1 MHz, CDCl3, TMS) δ 8.88 (d, 65 

3J = 4.5 Hz, 1H), 8.33 (s, 1H), 8.12 (d, 3J = 8.4 Hz, 1H), 7.71 (t, 
3J = 7.1 Hz, 1H), 7.58 (t, 3J = 7.1 Hz, 1H), 7.51 (s, 1H), 6.18 (s, 

1H), 5.97−5.86 (m, 1H), 5.19−5.10 (m, 3H), 3.18−2.87 (m, 5H), 

2.36−2.28 (m, 1H), 1.64 (s, 1H), 1.56−1.47 (m, 2H), 1.34−1.11 

(m, 9H), 0.93−0.84 (m, 2H); 13C NMR (75.0 MHz, CDCl3, TMS) 70 

δ 155.2, 149.7, 148.2, 147.2, 139.9, 130.0, 128.6, 127.1, 126.0, 

123.0, 118.9, 114.5, 79.2, 60.1, 55.2, 48.8, 46.8, 38.9, 27.8, 27.1, 

26.2, 24.7. 

2b: 1.8 g, 91%, mp 181−183 ºC; 1 H NMR (300.1 MHz, CDCl3, 

TMS) δ 8.88 (d, 3J = 4.1 Hz, 1H), 8.37 (d, 3J = 6.8 Hz, 1H), 8.12 75 

(d, 3J = 8.3 Hz, 1H), 7.70 (t, 3J = 7.0 Hz, 1H), 7.58 (t, 3J = 7.6 Hz, 

1H), 7.48 (d, 3J = 3.6 Hz, 1H), 6.09 (s, 1H), 5.72 − 5.60 (m, 1H), 

5.12−4.88 (m, 3H), 3.28−2.64 (m, 5H), 2.27 (s, 1H), 1.63 (s, 3H), 

1.40−1.27 (m, 9H), 0.97−0.91 (m, 2H); 13C NMR (75.0 MHz, 

CDCl3, TMS) δ 155.5, 150.0, 148.4, 141.6, 141.2, 130.3, 128.9, 80 

127.4, 126.4, 123.2, 118.3, 114.4, 79.5, 59.7, 55.8, 42.5, 40.7, 

39.5, 28.1, 27.8, 27.3, 25.6; FT-IR (KBr) cm−1: 3447, 2975, 1717, 

1630, 1172. 

2c: 1.6 g, 83%; 1H NMR (300.1 MHz, CDCl3, TMS) δ 8.60 (d, 
3J = 4.3 Hz, 1H), 7.90 (d, 3J = 7.1 Hz, 1H), 7.44 (s, 1H), 7.33 (d, 85 

3J = 3.5, 1H), 7.26−7.22 (m, 2H), 5.95 (s, 1H), 5.86−5.75 (m, 1H), 

5.04−4.85 (m, 3H), 3.84 (s, 3H), 2.99−2.76 (m, 5H), 2.33−2.28 

(m, 1H), 1.53 (s, 1H), 1.41−1.30 (m, 2H), 1.24−1.14 (m, 9H), 

0.94−0.78 (m, 2H); 13C NMR (75.0 MHz, CDCl3, TMS) δ 157.5, 

155.4, 147.5, 144.5, 140.3, 131.6, 128.2, 121.7, 119.0, 114.7, 90 

111.4, 101.1, 79.5, 77.2, 60.3, 55.4, 49.1, 46.9, 39.0, 28.1, 27.2, 

26.4, 25.1. 

2d: 1.8 g, 87%; 1H NMR (300.1 MHz, CDCl3, TMS) δ 8.72 (d, 
3J = 4.5 Hz, 1H), 8.02 (d, 3J = 9.2 Hz, 1H), 7.63 (s, 1H), 7.38 (d, 
3J = 2.4, 1H), 7.35 (d, 3J = 2.6 Hz, 1H), 5.94 (s,1H), 5.74−5.63 95 

(m, 1H), 4.98−4.90 (m, 3H), 3.96 (s, 3H), 3.29−2.52 (m, 7H), 

2.28 (s, 1 H), 1.64−1.60 (m, 2 H), 1.34−1.26 (m, 9H), 0.98−0.91 

(m, 2H); 13C NMR (75.0 MHz, CDCl3, TMS) δ 157.5, 155.4, 

147.5, 147.2, 144.6, 141.2, 131.7, 131.3, 121.3, 120.4, 114.5, 

101.8, 79.5, 77.2, 55.9, 55.5, 49.4, 40.8, 39.5, 28.1, 27.9, 27.3, 100 

25.9. 

General procedure of N-Boc-9-amino-(9-deoxy)-epi-cinchona 
alkaloid-derived ammonium salts 3a1-d1 and 3a2-d2 

 The toluene solution (4 mL) containing N-Boc-9-amino-(9-

deoxy)-epi-cinchona alkaloid 2a (0.20 g, 0.51 mmol) and 4-triflu-105 

oromethyl  benzyl bromide (0.12 g, 0.51 mmol) or 3, 5-bis(triflu-

oromethyl) benzyl bromide (0.16 g, 0.51 mmol) was added to a 

50 mL round-bottom flask and stirred at 65 ºC for 12 h. During 

this process, white solid gradually separated out. The white preci-

pitate was filtered, washed with toluene (3 mL×2) and dried 110 

under reduced pressure to afford pure N-Boc-9-amino-(9-deoxy)-

epi-cinchona alkaloid-derived ammonium salt 3a1 or 3a2.  

 3a1: 0.19 g, 58%, mp 154-156ºC; 1H NMR (300.1 MHz, 
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CD3OD, TMS) δ 8.82 (d, 3J = 4.0 Hz, 1H), 8.48 (d, 3J = 6.7 Hz, 

1H), 8.10 (d, 3J = 8.1 Hz, 1H), 7.84−7.67 (m, 7H), 6.24 (d, 3J = 

8.5 Hz, 1H), 5.63−5.48 (m, 1H), 5.19−4.96 (m, 3H), 4.78−4.64 

(m, 2H), 3.93−3.72 (m, 2H), 3.72−3.55 (m, 1H), 3.42−3.15 (m, 

2H), 2.67 (s, 1H), 2.04−1.71 (m, 3H), 1.48 (s, 1H), 1.17 (s, 10H); 5 

13C NMR (75.0 MHz, CD3OD, TMS) δ 153.7, 148.3, 146.1, 

144.6, 134.1, 132.5, 130.6 (q, 1JC-F = 32.9 Hz, CF3), 130.0, 128.5, 

127.5, 126.2, 124.0, 124.3 (q, 2JC-F = 3.7 Hz), 124.0, 121.6, 120.4, 

118.1, 115.1, 78.9, 76.4, 67.9, 61.8, 55.0, 50.7, 35.0, 27.7, 25.4, 

24.5, 21.3; FT-IR (cm−1): 3446 (N−H), 2929 (C−H), 1707 (C=O), 10 

1570 (C=C). 

 3a2: 0.16 g, 46%, mp 202−204 ºC; 1H NMR (300.1 MHz, 

CDCl3, TMS) δ 8.94 (d, 3J = 4.4 Hz, 1H), 8.48 (d, 3J = 7.7 Hz, 

1H), 8.22 (s, 2H), 8.12 (d, 3J = 4.6 Hz, 1H), 8.03 (s, 1 H), 7.79− 

7.67 (m, 3H), 6.47−6.18 (m, 3H), 5.69−5.57 (m, 1H), 5.35−5.18 15 

(m, 2H), 4.96−4.86 (m, 2H), 4.09 −4.03 (m, 1H), 3.51−3.43 (m, 

1H), 3.06−2.99 (m, 2H), 2.60−2.55 (m, 1H), 2.24−2.14 (m, 1H), 

1.86 (s, 2H), 1.52−1.43 (m, 1H), 1.28 (s, 9H); 13C NMR (75.0 

MHz, CDCl3, TMS) δ 155.4, 150.9, 148.2, 144.9, 134.5, 133.6, 

132.8 (q, 1J = 33.9 Hz, CF3), 130.6, 130.3, 129.5, 127.5, 126.6, 20 

126.2, 124.7 (q, 2J = 2.1 Hz), 124.3, 122.6, 120.3, 118.8, 81.0, 

67.5, 62.5, 55.4, 52.5, 48.6, 37.4, 28.0, 27.3, 26.3, 23.6; FT-IR 

(cm−1): 3452 (N− H), 1711 (C=O), 1628 (C=C). 

 3b1: 0.20 g, 62%, mp 168−170 ºC; 1H NMR (300.1 MHz, 

CDCl3, TMS) δ 8.89 (d, 3J  = 4.5 Hz, 1H), 8.17 (d, 3J = 8.3 Hz, 25 

1H), 8.09−8.05 (m, 2H), 7.69−7.58 (m, 6H), 6.88 (d, 3J = 9.4 Hz, 

1H), 6.23−5.99 (m, 3H), 5.82−5.71 (m, 1H), 5.21−5.10 (m, 2H), 

4.89 (d, 3J = 12.9 Hz, 1H), 4.35−4.25 (m, 2H), 3.35−3.16 (m, 2H), 

2.48−2.42 (m, 1H), 2.18 (s, 2H), 2.02−1.87 (m, 3H), 1.23 (s, 9H); 
13C NMR (75.0 MHz, CDCl3, TMS) δ 155.4, 151.1, 148.6, 143.9, 30 

134.8, 134.0, 132.7 (q, 1JC-F = 33.1 Hz, CF3), 131.5, 130.9, 129.7, 

127.9, 126.2 (q, 2JC-F= 3.5 Hz), 125.7, 125.1, 122.2, 120.1, 119.1, 

81.4, 67.5, 64.5, 59.1, 50.3, 49.1, 37.6, 28.1, 27.4, 26.7, 24.8; FT-

IR (cm−1): 3447 (N−H), 1713 (C=O), 1567 (C=C).. 

 3b2: 0.19 g, 52%, mp 168−170 ºC; 1H NMR (300.1 MHz, 35 

CDCl3, TMS) δ 8.98 (d, 3J = 4.5 Hz, 1H), 8.31 (d, 3J = 8.2 Hz, 

1H), 8.21 (d, 3J = 4.5 Hz, 1H), 8.15 (d, 3J = 8.5 Hz, 1H), 8.10 (s, 

2H), 8.03 (s, 1H), 7.79−7.67 (m, 2H), 7.08 (d, 3J = 8.7 Hz, 1H), 

6.45−6.40 (m, 1H), 6.32−6.18 (m, 2H), 5.94−5.83 (m, 1H), 5.34 

−5.23 (m, 3H), 4.54−4.43 (m, 1H), 3.45 (t, 3J = 10.5 Hz, 1H), 40 

3.19−3.09 (m, 1H), 2.63−2.58 (m, 1H), 2.27 (s, 2H), 2.15−2.02 

(m, 1H), 1.35 (s, 9H); 13C NMR (75.0 MHz, CDCl3, TMS) δ 

155.5, 151.1, 148.5, 143.9, 134.6, 133.6, 132.9 (q, 1JC-F = 33.8 Hz, 

CF3), 130.9, 130.3, 129.6, 127.8, 125.7, 124.5 (q, 2JC-F = 3.4 Hz), 

122.2, 120.7, 120.1, 119.3, 81.6, 67.6, 63.5, 59.4, 50.6, 49.1, 37.6, 45 

28.0, 27.1, 26.8, 24.7; FT-IR (cm−1): 3445 (N−H), 1712 (C=O), 

1628 (C=C). 

 3c1: 0.17 g, 53%, mp 172-174 ºC; 1H NMR (300.1 MHz, 

CD3OD, TMS) δ 8.66 (d, 3J = 4.3 Hz, 1H), 7.91 (d, 3J = 9.2 Hz, 

1H), 7.81 (s, 4H), 7.63 (s, 1H), 7.59 (d, 3J = 4.5 Hz, 1H), 7.42 (d, 50 

3J = 9.2 Hz, 1H), 6.12 (d, 3J = 9.6 Hz, 1H), 5.72−5.63 (m, 1H), 

5.27−5.12 (m, 2H), 4.98−4.94 (m, 1H), 4.80−4.71 (m, 2H), 4.00 

(s, 4H), 3.84−3.69 (m, 2H), 3.31−3.27 (m, 1H), 2.63 (s, 1H), 

2.00−1.94 (m, 1H), 1.82 (s, 2H), 1.67−1.60 (m, 1H), 1.24 (s, 9H), 

1.18 (s, 1H); 13C NMR (75.0 MHz, CD3OD, TMS) δ 159.1, 155.7, 55 

147.0, 144.3, 143.8, 136.2, 134.1, 132.1 (q, 1JC-F = 32.7 Hz, CF3), 

131.6, 130.4, 127.5, 125.8 (q, 2JC-F = 3.8 Hz), 122.7, 121.9, 119.6, 

116.5, 101.1, 80.6, 69.0, 63.8, 56.6, 55.1, 52.5, 48.9, 36.5, 27.5, 

27.0, 25.7, 23.1; FT-IR (cm−1): 3453 (N−H), 1710 (C=O), 1621 

(C=C). 60 

 3c2: 0.15 g, 43%, mp 175−177 ºC; 1H NMR (300.1 MHz, 

CD3OD, TMS) δ 8.66 (d, 3J = 4.5 Hz, 1H), 8.31 (s, 2H), 8.15 (s, 

1H), 7.91 (d, 3J = 9.2 Hz, 1H), 7.65 (d, 3J = 4.8 Hz, 2H), 7.42 (d, 
3J = 7.8 Hz, 1 H), 6.12 (d, 3J = 9.4 Hz, 1H), 5.70−5.60 (m, 1H), 

5.25−5.10 (m, 3H), 4.92−4.87 (m, 1H), 4.00 (s, 5H), 3.70−3.61 65 

(m, 1H), 3.35−3.29 (m, 1H), 2.63 (s, 1H), 2.07−1.63 (m, 4H), 

1.22 (s, 10H); 13C NMR (75.0 MHz, CD3OD, TMS) δ 159.0, 

155.7, 147.1, 144.2, 143.8, 136.0, 133.8, 132.3 (q, 1JC-F = 33.7 Hz, 

CF3), 130.5, 128.4, 127.4, 124.8, 124.3 (q, 2JC-F = 4.1 Hz), 122.6, 

121.2, 119.9, 116.6, 101.0, 80.6, 69.4, 62.8, 56.3, 55.1, 52.5, 48.7, 70 

36.5, 27.4, 27.0, 25.7, 23.0; FT-IR (cm−1): 3449 (N−H), 1715 

(C=O), 1622 (C=C). 

 3d1: 0.19 g, 60%, mp 182−184 ºC; 1H NMR (300.1 MHz, 

CDCl3, TMS) δ 8.72 (d, 3J = 4.4 Hz, 1H), 7.99−7.96 (m, 2H), 

7.72 (s, 4H), 7.51 (s, 1H), 7.36 (d, 3J = 7.1 Hz, 1H), 6.95 (d, 3J = 75 

8.3 Hz, 1H), 6.20−6.18 (m, 1H), 6.12−6.02 (m, 1H), 5.30−5.18 

(m, 2H), 4.39−4.19 (m, 3H), 3.99 (s, 3H, OCH3), 3.49−3.09 (m, 

3H), 2.84 (s, 1H), 2.58−2.51 (m, 1H), 2.21−1.88 (m, 5H), 1.33 (s, 

9H); 13C NMR (75.0 MHz, CDCl3, TMS) δ 158.6, 155.3, 147.9, 

144.5, 141.8, 134.5, 133.7, 132.4 (q, 1JC-F = 32.3 Hz, CF3), 131.8, 80 

131.3, 126.7, 126.0 (q, 2JC-F = 3.7 Hz), 122.1, 121.3, 119.7, 118.8, 

100.2, 81.1, 67.3, 64.5, 59.0, 55.5, 50.8, 49.0, 37.3, 27.9, 27.3, 

26.5, 24.5; FT-IR (cm−1): 3442 (N−H), 1692 (C=O), 1590 (C=C). 

 3d2: 0.17 g, 49%, mp 215−217 ºC; 1 H NMR (300.1 MHz, 

CDCl3, TMS) δ 8.82 (d, 3J = 4.3 Hz, 1H), 8.08−8.04 (m, 5H), 85 

7.49 (s, 1H), 7.41 (d, 3J = 7.0 Hz, 1H), 6.73 (d, 3J = 9.1 Hz, 1H), 

6.50 (s, 1H), 6.16−6.09 (m, 1H), 5.94−5.82 (m, 1H), 5.36−5.25 

(m, 3H), 4.51 (s, 2H), 4.01 (s, 3H, OCH3), 3.50−3.43 (m, 1H), 

3.20−3.10 (m, 1H), 2.65−2.57 (m, 1H), 2.28−1.94 (m, 5H), 1.38 

(s, 9H); 13 C NMR (75.0 MHz, CDCl3, TMS) δ 158.7, 155.4, 90 

148.2, 144.6, 141.6, 134.1, 133.3, 132.8 (q, 1JC-F= 33.9 Hz, CF3), 

132.0, 130.1, 126.5, 124.4 (q, 2JC-F= 3.0 Hz), 124.1, 122.1, 120.4, 

119.7, 119.2, 100.0, 81.6, 67.2, 63.3, 59.1, 55.5, 50.9, 49.0, 37.3, 

29.4, 27.8, 26.6, 24.5; FT-IR (cm−1): 3447 (N−H), 1719 (C=O), 

1589 (C=C). 95 

General procedure of 9-amino-(9-deoxy)-epi-cinchona 

alkaloid-derived ammonium salts a1-d1 and a2-d2 

The CH2Cl2 solution (4 mL) containing N-Boc-9-amino-(9-deoxy) 

-epi-cinchona alkaloid 3a1(98.0 mg, 0.16 mmol) and TFA (0.36 g, 

3.2 mmol) was added to a 50 mL round-bottom flask and stirred 100 

at room temperature for 3 h. The organic solvents were removed 

under reduced pressure. The residues were adjusted to pH=8–9 by 

aqueous ammonia and extracted by CH2Cl2 (2 mL×3). After the 

combined organic phases were evaporated under reduced pressure, 

the residue was subjected to flash silica column chromatography 105 

with CHCl3/CH3OH (v/v = 60/1→ 30/1 → 15/1 → 5/1) as eluents 

to afford pale yellow solid a1 (75 mg, 93%).  

 a1: 75.1 mg, 93 %, mp 153−155 ºC; [α]D
20 = + 16.2 (c = 1.16, 

CHCl3); 
1H NMR (300.1 MHz, CDCl3, TMS) δ 8.80 (d, 3J = 4.6 

Hz, 1H), 8.48 (d, 3J = 8.1 Hz, 1H), 8.00 (d, 3J = 8.0 Hz, 1H), 110 

7.87−7.67 (m, 7H), 5.63−5.49 (m, 2H), 5.28−5.03 (m, 3H), 4.81 

(s, 2H), 4.52−4.49 (m, 1H), 3.95−3.76 (m, 3H), 3.66−3.58 (m, 

1H), 3.16−3.13 (m, 2H), 2.57−2.50 (m, 1H), 1.95−1.76 (m, 2H), 

1.68 (s, 1H), 1.51−1.42 (m, 1H), 1.22−1.11 (m, 1H); 13C NMR 

(75.0 MHz, CDCl3, TMS) δ 150.3, 148.2, 147.6, 134.8, 134.1, 115 

132.7, 131.7 (q, 1JC-F = 33.1 Hz, CF3), 130.5, 129.5, 127.5, 125.3, 
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124.7, 124.0, 121.1, 119.3, 118.3, 71.9, 64.4, 55.4, 51.7, 49.0, 

37.5, 27.5, 26.8, 23.6; FT-IR (cm−1): 3444, 3384 (N−H), 1571 

(C=C); Mass (MS): m/z 532.4 [M+H]+; Anal. calcd for 

C27H29BrF3N3: C 60.91, H 5.49, N 7.89; Found: C 60.89, H 5.42, 

N 7.82%. 5 

 a2: 72.0 mg, 86%, mp 132−134 ºC; [α]D
20 = + 9.2 (c = 0.84, 

CHCl3); 
1H NMR (300.1 MHz, CD3OD, TMS) δ 8.81 (d, 3J = 4.7 

Hz, 1H), δ 8.42 (d, 3J = 8.2 Hz, 1H), 8.30 (s, 2H), 8.10 (s, 1H), 

8.02 (d, 3J = 7.7 Hz, 3H), 7.79−7.65 (m, 3H), 5.64−5.53 (m, 1H), 

5.47−5.33 (m, 2H), 5.21−5.04 (m, 2H), 4.46−4.41 (m, 1H), 3.93− 10 

3.79 (m, 2H), 3.58−3.50 (m, 1H), 3.29−3.19 (m, 2H), 2.58−2.54 

(m, 1H), 1.97−1.83 (m, 2H), 1.68 (s, 1H), 1.55−1.45 (m, 1H), 

1.25−1.17 (m, 1H); 13C NMR (75.0 MHz, CD3OD, TMS) δ 148.4, 

147.8, 146.2, 134.2, 132.3, 130.5 (q, 1JC-F = 33.5 Hz, CF3), 129.9, 

128.3, 127.5, 126.9, 126.0, 124.3, 123.3, 122.3 (q, 2JC-F = 3.6 Hz), 15 

121.6, 119.7, 114.9, 71.0, 63.2, 59.4, 54.7, 50.4, 35.2, 25.7, 24.8, 

21.4; FT-IR (cm−1): 3444, 3358 (N−H), 1571 (C=C); Mass (MS): 

m/z 602.1 [M+H]+; Anal. calcd for C28H28BrF6N3: C 56.01, H 

4.70, N 7.00; Found: C 55.89, H 4.54, N 6.92%. 

 b1: 73.8 mg, 92%, mp 142−144ºC; [α]D
20 = +37.4 (c = 0.92, 20 

CHCl3); 
1H NMR (300.1 MHz, CDCl3, TMS) δ 8.81 (d, 3J = 4.5 

Hz, 1H), 8.74 (s, 1H), 8.11 (d, 3J = 9.5 Hz, 1H), 8.01 (d, 3J= 6.9 

Hz, 2H), 7.73 (d, 3J = 4.4 Hz, 2H), 7.57 (s, 1H), 7.41 (d, 3J = 8.0 

Hz, 2H), 5.97−5.86 (m, 1H), 5.82−5.66 (m, 3H), 5.20−5.12 (m, 

2H), 5.00 (s, 1H ), 4.77 (s, 1H), 3.75−3.45 (m, 3H), 2.61 (s, 3H), 25 

1.06 (s, 1H), 1.89−1.77 (m, 3H); 13C NMR (75.0 MHz, CDCl3, 

TMS) δ 150.5, 149.7, 148.6, 135.6, 134.2, 132.6, 131.9 (q, 1JC-F = 

32.6 Hz, CF3), 130.6, 129.7, 128.7, 127.8, 125.5 (q, 2JC-F = 3.7 

Hz), 125.1, 123.6, 121.5, 118.3, 68.9, 64.5, 60.3, 51.5, 49.7, 37.5, 

28.1, 27.0, 26.8, 24.9; FT-IR (cm−1): 3447, 3387 (N−H), 1571 30 

(C=C); HRMS: m/z calcd for C27H29F3N3
+ 452.2308; found: 

452.2308; Anal. calcd for C27H29BrF3N3: C 60.91, H 5.49, N 7.89; 

Found: C 60.88, H 5.46, N 7.86%. 

 b2: 74.9 mg, 89%, mp 144−146 ºC; [α]D
20 = +79.1 (c = 0.54, 

CHCl3); 
1H NMR (300.1 MHz, CDCl3, TMS) δ 8.80 (d, 3J = 4.3 35 

Hz, 1H), 8.66 (s, 1H), 8.56 (s, 1H), 8.06 (d, 3J = 8.2 Hz, 1H), 7.86 

(s, 1H), 7.71−7.66 (m, 2H), 7.35 (s, 1H), 6.13 (s, 1H), 5.91 (d, 3J 

= 11.2 Hz, 1H), 5.69 (s, 1H), 5.57−5.46 (m, 1H), 5.16 (s, 1H), 

5.03−4.97 (m, 2H), 4.23−4.05 (m, 3H), 2.93−2.73 (m, 5H), 2.18− 

1.84 (m, 3H), 1.77−1.66 (m, 2H); 13C NMR (75.0 MHz, CDCl3, 40 

TMS) δ 150.5, 148.8, 148.3, 135.1, 134.1, 132.2 (q, 1JC-F = 33.6 

Hz, CF3), 131.6, 131.5, 130.5, 129.9, 128.0, 125.6, 124.5, 123.9 

(q, 2JC-F = 3.5 Hz), 123.1, 120.9, 118.3, 117.7, 67.3, 63.0, 61.3, 

51.9, 51.3, 37.1, 26.7, 26.3, 25.0; FT-IR (cm−1): 3446, 3369 

(N−H), 1571 (C=C); HRMS: m/z calcd for C28H28F6N3
+ 520.2200; 45 

found: 520.2182; Anal. calcd for C28H28BrF6N3: C 56.01, H 4.70, 

N 7.00; Found: C 55.87, H 4.64, N 6.90%. 

 c1: 79.3 mg, 95%, mp 155−157 ºC; [α]D
20 = +4.5 (c = 0.92, 

CHCl3); 
1H NMR (300.1 MHz, CD3OD, TMS) δ 8.64 (d, 3J = 4.7 

Hz, 1H), 7.90−7.76 (m, 5H), 7.63 (d, 3J = 4.7 Hz, 1H), 7.42 (d, 3J 50 

= 9.2 Hz, 1H) 5.68−5.57 (m, 1H), 5.47 (d, 3J = 8.7 Hz, 1H), 5.33 

(d, 3J = 13.3 Hz, 1H), 5.18−5.06 (m, 3H), 4.45−4.37 (m, 1H), 

4.01 (s, 3H, OCH3), 3.96−3.61 (m, 3H), 3.16−3.13 (m, 3H), 2.58 

−2.51 (m, 1H), 1.98−1.76 (m, 2H), 1.71 (s, 1H), 1.52−1.43 (m, 

1H), 1.25−1.18 (m, 1H); 13C NMR (75.0 MHz, CD3OD, TMS) δ 55 

157.4, 147.7, 145.7, 142.3, 134.6, 132.7, 131.1, 130.2 (q, 1JC-F= 

32.4 Hz, CF3), 128.9, 125.6, 124.0 (q, 2JC-F= 3.7 Hz), 120.9, 

120.5, 118.4, 114.9, 99.8, 70.9, 64.1, 54.9, 54.0, 50.5, 48.9, 35.2, 

25.8, 24.7, 21.5; FT-IR (cm−1): 3444, 3354 (N−H), 1540 (C=C); 

Mass (MS): m/z 561.2 [M+H]+; Anal. calcd for C28H31BrF3N3O: 60 

C 59.79, H  5.56, N 7.47; Found: C 59.67, H 4.51, N 7.36%. 

 c2: 76.0 mg, 89%, mp 161−163 ºC; [α]D
20 = +4.1 (c = 1.12, 

CH3OH); 1H NMR (300.1 MHz, CD3OD, TMS) δ 8.71 (d, 3J = 

4.7 Hz, 1H), 8.38 (s, 2H), 8.18 (s, 1H), 7.90 (d, 3J = 9.2 Hz, 1H), 

7.63 (d, 3J = 4.8 Hz, 2H), 7.42 (d, 3J = 6.8 Hz, 1H), 5.69−5.57 (m, 65 

1H), 5.49−5.44 (m, 2H), 5.22−5.07 (m, 3H), 4.46−4.37 (m, 1H), 

4.08 (s, 3H, OCH3), 3.88−3.81 (m, 1H), 3.61−3.49 (m, 1H), 3.29 

−3.27 (m, 3H), 2.62−2.56 (m, 1H), 1.97−1.78 (m, 2H), 1.55 (s, 

1H), 1.50−1.46 (m, 1H), 1.25−1.19 (m, 1H); 13C NMR (75.0 

MHz, CD3OD, TMS) δ 158.9, 149.0, 147.2, 143.9, 136.0, 133.9, 70 

132.1 (q, 1JC-F = 33.5 Hz, CF3), 131.4, 130.5, 127.0, 124.9, 123.8 

(q, 2JC-F = 3.7 Hz), 122.4, 121.2, 119.8, 116.4, 101.2, 72.6, 64.8, 

56.8, 56.2, 55.4, 52.1, 36.7, 27.3, 26.2, 23.0; FT-IR (cm−1): 3446, 

3381 (N−H), 1540 (C=C); Mass (MS): m/z 631.2 [M+H]+; Anal. 

calcd for C29H30BrF6N3O: C 55.25, H 4.80, N 6.66; Found: C 75 

55.17, H 4.75, N 6.60%. 

 d1: 73.4 mg, 88%, mp 146−148 ºC; [α]D
20 = +48.5 (c = 0.74, 

CHCl3); 
1H NMR (300.1 MHz, CDCl3, TMS) δ 8.62 (d, 3J = 4.1 

Hz, 1H), 8.04 (d, 3J = 7.1 Hz, 2H), 7.97 (d, 3J = 8.8, 2H), 7.44 (d, 
3J = 6.4 Hz, 2H), 7.38 (d, 3J = 9.2, 2H), 5.91 (s, 2H), 5.82−5.77 80 

(m, 1H), 5.69−5.65 (m, 1H), 5.18−5.11 (m, 3H), 4.53 (s, 1H), 

4.18 (s, 3H, OCH3), 3.85 (s, 1H), 3.70 (s, 1H), 3.33 (s, 1H), 2.84 

(s, 3H), 2.68 (s, 1H), 2.11 (s, 1H), 1.92 (s, 1H), 1.81−1.74 (m, 

2H); 13C NMR (75.0 MHz, CDCl3, TMS) δ 159.0, 147.6, 144.8, 

135.5, 134.1, 132.6, 132.2, 132.0 (q, 1JC-F = 29.2 Hz), 131.8, 85 

126.8, 125.6 (q, 2JC-F = 3.5 Hz), 125.1, 122.8, 121.5, 118.2, 118.1, 

101.4, 68.3, 64.2, 60.6, 57.0, 51.6, 50.3, 37.4, 29.6, 26.8, 25.0; 

FT-IR (cm−1): 3445, 3386 (N−H), 1559 (C=C); HRMS: m/z calcd 

for C28H31F3N3O
+ 482.2414; found: 482.2414; Anal. calcd for 

C28H31BrF3N3O: C 59.79, H 5.56, N 7.47; Found: C 59.77, H 90 

5.54, N 7.44%. 

 d2: 74.1 mg, 87%, mp 158−160 ºC; [α]D
20 = +82.0 (c = 0.40, 

CHCl3); 
1H NMR (300.1 MHz, CDCl3, TMS) δ 8.71 (d, 3J = 4.1 

Hz, 1H), 8.99 (d, 3J = 9.0 Hz, 1H), 7.91 (d, 3J = 10.4 Hz, 2H), 

7.38 (d, 3J = 9.0 Hz, 1H), 7.29 (s, 1H), 6.18 (d, 3J = 12.5 Hz, 1H), 95 

5.95 (d, 3J = 12.7 Hz, 1H), 5.77 (d, 3J = 10.2 Hz, 1H), 5.66−5.52 

(m, 1H), 5.41−5.32 (m, 1H), 5.11−5.04 (m, 2H), 4.24−4.21 (m, 

2H), 4.10 (m, 4H), 3.18 (s, 3H), 2.98−2.86 (m, 2H), 2.20−2.10 (m, 

2H), 1.86−1.72 (m, 2H); 13C NMR (75.0 MHz, CDCl3, TMS) δ 

159.1, 147.5, 146.7, 144.9, 135.1, 133.9, 132.2 (q, 1JC-F = 33.6 Hz, 100 

CF3), 131.8, 131.6, 126.9, 124.5, 123.9 (q, 2JC-F = 3.5 Hz), 122.8, 

120.9, 118.3, 117.6, 101.3, 67.1, 62.7, 61.4, 56.7, 51.9, 51.6, 37.1, 

26.8, 26.4, 25.1; FT-IR (cm−1): 3450, 3369 (N−H), 1540 (C=C); 

HRMS: m/z calcd for C29H30F6N3O
+ 550.2288; found: 550.2288; 

Anal. calcd for C29H30BrF6N3O: C 55.25, H 4.80, N 6.66; Found: 105 

C 55.19, H 4.72, N 6.59%. 

Enantioselective phase-transfer alkylation 

A mixture of N-(diphenylmethylene)glycinetert-butyl ester (30 

mg, 0.1 mmol) and catalyst b2 (6 mg, 0.01mmol) in ether (2 mL) 

was cooled to -40ºC and then added 50% aqueous KOH (0.4 mL, 110 

3.6mmol) and benzyl bromide (20 mg, 0.12 mmol). The reaction 

mixture was stirred at -40 ºC for 12 h, extracted by ethyl acetate 

(10 mL×3) and evaporated under reduced pressure. The crude 

product was purified by column chromatography using hexanes/ 

EtOAc (v/v = 50:1) as eluents to afford pure α-alkylation product 115 

which was identified by NMR spectra. The data of new α-alkyla-
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tion products was shown as follows and the others were listed in 

ESI†. 

 tert-Butyl 3-(3-trifluoromethylphenyl)-2-(diphenylmethyle-

neamino)propanoate (2). 45.1 mg, 99%; 1H NMR (300.1 MHz, 

CDCl3, TMS) δ 7.52 (d, 3J = 7.0 Hz, 2H, Ph-H), 7.40−7.21 (m, 5 

10H, Ph-H), 6.57 (d, 3J = 6.6 Hz, 2H, Ph-H), 4.09 (dd, 3J = 5.6 

Hz, 5.6 Hz, 1H, NCH), 3.23−3.21 (m, 2H, CH2), 1.41 (s, 9 H, 

CH3); 
13C NMR (75.0 MHz, CDCl3, TMS) δ 170.8, 170.3 (C=N, 

C=O), 139.3, 139.2, 136.1, 133.4, 133.4, 132.4, 130.5, 130.2, 

130.1, 130.0, 128.6, 128.4, 128.3, 128.2, 128,1, 127.9, 127.4, 10 

126.4 (q, 2JC-F = 3.7 Hz, CF3), 125.9 (Ph), 123.0 (q, 1JC-F = 3.8 Hz, 

CF3), 81.4 (O-C), 67.3 (NCH), 39.2 (CH2), 27.9 (CH3); Mass 

(MS): m/z 454.2 [M+H]+;  HPLC analysis: Daicel Chiralpak OD-

H, hexane/dioxane = 95:5, 254 nm, flow rate = 0.5 ml/min, reten-

tion time: 9.4 min (R), 10.9 min (S). 15 

 tert-Butyl 3-(2-trifluoromethylphenyl)-2-(diphenylmethyle-

neamino)propanoate (3). 42.0 mg, 93%; 1H NMR (300.1 MHz, 

CDCl3, TMS) δ 7.76 (d, 3J=7.1 Hz, 1H, Ph-H), 7.57−7.41 (m, 4H, 

Ph-H), 7.35−7.15 (m, 7H, Ph-H), 6.43 (d, 3J = 6.4 Hz, 2H, Ph-H), 

4.13 (dd, 3J=3.5 Hz, 1H, 3.5 Hz, NCH), 3.50−3.22 (m, 2H, CH2), 20 

1.39 (s, 9H, CH3); 
13C NMR (75.0 MHz, CDCl3, TMS) δ 170.7, 

170.5 (C=N, C=O), 139.2, 136.8 (q, 2JC-F = 1.6 Hz), 136.0, 133.3, 

132.4, 131.1, 130.2, 131.0, 129.6, 128.7, 128.2, 128,1, 127.9, 

127.9, 127.3, 126.3, 126.0 (Ph), 125.7 (q, 1JC-F = 5.7 Hz, CF3), 

81.2 (O-C), 66.5 (NCH), 36.0 (CH2), 27.9 (CH3); Mass (MS): 25 

m/z 454.2 [M+H]+; HPLC analysis: Daicel Chiralpak OD-H, 

hexane/dioxane = 95:5, 254 nm, flow rate = 0.5 ml/min, retention 

time: 10.8 min (R), 13.5 min (S). 

 tert-Butyl 3-(3-fluorophenyl)-2-(diphenylmethyleneamino) 

propanoate (5). 37.9 mg, 94%; 1H NMR (300.1 MHz, CDCl3, 30 

TMS) δ 7.49 (d, 3J = 6.7 Hz, 2H, Ph-H), 7.26−7.19 (m, 7H, Ph-H), 

7.08 (q, 3J = 6.6 Hz, 1H, Ph-H), 6.79−6.62 (m, 4H, Ph-H), 6.66 (d, 
3J = 6.6 Hz, 2H, Ph-H), 4.04 (dd, 3J = 3.8 Hz, 3.8 Hz, 1H, NCH), 

3.17 −3.04 (m, 2H, CH2), 1.37 (s, 9H, CH3); 
13C NMR (75.0 

MHz, CDCl3, TMS) δ 170.5, 170.4 (C=N, C=O), 164.2, 160.9, 35 

140.8 (d, 3JC-F = 7.4 Hz), 139.3, 136.2, 132.3, 130.1, 130.0, 128.6, 

128.3, 128.2, 128.1, 127.9, 127.5, 125.5, 125.4 (Ar and Ph), 

116.4 (d, 2JC-F = 20.9 Hz), 112.9 (d, 1JC-F = 20.9 Hz), 81.2 (O-C), 

67.4 (NCH), 39.2 (CH2), 27.9 (CH3); Mass (MS): m/z 404.2 

[M+H]+; HPLC analysis: Daicel Chiralpak OD-H, hexane/diox-40 

ane = 95:5, 254 nm, flow rate = 0.5 ml/min, retention time: 9.8 

min (R), 12.1 min (S). 

 tert-Butyl 3-(2-fluorophenyl)-2-(diphenylmethyleneamino) 

propanoate (6). 37.1 mg, 92%; 1H NMR (300.1 MHz, CDCl3, 

TMS) δ 7.56 (d, 3J = 7.1 Hz, 2H, Ph-H), 7.37−7.25 (m, 6H, Ph-H), 45 

7.16− 7.11 (m, 2H, Ph-H), 6.98−6.87 (m, 2H, Ph-H), 6.66 (d, 3J = 

6.6 Hz, 2H, Ph-H), 4.19 (dd, 3J=4.4 Hz, 4.4 Hz, 1H, NCH), 3.36− 

3.12 (m, 2H, CH2), 1.44 (s, 9H, CH3); 
13C NMR (75.0 MHz, 

CDCl3, TMS): δ 170.6, 170.5 (C=N, C=O), 162.9, 159.7, 139.4, 

136.1, 132.3, 130.1, 130.0, 128.7, 128.2, 128.2, 128.0, 128.0, 50 

127.9, 127.9, 127.6 (C-Ph), 125.2 (d, 3JC-F = 15.5 Hz), 123.5 (d, 
2JC-F = 3.5 Hz), 114.9 (d, 1JC-F = 21.9 Hz), 81.2 (O-C), 66.0 

(NCH), 32.6 (CH2), 27.9 (CH3); Mass (MS): m/z 404.2 [M+H]+; 

HPLC analysis: Daicel Chiralpak OD-H, hexane/dioxane = 95:5, 

254 nm, flow rate = 0.5 ml/min, retention time: 11.0 min (R), 55 

13.7 min (S). 

 tert-Butyl 3-(3, 4-difluorophenyl)-2-(diphenylmethyleneam-

ino)propanoate (7). 41.7 mg, 99%; 1H NMR (300.1 MHz, 

CDCl3, TMS) δ 7.57 (d, 3J = 7.0 Hz, 2H, Ph-H), 7.40−7.25 (m, 

6H, Ph-H), 7.02−6.73 (m, 5H, Ph-H), 4.10 (dd, 3J = 4.7 Hz, 4.7 60 

Hz, 1H, NCH), 3.21−3.07 (m, 2H, CH2), 1.44 (s, 9H, CH3);
 13C 

NMR (75.0 MHz, CDCl3, TMS) δ 170.7, 170.3 (C=N, C=O), 

148.1 (d, 3JC-F = 12.5 Hz), 147.3 (d, 3JC-F = 12.5 Hz), 139.2, 136.1, 

135.3 (dd, 1JC-F = 5.7 Hz, F, 2JC-F = 3.9 Hz, F), 132.3, 130.3, 

130.0, 128.6, 128.4, 128.2, 128.1, 127.9, 127.5, 125.6 (dd, 1JC-F = 65 

6.0 Hz, F, 2JC-F = 3.6 Hz, F), 118.4 (d, 2JC-F = 16.8 Hz), 116.6 (d, 
2JC-F = 16.8 Hz), 114.4 (Ar and Ph), 81.4 (O-C), 67.3 (NCH), 

38.7 (CH2), 27.9 (CH3); Mass (MS): m/z 422.2 [M+H]+; HPLC 

analysis: Daicel Chiralpak OD-H, hexane/dioxane = 95:5, 254 nm, 

flow rate = 0.5 ml/min, retention time: 10.3 min (R), 12.3 min (S). 70 

 tert-Butyl 3-(4-methylphenyl)-2-(diphenylmethyleneamino) 

propanoate (8). 37.8 mg, 95%; 1H NMR (300.1 MHz, CDCl3, 

TMS) δ 7.81 (d, 3J = 7.2 Hz, 1H, Ph-H), 7.58 (d, 3J = 7.1 Hz, 2H, 

Ph-H), 7.39−7.25 (m, 6H, Ph-H), 6.96 (q, 3J = 7.9 Hz, 4H, Ph-H), 

6.62 (d, 3J = 6.6 Hz, 2H, Ph-H), 4.09 (dd, 3J = 4.4 Hz, 4.4 Hz, 1 75 

H, NCH), 3.23−3.07 (m, 2H, CH2), 2.28 (s, 3H, CH3), 1.44 (s, 9H, 

CH3); 
13C NMR (75.0 MHz, CDCl3, TMS) δ 170.9, 170.1 (C=N, 

C=O), 139.5, 137.5, 136.3, 135.5, 135.1, 132.4, 130.0, 129.6, 

128.7, 128.2, 128.1, 128.0, 127.9, 127.6 (Ar and Ph), 81.0 (O-C), 

68.0 (NCH), 39.1 (CH2), 28.0 (CH3), 21.0 (CH3); Mass (MS): 80 

m/z 400.2 [M+H]+; HPLC analysis: Daicel Chiralpak OD-H, 

hexane/ dioxane = 95:5, 254 nm, flow rate = 0.5 ml/min, 

retention time: 10.7 min (R), 13.1 min (S). 

 tert-Butyl 3-(3-methylphenyl)-2-(diphenylmethyleneamino) 

propanoate (9). 37.9 mg, 95%; 1H NMR (300.1 MHz, CDCl3, 85 

TMS) δ 7.81 (d, 3J = 7.2 Hz, 1H, Ph-H), 7.62−7.46 (m, 4H, Ph-H), 

7.38 −7.26 (m, 7H, Ph-H), 6.59 (d, 3J = 6.5 Hz, 2H, Ph-H), 4.09 

(dd, 3J = 4.5 Hz, 4.3 Hz, 1H, NCH), 3.23−3.08 (m, 2H, CH2), 

2.22 (s, 3H, CH3), 1.45 (s, 9H, CH3); 
13C NMR (75.0 MHz, 

CDCl3, TMS) δ 170.8, 170.2 (C=N, C=O), 139.5, 138.1, 137.4, 90 

136.3, 132.4, 132.3, 130.6, 130.0, 130.0, 128.6, 128.2, 128.2, 

128.1, 127.9, 127.8, 127.7, 126.8, 126.7 (Ar and Ph), 81.0 (O-C), 

67.8 (NCH), 39.4 (CH3), 28.0 (CH2), 21.1 (CH3); Mass (MS): 

m/z 400.2 [M+ H]+; HPLC analysis: Daicel Chiralpak OD-H, 

hexane/dioxane = 95:5, 254 nm, flow rate = 0.5 ml/min, retention 95 

time: 10.0 min (R), 12.3 min (S). 

 tert-Butyl 3-(2-methylphenyl)-2-(diphenylmethyleneamino) 

propanoate (10). 36.7 mg, 92%; 1H NMR (300.1 MHz, CDCl3, 

TMS) δ7.60 (d, 3J = 7.2 Hz, 2H, Ph-H), 7.35−7.23 (m, 6H, Ph-H), 

7.09− 7.04 (m, 4H, Ph-H), 6.52 (d, 3J = 4.1 Hz, 2H, Ph-H), 4.15 100 

(dd, 3J = 3.9 Hz, 3.9 Hz, 1 H, NCH), 3.33−3.15 (m, 2H, CH2), 

2.06 (s, 3H, CH3), 1.39 (s, 9H, CH3); 
13C NMR (75.0 MHz, 

CDCl3, TMS): δ 171.0, 170.1 (C=N, C=O), 139.3, 136.9, 136.3, 

136.2, 132.4, 131.0, 130.0, 130.0, 129.9, 128.7, 128.2, 128.1, 

127.9, 127.8, 127.6, 126.3, 125.9, 125.5 (Ar and Ph), 81.0 (O-C), 105 

66.4 (NCH), 36.7 (CH3), 28.0 (CH2), 19.2 (CH3); Mass (MS): 

m/z 400.2 [M+ H]+; HPLC analysis: Daicel Chiralpak OD-H, 

hexane/dioxane = 95:5, 254 nm, flow rate = 0.5 ml/min, retention 

time: 10.1 min (R), 12.3 min (S).  
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