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Stereoselective	
   synthesis	
   of	
   hexahydroquinazolin-­‐2(1H)-­‐ones	
  
has	
   been	
   achieved	
   through	
   the	
   application	
   of	
   diene-­‐
transmissive	
  	
  hetero-­‐Diels–Alder	
  methodology	
  to	
  2-­‐vinyl-­‐1-­‐aza-­‐
1,3-­‐butadienes.	
   The	
   cross-­‐conjugated	
   1-­‐azatriene	
   underwent	
  
initial	
   hetero-­‐Diels–Alder	
   reaction	
   on	
   the	
   1-­‐aza-­‐1,3-­‐butadiene	
  
system	
   with	
   tosyl	
   isocyanate	
   to	
   afford	
   the	
   [4+2]	
   mono-­‐
cycloadduct	
  pyrimidinone.	
  The	
  second	
  Diels–Alder	
  reaction	
  on	
  
the	
   electron-­‐rich	
   1-­‐amino-­‐1,3-­‐diene	
   unit	
   of	
   the	
   mono-­‐
cycloadduct	
   with	
   dienophiles	
   provided	
   hexahydroquinazolin-­‐
2(1H)-­‐ones	
  with	
  high	
  stereoselectivity.	
  

The diene-transmissive Diels–Alder (DTDA) reaction is an attractive 
method with which to construct polycyclic ring-fused compounds in an 
efficient and stereocontrolled manner.1 The reaction can be simply 
defined as two sequential Diels–Alder (DA) cycloadditions of cross-
conjugate trienes ([3]dendralenes).2 Thus, the DTDA reaction consists 
of an initial DA reaction of cross-conjugated triene or its equivalent 
(masked cross-conjugated triene) with a dienophile, and a subsequent 
DA reaction with a dienophile on the newly formed diene unit of the 
mono-cycloadduct. The hetero-Diels–Alder (HDA) reaction is one of 
the most useful and important tools available for the synthesis of 
heterocyclic compounds because it can be used for the straightforward 
construction of heterocycles with predictable chemo-, regio-, and 
stereoselectivities.3 Therefore, the diene-transmissive hetero-Diels–
Alder (DTHDA) methodology would constitute an efficient and 
powerful tool for the construction of polycyclic ring-fused 
heterocycles.4–10 Nevertheless, examples of this attractive method have 
so far been limited to reactions with [3]-3-heterodendralenes (thia-,4 
oxa-,5 and aza-6,7), [3]-1-heterodendralenes (oxa-8,9), and [3]-1,5-
dioxadendralenes,10 as shown in Fig. 1. Herein, we report the successful 
implementation of the DTHDA methodology using [3]-1-
azadendralenes (cross-conjugated 1-azatrienes) for the first time. 

 Cross-conjugated azatriene 2 was prepared from the corresponding 
2-vinyl α,β-unsaturated aldehyde 1 and amine by condensation with 
TiCl4 and Et3N; the product was used without isolation due to its 
instability in aqueous work-up conditions. N-Phenyl azatriene 2a, 
prepared in situ, reacted with tosyl isocyanate at 80 °C to afford the 
initial [4+2] cycloadduct, dihydropyrimidinone 3a, in 97% yield as the 
sole product (Scheme 1 and Table 1, entry 1). Similarly, azatrienes 2b–
d reacted with tosyl isocyanate to produce [4+2] cycloadducts 3b–d, 
respectively, in excellent to good yield (entries 2–4). Notably, the initial 
DA reaction with tosyl isocyanate took place at the azadiene terminus 
with complete chemo- and regioselectivity.11 
  Because mono-cycloadduct 3 possesses a pyrimidinone ring system 
incorporating a newly formed transmitted electron-rich 1-amino-1,3-
diene unit, normal electron-demand DA reactions were expected to 
occur. To examine the π-diastereofacial selectivity of the second DA 
reaction of 3, a symmetrical and reactive dienophile, tetracyanoethylene 
(TCNE), was selected. The reaction of 3a with TCNE proceeded 
smoothly at room temperature to afford the [4+2] cycloadduct  
hexahydroquinazolin-2(1H)-one 4a, in 90% yield as the sole product 
(Scheme 2 and Table 2, entry 1). Similarly, the reactions of 3b and 3c 
with TCNE produced 4b and 4c, respectively, in 97 and 85% yield. The 
stereochemistry of bis-cycloadduct 4 was determined based on the 
results of 1H NMR spectroscopic analysis. Nuclear Overhauser effects 
(NOE) were observed between H-6 and H-8a, and H-5 and H-6 but, as 
anticipated, not between H-8a and H-4. These observations and the 
structural information (trans-relationship between H-8a and H-4) 
obtained from X-ray crystallographic analysis of compound 6b (vide 
infra) suggest that the dienophile (TCNE) attacks the diene π-face from 
the less hindered back H-4 side of 3, avoiding the more bulky phenyl 
substituent at the 4-position.12  
 To examine the endo/exo selectivity as well as the π-diastereofacial 
selectivity in the second DA reaction of 3, the reaction with N-
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phenylmaleimide (N-PhMI) was carried out. The reaction proceeded in 
toluene at reflux to afford bis-cycloadduct 5 as a single diastereomer in 
good to excellent yield with complete π-diastereofacial and endo 
selectivities. Thus, N-PhMI cycloadded from the less hindered back H-
4 side of the diene π-face in the endo arrangement. 
 Finally, the reaction of mono-cycloadduct 3 with methyl vinyl 
ketone was performed to examine the regioselectivity in addition to the 
endo/exo and π-diastereofacial selectivities in the second DA reaction. 
When diene 3 in toluene was heated to reflux with methyl vinyl ketone 
(MVK; an excess amount) for 70 h in a sealed tube, the reaction 

resulted either in the formation of complex mixtures without any 
cycloadduct (Scheme 4 and Table 4, entry 1), or in the production of 6d 
in low yield (17%) with an endo/exo ratio of 3:1 (entry 2). Fortunately, 
Lewis acid TMSOTf (20 mol%) was found to effectively catalyze the 
desired DA reaction to afford 6a as a single cycloadduct in 53% yield, 
with no other isomers being detected in the crude reaction mixture 
(entry 3).13 TMSOTf also worked effectively in the reactions of 3b–d to 
give 6b–d in moderate to good yields. In all cases, the Lewis acid-
catalyzed DA reaction proceeded with complete regio- and 
stereoselectivity. 

 

 
 Fig.	
  1	
  	
  	
  Reported	
  [3]heterodendralenes	
  used	
  in	
  DTHDA	
  reaction. 

  
Scheme	
  1	
  Imination	
  of	
  2-­‐vinyl	
  α,β-­‐unsaturated	
  aldehyde	
  1	
  and	
  initial	
  cycloaddition	
  of	
  azatriene	
  2	
  with	
  tosyl	
  isocyanate.	
  

Table	
  1	
  	
  Initial	
  cycloaddition	
  of	
  azatriene	
  2	
  with	
  tosyl	
  isocyanate	
  

Entry Azatriene R1 R2 Time (h) Product Yield (%) 
1 2a Ph Ph 5 3a 97 
2 2b p-Tol Ph 4 3b 98 
3 2c Bn Ph 3 3c 97 
4 2d Bn CO2Me 2 3d 60 

	
  

	
  

Scheme	
  2	
  	
  Second	
  cycloaddition	
  of	
  3	
  with	
  tetracyanoethylene.	
  

Table	
  2	
  	
  Second	
  cycloaddition	
  of	
  3	
  with	
  tetracyanoethylene	
  

Entry Diene R1 Product Yield (%) 
1 3a Ph 4a 90 
2 3b p-Tol 4b 97 
3 3c Bn 4c 85 

	
  

 

 
Scheme	
  3	
  	
  Second	
  cycloaddition	
  of	
  3	
  with	
  N-­‐phenylmaleimide.	
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Table	
  3	
  	
  Second	
  cycloaddition	
  of	
  3	
  with	
  N-­‐phenylmaleimide	
  	
  

Entry Diene R1 R2 Time (h) Product Yield (%) endo/exoa 
1 3a Ph Ph 10 5a 88 >99:1 
2 3b p-Tol Ph 18 5b 96 >99:1 
3 3c Bn Ph 10 5c 98 >99:1 
4 3d Bn CO2Me 10 5d 90 >99:1 

 

a Ratio was determined by 1H-NMR spectroscopic analysis. Ratio >99:1 denotes that no exo-isomer was detected.  

Scheme	
  4	
  	
  Second	
  cycloaddition	
  of	
  3	
  with	
  methyl	
  vinyl	
  ketone.	
  

Table	
  4	
  	
  	
  Second	
  cycloaddition	
  of	
  3	
  with	
  methyl	
  vinyl	
  ketone	
  

Entry Diene R1 R2 Solvent TMSOTf 
(mol%)  

Temp. (°C) Time (h) Product Yield (%) endo/exoa 

1 3a Ph Ph Toluene — 113b 70 6a 0 — 
2 3d Bn CO2Me Toluene — 113b 50 6d 17c   3:1 
3 3a Ph Ph CH2Cl2 20 –20 to 0 3.6 6a 53 >99:1 
4 3b p-Tol Ph CH2Cl2 20 –20 to 0 1 6b 63 >99:1 
5 3c Bn Ph CH2Cl2 20 –20 to 0 22 6c 56 >99:1 
6 3d Bn CO2Me CH2Cl2 20 –20 to rt 46 6d 43d >99:1 

 
a Ratio was determined by 1H NMR spectroscopic analysis. Ratio >99:1 denotes that no exo-isomer was detected. b Reaction conducted in a sealed tube. c 34% 
recovery of 3d.  d 37% recovery of 3d.  

 The structure of bis-cycloadduct 6 was determined based on 1H 
NMR spectroscopic analysis. An endo transition-state model of the 
second DA reaction between 3 and MVK to form bis-cycloadduct 6 is 
depicted in Fig. 2. An NOE was observed for 6 between H-8 and H-8a, 
H-7 and H-8a, and between CH3 protons of the acetyl group and H-7´, 
which is consistent with the predicted arrangement of MVK (endo and 
orientation). However, NMR spectroscopic techniques were not 
sufficient to clearly prove the π-facial selectivity of the second DA 
reaction (relationship between H-4 and H-8a or H-8a and Ph-H at the 4-
position). In contrast, X-ray crystallographic analysis of 6b14 proved 
unambiguously the trans relationship between H-4 and H-8a (Fig. 3), 
suggesting that the π-diastereofacial selectivity occurs when MVK 
cycloadds to the diene from the less hindered H-4 side of 3. The X-ray 
crystallographic analysis also confirmed the regio- and endo 
selectivities determined by NOE measurements. We believe that the π-
diastereofacial selectivity (from the less hindered H-4 side of 3) is 
always the same in the second DA cycloaddition with  dienophiles. 

 
Fig.	
  2	
  	
  	
  	
  Endo	
  transition-­‐state	
  model	
  and	
  stereochemistry	
  of	
  6.	
  

Conclusions 

 The DTHDA reaction of 2-vinyl α,β-unsaturated aldimine has been 
developed. The reaction, including aza DA reaction with tosyl 
isocyanate in the initial cycloaddition, provides an efficient new 
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synthetic route to quinazoline derivatives with high regio-, and 
stereoselectivities.  

 

 
Fig.	
   314	
   Molecular	
   structure	
   of	
   compound	
   6b	
   as	
   an	
   ORTEP	
   plot.	
  	
  
Thermal	
  ellipsoids	
  are	
  shown	
  at	
  30%	
  probability	
  level.	
  Hydrogen	
  atoms	
  
on	
  the	
  p-­‐tolyl,	
  phenyl,	
  and	
  methyl	
  groups	
  have	
  been	
  omitted	
  for	
  clarity.	
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