Organic & Biomolecular Chemistry

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

www.rsc.org/obc

Journal Name

RSCPublishing

COMMUNICATION

Fluoroacetate biosynthesis from the marine-derived bacterium *Streptomyces xinghaiensis* NRRL B-24674

Cite this: DOI: 10.1039/x0xx00000x

Sheng Huang^{a#} Long Ma^{b#} Ming Him Tong^c Yi Yu^{a*} David O'Hagan^b and Hai Deng^{a,c*}

Received ooth January 2012, Accepted ooth January 2012

DOI: 10.1039/x0xx00000x

www.rsc.org/

Genome sequencing identified a fluorinase gene in the marine bacterium *Streptomyces xinghaiensis* NRRL B-24674. Fermentation of the organism with inorganic fluoride (2mM) demonstrated that the organism could biosynthesise fluoroacetate and that fluoroacetate production is sea-salt dependent. This is the first fluorometabolite producing microorganism identified from the marine environment.

Organofluorine compounds have been widely exploited by the pharmaceutical industry.¹ Well over 20% of current drugs in clinical trials contains a fluorine atom. Fluorinated entities have also found extensive use in agrochemicals and in tuning the properties of performance high-value organic materials.² In contrast, nature has hardly evolved a biochemistry of fluorine, and fluorinated natural products are extremely rare.³ Fluoroacetate **1** is the most ubiquitous fluorometabolite found as a toxic component of many tropical and sub-tropical plants.⁴ In 1986, a soil bacterium Streptomyces cattleva was shown to have the capacity to produce fluoroacetate 1 and the antibiotic, 4-fluorothreonine 2 when grown in the presence of fluoride ion.⁵ Subsequently the origin of the fluorometabolites of S. *cattleva* has been studied and the pathway is shown in Scheme 1.⁶ Enzymatic C-F bond formation is catalysed by the fluorinase, which converts S-adenosyl-L-methionine 3 to 5'-fluoro-5'-deoxyadenosine 4. The pathway then progresses through fluororibose phosphate 5 and then fluororibulose phosphate 6. An aldolase catalyses a retroaldol reaction to generate fluoroacetaldehyde 7, which is processed in two directions; oxidation generates fluoroacetate 1, and a PLPtransaldolase enzyme generates 4-fluorothreonine 2.7 Fluorinase genes remain sparse. In 2014, more than a decade after the first identification, we reported and assayed three new fluorinases from two terrestrial actinomycetes (Streptomyces sp MA37 and Actinoplanes sp. N902-109) and an actinomycete pathogen, Norcardia brasiliensis.⁸ Streptomyces sp. MA37 produces fluoroacetate 1 and 4-fluorothreonine 2 in culture and also several unidentified fluorometabolites. N. brasiliensis was unable to produce fluorometabolites under laboratory culture conditions, and the Actinoplanes sp strain, although sequenced, is not available in the

public domain to culture. To date the plants and bacteria that produce fluorometabolites are from terrestrial organisms. More than 70% of our planet's surface is covered by oceans. Marine ecosystems differ from terrestrial ones substantially, eg. with high chloride concentrations (~0.6M or 19,000 ppm).⁹ By contrast, fluoride concentrations average only 1.3 ppm in surface water. Consequently chlorinated natural products dominate halogenated marine metabolite isolates.¹⁰ In 2003, a series of 5-fluorouracil derivatives was isolated from extracts of the marine sponge *Phakellia fusca* Schmidt, collected from the South China Sea.¹¹ Considering the direct relationship between these derivatives and the widely-used anticancer drug, it is most likely that the sponge accumulated 5-fluorouracil from industrial effluent rather than by a *de novo* fluorination biosynthesis.

Scheme 1. Biosynthetic pathway to fluoroacetate 1 and 4-fluorothreonine 2 in bacteria.

Figure 1. Organisation of genes around the fluorinase (*flA*) from the bacterial fluorometabolite producers: A) *S. cattleya* (Spencer cluster); B) *Streptomyces sp.* MA37; C) *Streptomyces xinghaiensis.* The homologous genes are colour coded for visual comparison: *flA*, fluorinase; *flB*, purine nucleoside phosphorylase; *flF* and *flG*, DNA binding proteins; *flH*, Na⁺/H⁺ antiporter; *flI*, *S*-adenosylhomocysteine lyase; *flJ* and *flL*, DNA binding proteins; *flK*, fluoroacetyl-CoA lyase; *flFT*, 4-FT transaldolase.

Here we report that the marine bacterium *Streptomyces xinghaiensis* NRRL B-24674 is a fluoroacetate **1** producer. A fluorinase gene was identified by genome sequencing of the organism. Fluoroacetate **1** production was observed in culture and was found to require high salinity.

S. xinghaiensis NRRL B-24674 was isolated in 2009 from a marine sediment sample around Xinghai Bay, in Dalian, China.¹² The strain produces a novel alkaloid which was named xinghaiamine A.¹⁴ Due to its unique phenotype, it was subjected to genome sequencing in 2011 (accession no. AFRP01000000).¹³ Its genome sequence was annotated in the RAST server.¹⁵ The length of the deposited sequence is approximately 6.79 Mbp with 2312 contigs. Homologue analysis identified a putative fluorinase gene in the contig with the NCBI access No (AFRP01002228.1) and the encoded protein

sequence shared high sequence identity (84%) with the other four known fluorinases, including a 21 amino acids loop, a unique signature of the fluorination enzymes identified so far. (ESI, Figure S2 and Table S2). *In silico* analysis indicated that the fluorinase gene *flA4* in *S. xinghaiens*is is located immediately adjacent to *flB4*, encoding the second biosynthetic enzyme of the fluoroacetate pathway (Scheme 1), a purine nucleotide phosphorylase (PNP).¹⁶ Unlike the gene arrangement¹⁷ in *S. cattleya*, there is a higher degree of clustering of the genes responsible for fluorometabolite biosynthesis in the more recently identified organisms. For example the genes encoding the 4-fluorothreonine transaldolase (4-FTase) are located very close to their respective *flA* homologues only in these latter cases.⁸ 4-FTase is a pyridoxal phosphate (PLP) enzyme responsible for the last step in 4-fluorothreonine biosynthesis and it

Figure 2. ¹⁹F NMR spectroscopic analysis of fluoroacetate 1 in the supernatant of the culture medium from the marine-derived *S. xinghaiensis* NRRL B24674. Insert: the coupling of fluoroacetate.

Journal Name

appears to contain two domains, the larger one most closely related to a PLP-dependent serine hydroxymethyl transferase (SHMT) motif and the smaller to an epimerase, suggesting that the observed transaldolase activity has evolved from a hybrid construction of two historical activities.¹⁸ A *fIFT* knockout in *S. cattleya* resulted in a mutant able only to produce fluoroacetate 1, which validated its role in 4-fluorothreonine 2 biosynthesis.²¹ In S. xinghaiensis there is a truncated *flFT* transaldolase with only 96 amino acids in length lying adjacent to the *flA* gene which shares a very high sequence identity (70%) only with the epimerase motif of the other 4-FTases.¹⁸ Two thirds of the gene seems to be missing and it has no SHMT or PLP binding motif so clearly could not carry out the transaldolase reaction to generate 4-fluorothreonine 2. We are also able to identify three candidate fluoroacetate 1 biosynthetic genes, those encoding a methylthioribose-1-phosphate isomerase, a fructose aldolase and an alcohol dehydrogenase in the genome of S. xinghaiensis. They are not located particularly close to *flA4*, however this is also the case in S. cattleya and Streptomyces sp. MA37.

To investigate further, S xinghaiensis was grown in shake flask culture supplemented with fluoride (2mM) in fresh water. It did not behave like other Streptomyces in typical Streptomyces media such as International Streptomyces Protocol (ISP) 2 to 7 and Starch Casein medium and failed to produce healthy cell mass. No organofluorine signal was observed in ¹⁹F NMR in these samples. However when the medium was supplemented with artificial sea salt (30g/L) a healthy growth was established suggesting a sea salt dependency for this marine bacterium. The supernatant of a 10-day culture was analysed by ¹⁹F{¹H}-NMR. The organism produced fluoroacetate 1 (-217.44 ppm, t, ${}^{2}J_{HF} = 47.8Hz$) as a sole fluorometabolite (Figure 2). The concentration of 1 rose to ~1mM after 19-d fermentation using a known concentration of an added fluoromethyl containing reference (5'-fluoro-5'deoxy-adenosine) to the NMR sample (ESI, Figure S4). The ability of S xinghaiensis to elaborate fluoroacetate 1 suggests that the identified biosynthetic cluster plays a similar role to the one in S cattleya and Streptomyces sp MA37. The absence of any 4-fluorothreonine 2 is consistent with the truncated *flFT*4 gene but its role is unclear.

To the left of the *fIFT4* gene (Figure 1) are four genes encoding putative auxiliary functions, including DNA regulation (flF, G and I homologues), and transporter functions (*flH* homologues), which are also highly conserved in the genes clustered around *flA* in all other fluorinase containing organisms (S. cattleya, Streptomyces sp MA37, N. brasiliensis and Actinoplanes sp.) Interestingly, the translated sequence of the FIF4 transporter is shortened to only 119 amino acids in length compared to the corresponding one in S. cattleya of 185 amino acids. To the right of the *flA* gene (Figure 1) are two genes encoding putative auxiliary functions. In S. cattleya, their homologous are orfA and orfB, which are situated adjacent to flFT on a megaplasmid and very remote from the fluorinase gene flA which is located on the chromosome. OrfA homologues belong to a superfamily of drug metabolite transporter proteins and they share a high sequence identity (47%) with ORF1 involved in the biosynthesis of 4-chlorothreonine in Streptomyces sp. OH-5093.¹⁹

At one end of the cluster is flK4 coding for a fluoroacetyl-CoA thioesterase (70% sequence identity to flK in *S. cattleya*). The flK gene is thought to confer resistance to fluoroacetate cytoxicity.¹⁷ The encoded fluoroacetyl-CoA thioesterase FlK efficiently hydrolyse fluoroacetyl-CoA over acetyl CoA, preventing the conversion of fluoroacetyl-CoA to the respiratory toxin fluorocitrate.²⁰ In the case of *S. xinghainesis*, the flK4 gene is also in close proximity to the corresponding flA4 gene, consistent with a toxicity resistance role. To explore a link between flK4 and fluoroacetate 1 biosynthesis an in-frame gene deletion of flK4 was conducted using a temperature-dependent suicidal plasmid pKC1139. About two 2-kbp sequences

flanking both sides of f/K4 gene were amplified and cloned into pKC1139. The construct was introduced into *S. xinghaiensis* through conjugation, and the double-cross recombination mutant WDY40 was screened out by PCR. ¹⁹F NMR analysis of the supernatant of the mutant WDY40 strain demonstrated that the knockout completely abolished the fluoroacetate **1** production (Fig S5 B), consistent with the previous report in *S. cattleya*. ²¹ Complementation of *f/K4* in the mutant WDY40, resulting in the mutant WDY41, restored the production of **1**, suggesting a key role for *f/K4* in the regulation of fluoroacetate **1** production (Fig S5 C), consistent with a putative toxicity resistance role.

Conclusions

In silico analysis has indicated that the marine-derived actinomycete, Streptomyces xinghainesis, contains similar genes to those in S. cattleya and Streptomyces sp. MA37 for the biosynthesis of fluoroacetate and 4-fluorothreonine. However the cluster in S. xinghainesis had a truncated transaldolase analogous to that involved in the last step of 4-fluorothreonine biosynthesis in the other two organisms. Culturing demonstrated that S. xinghainesis has the capacity to produce only fluoroacetate but not 4-fluorothreonine. Production of fluoroacetate is sea-salt dependent. Inactivation of the flK4, the putative resistence gene to fluoroacetate toxicity, encoding a fluoroacetate production, and re-insertion of the gene restored its production. This is the first micro-organism from the marine environment shown to produce a fluorometabolite in culture.

Notes and references

^a Key Laboratory of Combinatory Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, 185 East Lake Road, Wuhan 430071 (P. R. China). Email. yuyi119@hotmail.com

^b School of Chemistry and Biomedical Sciences Research Centre, University of St Andrews, North Haugh, St Andrews KY169ST, United Kingdom.

^c Marine Biodiscovery Centre, Department of Chemistry, Meston Walk, University of Aberdeen, Aberdeen AB24 3UE. United Kingdom. Email: h.deng@abdn.ac.uk

These authors have the equal contribution to this research.

⁺The supernatant of *Streptomyces xinghaiensis* culture was collected on time course of 1, 3, 5, 7, 14, 19 days. Each sample was subject to ¹⁹F-NMR analysis. ¹⁹F-NMR spectra were recorded with and without proton decoupling on a Bruker AV-500MHz instrument (¹⁹F at 470.3 MHz). The chemical shifts of ¹⁹F-NMR were calculated with respect to CFCl₃.

The identified gene cluster in *Streptomyces xinghaiensis* has already been deposited in European Nucleotide Archive with accession no HG975299.

HD thanks the financial support of Marine Alliance for Science and Technology for Scotland (MASTS) small grant (grant no. SG183) and Dr. Qingzhi Zhang in University of St Andrews, UK for running ¹⁹F-NMR analysis.

Electronic Supplementary Information (ESI) available. See DOI: 10.1039/c000000x/

- 1 D O'Hagan, J. Fluorine Chem., 2010, **131**, 1071.
- 2 VA Brunet, D O'Hagan, Angew. Chem. Intl. Ed., 2008, 47, 1179.

- H. Deng, D. O'Hagan, C Schaffrath, *Nat. Prod. Rep.*, 2004, 21, 773;
 M. C. Walker and M. C. Y. Chang, *Chem. Soc Rev.*, 2014, DOI: 10.1039/C4CS00027G.
- 4 D. O'Hagan, R. Perry, J. M. Lock, J. J. M. Meyer, L. Da aradhi, J. T. G. Hamilton, D. B. Harper, *Phytochemistry*, 1993, **33**, 1043.
- 5 M. Sanada, T. Miyano, S. Iwadare, J. M. Williamson, B. H. J. Arison, L. Smith, A. W. Douglas, J. M. Liesch, E. Inamine, *J. Antibiot.*, 1984, 39, 259.
- 6 H. Deng, D. O'Hagan, Curr. Opin. Chem. Biol. 2008, 12, 582.
- 7 D. O'Hagan, C. Schaffrath, SL. Cobb, JTG Hamilton, CD Murphy. *Nature*. 2002, **416**, 279; C Schaffrath, H. Deng, D. O'Hagan. *FEBS Lett*. 2003, **547**, 111.
- 8 H. Deng, L. Ma, N. Bandaranayaka, Z. Qin, G. Mann, K. Kyeremeh, Y. Yu, T. Shepherd, J.H. Naismith, D. O'Hagan. *ChemBioChem*, 2014. 15, 364.
- 9 K. S. Lam, Curr. opin. Microbial., 2006, 9, 245.
- 10 G.W. Gribble, J. Chem. Educ., 2004, 81, 1441.
- 11 X. H. Xu, G.M. Yao, Y. M. Li, C. J. Lin, X. Wang and C. H. Kong, J. Nat. Prod., 2003, 66, 285.
- 12 X. Q. Zhao, WJ. Li, W. C. Jiao, Y. Li, W.J. Yuan, Y.Q. Zhang, H.P. Klenk, J.W. Suh, F.W. Bai, *Int. J. Syst. Evol. Microbiol.* 2009, **59**, 2870.
- 13 X. Zhao, T. Yang, J. Bacteriol., 2011, 193, 5543.
- 14 W. Jiao, F. Zhang, X. Zhao, J. Hu, J-W. Suh, *PLoS ONE*, 2013, 8, e75994.
- 15 R. K. Aziz, D. Bartels, A. A. Best, M. DeJongh, T. Disz, R. A. Edwards, K. Formsma, S. Gerdes, E. M. Glass, M. Kubal, F.Meyer, G. J. Olsen, R. Olson, A. L. Osterman, R. A. Overbeek, L. K. McNeil, D. Paarmann, T. Paczian, B. Parrello, G. D. Pusch, C. Reich, R. Stevens, O. Vassieva, V. Vonstein, A. Wilke and O. Zagnitko, *BMC Genomics*, 2008, **9**, 75.
- 16 S.L. Cobb, H. Deng, J. T. G. Hamilton, R. P. McGlinchey, D. O'Hagan, *Chem. Comm.*, 2004, 592.
- 17 F. Huang, S. F. Haydock, D. Spiteller, T. Mironenko, T.-L. Li, D. O'Hagan, P. F. Leadlay, J. B. Spencer, *Chem. Biol.* 2006, **13**, 475.
- C.D. Murphy, C. Schaffrath, D. O'Hagan, *Angew. Chem. Int. Ed. Eng.* 2001, **40**, 4479; H. Deng, S. M. Cross, R. P. McGlinchey, J. T. G. Hamilton, D. O'Hagan, *Chem. Biol.*, 2008, **15**, 1268.
- 19 M. R. Fullone, A. Paiardini, R. Miele, S. Marsango, D.C. Gross, S. Omura, E. Ros-Herrera, M.C. Bonaccorsi di Patti, A. Laganà, S. Pascarella, I. Grgurina, *The FEBS journal*, 2012, **279**, 4269.
- M. V. B. Dias, F. Huang, D. Y. Chirgadze, M. Tosin, D. Spiteller, E. F. V. Dry, P. F. Leadlay, J. B. Spencer, T. L. Blundell, *J. Biol. Chem.* 2010, **285**, 22495; A. M. Weeks, S. M. Coyle, M. Jinek, J. A. Doudna, M. C. Y. Chang, *Biochemistry* 2010, **49**, 9269. A. M. Weeks, M. C. Y. Chang, *Proc. Natl. Acad. Sci. U. S. A.* 2012, **109**, 19667.
- 21 C. Zhao, P. Li, Z. Deng, H. Y. Ou, R.P. McGlinchey, D. O'Hagan, *Bioorg. Chem.* 2012, 44, 1.
- 22 Y. Wang, Z. Deng, X. Qu, F1000Research, 2014, 61, 1.