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This paper describes azidation of indoles with NaN3 and ceric ammonium nitrate (CAN), giving a variety 
of spirocyclic 2-azido indolines in good yields and moderate diastereoselectivities. 

 Azides are synthetically versatile intermediates.1  Oxidative 
azidation of alkenes provides an effective strategy to introduce 
the azide group into organic molecules.2-6  The reaction is 10 

believed to proceed via an azide radical, which adds to the C-C 
double bond.  The resulting intermediate is usually intercepted by 
another heteroatom intermolecularly (Scheme 1).  Oxidative 
azidation of alkenes followed by a ring closure with an internal 
heteroatom, however, is less well developed.  Recently, we 15 

reported an intramolecular azidoalkoxylation of enecarbamate 1 
with NaN3 and ceric ammonium nitrate (CAN) to construct key 
intermediate 3 toward aspidophylline A (Scheme 2).7-9  The 
synthetic potential of this type of process and our general interest 
in the area of alkene functionalization10 prompted us to further 20 

explore such process with other systems.  During these studies, 
we have found that indoles can be converted into the 
corresponding spirocyclic 2-azido indolines with NaN3 and 
CAN.11  Herein, we wish to report our preliminary studies on this 
subject. 25 
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Scheme 2 
 

 Indole 4a was used as the substrate for our initial studies.  
Treating 4a with NaN3 (1.5 equiv) and CAN (3.0 equiv) in 
acetone at 0 oC gave spirocyclic 2-azido indoline 5a in 57% yield  35 

 
 
 

and 5:1 dr (Table 1, entry 1).  Among the solvents examined 
(Table 1, entries 2-6), CH3CN gave the highest yield (77%) 40 

(Table 1, entry 2).  A similar yield (78%) but with a slightly 
lower dr (3.5:1) was obtained with TMSN3 (Table 1, entry 7).  No 
reactions were observed with PhI(OAc)2 or PhI(OCOCF3)2 as 
oxidant using NaN3 or TMSN3 as azide source (Table 1, entries 
8-11).  Similar yield (73%) and dr (5:1) were obtained when the 45 

indole was protected with the Boc group (Table 1, entry 12).  No 
desired product was formed for the methyl-protected substrate 
(Table 1, entry 13). 
 

Table 1  Studies of reaction conditions.a 50 

oxidant, azide
N

NTs

R

N3

4 5

N
R

NHTs

solvent, 0 oC

 
Entry R Solvent Oxidant Azide Yieldb 

(%) 
drc 

1 CO2Et
(4a) 

CH3COCH3 CAN NaN3 57 5:1 

2 CO2Et CH3CN CAN NaN3 77 5:1 
3 CO2Et EtOH CAN NaN3 - - 
4 CO2Et DMF CAN NaN3 - - 
5 CO2Et H2O CAN NaN3 - - 
6d CO2Et CH3CN/H2O 

(10:1) 
CAN NaN3 61 5:1 

7 CO2Et CH3CN CAN TMSN3 78 3.5:1 
8 CO2Et CH3CN PIDA TMSN3 - - 
9 CO2Et CH3CN PIDA NaN3 - - 
10 CO2Et CH3CN PIFA TMSN3 - - 
11 CO2Et CH3CN PIFA NaN3 - - 
12 Boc CH3CN CAN NaN3 73 5:1 
13 Me CH3CN CAN NaN3 - - 
a All reactions were carried out with substrate 4 (0.250 mmol), NaN3 
(0.375 mmol), and oxidant (0.750 mmol) in solvent (11.9 mL) at 0 oC for 
2 h unless otherwise noted.  b Combined yields of the two isomers based 
on 4.  c The diastereoselectivity was determined by 1H NMR of the crude 55 

reaction mixture.  d The reaction was carried out in 2.5 mL solvent.  CAN 
= Ce(NH4)2(NO3)6;  PIDA = PhI(OAc)2;  PIFA = PhI(OCOCF3)2. 
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Fig. 1  The X-ray structures of compounds anti-5a and anti-5h. 
 

 
Fig. 2  The X-ray structure of compound 5i. 5 

 
 As shown in Table 2, the reaction process can be extended to 
tosyl protected homotryptamines (Table 2, entries 1-3), 3-
indolepropanols (Table 2, entries 4-7), and 3-indolepropanoic 
acid (Table 2, entry 8), giving spirocyclic 2-azido indolines as 10 

two diastereomers in good yields.  Except for entries 4 and 5, 
both diastereomers can be isolated.  It appeared that a slightly 
higher diastereoselectivity was obtained for substrates with 
electron-donating groups (Table 2, entries 4-7).  In the cases of 
entries 1 and 8, the indicated stereochemistry of the major isomer 15 

was determined by the X-ray structure (Fig. 1).  The syn-isomer 
is disfavored likely due to the unfavorable hindrance between the 
azide group and the nucleophile.  Interestingly, spirocyclic 2,2-
diazido indolines were obtained when Boc protected tryptamines 
were subjected to the reaction conditions (the X-ray structure of 20 

5i is shown in Fig. 2). 
 While a precise understanding of the reaction mechanism 
awaits further study, a plausible pathway for the bisazidation is 
shown in Scheme 3.  An azidyl radical, generated from the 
oxidation of sodium azide by CAN, added to indole 4i at C-2 25 

position to form radical 6, which was converted to 2-azido indole 
8 via H-abstraction of 6 or via loss of a proton from cation 7 (for 
this cation, the cyclization was relatively slower).  The azidyl 
radical added to indole 8 again to form radical 9, which was 
oxidized by CAN to cation 10.  The subsequent capture of the 30 

cation by the Boc group to form diazido indoline product 5i.  For 
entries 1-8 in Table 2, cation 7 was effectively intercepted by the 
nucleophile to form monoazido indolines due to the facile 
formation of the 5-membered ring.12 

 35 

Conclusion 
In summary, we have shown that indoles can be effectively 
azidated with NaN3 and CAN to form various spirocyclic 2-azido 
indolines in good yields and moderate diastereoselectivities.  In  
some cases, spirocyclic 2,2-diazido indolines have been obtained. 40 

 

Table 2  CAN-mediated azidation of indoles.a 

4 5

NaN3, CAN
CH3CN, 0 or -40 °C N

CO2Et

X
N3R

N
CO2Et

XH
R

 
Entry Substrate (4) Product (5) Yieldb 

 
 

1 
 

N
CO2Et

NHTs

     4a 
N

NTs

CO2Et

N3

5a 

major: 

63% 

minor: 
20% 

 
 

2 N
CO2Et

NHTsMe

 4b 
N

NTs

CO2Et

N3
Me

5b 

major: 

62% 

minor: 
23% 

 
 

3 N
CO2Et

NHTsMeO

4c 
N

NTs

CO2Et

N3
MeO

5c 

major: 

54% 

minor: 
7% 

 
 

4 N
CO2Et

OH

       4d 
N

O

CO2Et

N3

5d 

 
 

71% (5:1) 
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N
CO2Et

OHMe

   4e 
N

O

CO2Et

N3
Me

5e 

 
 

81% (5:1) 

 
 

6 N
CO2Et

OHF
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N

O

CO2Et

N3
F

5f 

major: 

65% 

minor: 
26% 

 
 

7 N
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N

O

CO2Et

N3
NC

5g 

major: 

41% 

minor: 
25% 

 
 

8 N
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OH
O
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O

CO2Et

N3

O
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major: 
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minor: 
27% 

 
 

9c 
N
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       4i N
CO2Et

O

H
N

O

N3
N3

5i 

 
 

44% 

 
 

10c 
N
CO2Et

NHBocMeO

 4j N
CO2Et

O

H
N

O

N3
N3

MeO

5j 

 
 

45% 

 
 

11c 
N
CO2Et

NHBocCl

   4k N
CO2Et

O

H
N

O

N3
N3

Cl

5k 

 
 

42% 

a The reactions were carried out with 4 (0.50 mmol), NaN3 (0.75 mmol), 
and CAN (1.50 mmol) in acetonitrile (24 mL) at 0 oC for 2 h unless 45 

otherwise noted.  For entries 4-7, the reactions were carried out at -40 oC.  

b Isolated yields based on 4;  For entries 4 and 5, the yield is the mixture 
of   two isomers.  c With NaN3 (1.50 mmol) and CAN (3.00 mmol). 
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Scheme 3 

 

Further understanding of the reaction mechanism and expanding  
the scope of the oxidative azidation process are currently 5 

underway. 
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