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The power-law behavior widely observed in supercritical percolation systems of 

conductive nanoparticles may merely be a phenomenological approximation to the true 

scaling law not yet discovered. In this work, we derive a comprehensive yet simple scaling 

law and verify its extensive applicability to various experimental and numerical systems. In 

contrast to the power law which lacks theoretical backing, the new scaling law is explanatory 

and predictive, and thereby helpful to gain more new insights into percolation systems of 

conductive nanoparticles. 
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Conductive nanoparticles (CNPs), such as one-dimensional (1D) carbon nanotubes and 

metal nanowires,1–5 two-dimensional (2D) graphene and MoS2 nanosheets,6–8 and three-

dimensional (3D) spherical metal particles,9 are attractive materials for emerging electronics 

and advanced energy storage and conversion.9–13 The knowledge of conductivity scaling in 

composites (or percolation systems) comprising CNPs is crucially important for many 

applications. At present, the overwhelming majority of studies5,9,14–17 employ a power law to 

describe the conductivity σ of a CNP percolation system in the form as  

0 0( )sσ σ φ φ= − ,     (1) 

where 0σ  is a pre-exponential factor, φ  can be any observable equivalent to the volume 

fraction, and 0φ  and s are, more often than not, assumed as the percolation threshold and 

critical conductivity exponent, respectively. In experiments, the power law often applies when 

0φ φ>> ,16,18 i.e., in the supercritical region. However, as discussed in a recent Perspective in 

Science, “most reported power laws lack statistical support and mechanistic backing”.19 The 

widely-used power law in CNP composites likely lies in the same situation. A sufficient 

statistical support for a candidate power law should exhibit a good linearity on a log-log plot 

over at least two orders of magnitude in both x and y axes.19 Although some studies on CNP 

composites really provide such a statistical support for the observed power law,20,21 the 

theoretical backing is still controversial. Usually, the supercritical power law, eqn (1), is 

correlated to the critical conductivity scaling law in classical percolation theory22 which 

predicts that when φ  is above, but very close to, the percolation threshold cφ , σ scales in a 

power law as 

0 ( ) ,t

c c
σ σ φ φ φ φ += − → ,    (2)  
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where the critical conductivity exponent t is universal (system-independent) and only depends 

on dimensionality except for some special cases where long-range interactions are involved. 

23-26 However, several factors make it dubious to identify eqn (1) as identical to eqn (2). First, 

it is clear in classical percolation theory22,27 that eqn (2) applies only within the critical region 

c
φ φ +→ , whereas eqn (1) is often valid even when cφ φ>> . Second, t in eqn (2) has universal 

values around 1.30 and 2.0 for 2D and 3D systems, respectively. But the experimentally 

extracted s from eqn (1) is strongly system-dependent.27 A good example is that in the same 

(both 2D and 3D) systems comprising 1D conductive sticks (or fibers), simulations18,28 have 

shown that s ≈ 2 for the junction-limit case (the resistance of junctions between two sticks Rj 

is much larger than the stick resistance Rs, i.e., Rj >> Rs), while s ≈ 1 for the stick-limit case 

(Rs >> Rj). Last, it is very ambiguous29 in most experimental studies whether the extracted 0φ  

from eqn (1) coincides with the critical value cφ  at the transition of structural connectedness 

which can be determined independently.30–32 Through the same Monte Carlo simulations as in 

our early work,33 we have studied systems comprising width-less conductive sticks (a simple 

model for carbon nanotubes or metal nanowires) and found that when the stick number 

density N ranges from 7 to 60 (N is much higher than the percolation threshold31 Nc ≈ 5.64), 

eqn (1) gives perfect fitting to all the simulation data, but N0, as well as s, significantly varies 

with the resistance ratio Rj/Rs and in general evidently deviates from the critical values, as 

shown in Fig. 1. As a matter of fact, once N0 is fixed to Nc, s has to vary with N,28 that is to 

say, the power law is not valid any longer. Note that the deviation of N0 from Nc should not be 

ascribed to the non-nearest-neighbor tunneling29 which is not considered in our simulations. 

Sometimes, the deviated s from t in Fig. 1c is regarded as the nonuniversal exponents.5, 23-26 

However, nonuniversality phenomena usually rely on certain junction resistance 

distribution23-26 and should be identified within the critical region (close vicinity of 

percolation threshold).25-26 On the one hand, our systems are all with constant junction 
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resistance. One the other hand, the stick systems has already been demonstrated as universal 

in the critical region.33 Consequently, the deviated s in supercritical region is essentially 

different from the nonuniversality in critical region. All these suggest that eqn (1) is distinct 

from the critical conductivity scaling [eqn (2)]. As a result, eqn (1) lacks theoretical backing 

and its applicability is thereby not clear. More importantly, the vague meaning of 0φ  and the 

strongly system-dependent exponent s in eqn (1) prevent researchers from gaining any new 

insights into the conduction of CNP composites. Under these circumstances, we derive in this 

work a new scaling law for CNP composites. 

It is challenging to unveil the true supercritical scaling within the framework of classical 

percolation theory which mainly focuses on the critical region. In contrast, effective medium 

theory (EMT) is extensively employed in disordered media in the supercritical region.34–37 

The main strategy of EMT is to determine the property (electrical conductivity, thermal 

conductivity, dielectric constant, etc.) of a composite system (e.g., CNPs embedded in an 

insulating matrix) through averaging the multiple values of the constituents (e.g., the CNPs 

and the surrounding matrix). However, the interactions between the inclusions (e.g., the inter-

particle junctions) are often neglected.38 This causes ineffectiveness of EMT for CNP 

composites where inter-particle junctions often dominate the system conductivity. 

Furthermore, clustering (aggregation) of CNPs is essential in all percolation systems, but is 

not considered in classical EMT either.9,37 In this work, we propose a new concept, dynamic 

interfacial resistance (DIR), to overcome the drawbacks of EMT. 

To involve the inter-particle junctions, in our model each particle is assumed to be 

virtually coated by a thin barrier layer, as illustrated in Fig. 2. The current flowing from one 

particle to another via the inter-particle junction is equivalent to that across the barrier layers. 

The barrier layer resistance, or the interfacial resistance, is inversely proportional to the 
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number of the junctions attaching to the particle (supposing all inter-particle junctions have 

identical resistance). As the average junction number increases with φ , the interfacial 

resistance decreases with φ , i.e., the interfacial resistance is dynamic. The advantages of the 

DIR model are three-fold. First, the physically existing inter-particle junctions are taken into 

account. Second, the effects of clustering have been partly addressed. Let us consider two 

typical cases. An isolated CNP (junction number is zero) has infinitely large interfacial 

resistance which rules out its contribution to the system conductivity. In contrast, CNPs 

standing in large clusters have big junction numbers and hence small interfacial resistance, 

enhancing their contribution to the system conductance. Last and most importantly, since the 

inter-particle junctions are replaced by the interfacial barrier layers, all the CNPs can be 

viewed as non-interacting and the classical EMT is still valid. 

We consider a continuum percolation system consisting of ellipsoidal particles of 

conductivity σp embedded in a matrix of conductivity σm (usually σm << σp). Ellipsoids 

represent a general shape for various CNPs. In different limiting cases, they may turn to be 

1D fibers, sticks or rods, 2D flakes or disks, or 3D spheres.38,39 All ellipsoidal particles are 

coated by a thin confocal resistive layer of thickness δ . If a particle k has the junction 

number nk, the resistance of its coating layer is ,c k j k
R R n=  with Rj being the resistance of 

one junction. Rc,k may relate to the conductivity of the coating layer σs as 

,
0, 0

lim
s

c k sR
σ δ

δ σ
→ →

= .38,40 The effective conductivity σk of such a coated ellipsoidal particle 

is38,40 

,
,

, , ,
1 1 /

p p

k i

i p c k i p j k

i x y z
L QR L QR n

σ σ
σ

σ σ
= = =

+ +
, (3) 
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where σk,i is the component of σk aligned with the ith axis of the ellipsoid, Li is the 

depolarization factor, and 1 1 1
Q a b c

− − −= + + with a, b, and c being the ellipsoid radii. 

Impacted by the inter-particle junctions, the electric field distribution inside the particle k may 

alter. Hence Li and Q in eqn (3) may deviate from the calculation based on the particle shape39 

and are denoted in this work as *
,k i

L  and *
k

Q , respectively. Assuming the matrix particles have 

identical shape to the CNPs, one can obtain from the classical EMT41 the effective 

conductivity σ of the percolation system as the solution of 

* *
, , ,

* *
, , ,

( ) ( )
0

( ) ( )

NV N V
k i k i k i m

k i k ik i k i k i m

L L

L L

σ σ σ σ

σ σ σ σ σ σ

′Φ Φ
′

′ ′

− −
+ =

− − − −
∑∑ ∑∑ ,  (4) 

where V is the system volume (or area in the 2D case where all CNPs lie in the x-y plane), Φ = 

{x,y,z} for 3D systems and {x,y} for 2D systems, and N and N ′  are the number density of the 

CNPs and matrix particles, respectively. 

Most recent applications are interested in CNPs with the shape of sphere (e.g., 

silver/gold CNPs), laminated spheroid (e.g., graphene flakes) or fibrous spheroid (e.g., carbon 

nanotubes). For 3D systems, one may expect * * *
, , ,k x k y k z

L L L≈ ≈  for spheres; * *
, , 0

k x k y
L L≈ ≈  for 

laminated spheroids; and *
, 0

k z
L ≈  and * *

, ,k x k y
L L≈  for fibrous spheroids. Therefore, for all 

these CNPs, eqn (4) approximates to the common form as 

* *
, , ,

* *
, , ,

( ) ( )
0

( ) ( )

NV N V
k i k i k i m

k kk i k i k i m

L L

L L

σ σ σ σ

σ σ σ σ σ σ

′
′

′ ′

− −
+ =

− − − −
∑ ∑ ,  (5) 

where i = x for spheres or fibrous spheroids, and i = z for laminated spheroids. For 2D systems, 

eqn (5) still holds with all i = x. For simplicity and generality, we suppose the supercritical 

percolation systems are highly uniform, so that eqn (5) can be simplified by directly replacing 

the particle (k)-dependent variables with their averages, that is 
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( )( )
(1 ) 0

( ) ( )
m

m

XX
C C

X X

σ σσ σ

σ σ σ σ σ σ

−−
+ − =

− − − −
,   (6)  

where C is the volume fraction of the CNPs, *
,k i

X L≡ , and ,k i
σ σ≡ . According to eqn (3), 

1 * **1

p p ex p

ex p j p jp k j

NV C

NV X Q R C X Q RX Q n R

σ σ σ
σ

σ β σσ
−

≈ ≈ =
+ ++

, (7)  

where * *
k

Q Q≡  and since only the neighboring particles within the excluded volume (area)42 

can contact the particle k, ( 1) /
k ex ex

n NV V V NV C β= − ≈ =  with Vex being the excluded 

volume of a particle and β = C/NVex being a constant. Setting σm = 0, we obtain from eqns (6) 

and (7) that 

( ) ( )0
0*1

p

p j

C C X

X C X Q R M

σ φ φ φ
σ σ

β σ φ

− −
= =

− + +
,   (8)  

where Cφ α=  with α being a conversion factor, 0 Xφ α= , 1 1
0 (1 )

p
Xσ σ α − −= − , and 

* ~ /
p j j b

M X Q R R Rαβ σ=  with Rb being the bulk resistance of a CNP and * 1~
p b
Q Rσ −  (Rb = 

Rs for the stick systems in Fig. 1). Because of the unpredictable deviation of depolarization 

factors induced by inter-particle interaction, X and thereby 0φ  is not known in our present 

theory. Nevertheless, eqn (8) has provided a new yet simple law for σ  scaling as a function 

of φ . In particular, since ~ /
j b

M R R , for junction-limit systems ( /
j b

R R  >> 1), one can 

expect M >> φ , and hence 1 2
0 0( ) ~Mσ σ φ φ φ φ−≈ − ; and for bulk-limit systems ( /

j b
R R  << 1), 

one can expect  M << φ , and hence 0 0( ) ~σ σ φ φ φ≈ − . Straightforwardly, our new scaling 

law interprets the /
j b

R R -dependent exponents in various conductive fiber systems.18,28 

Moreover, it implies that the observed exponent s ≈ 2 in experiments should be ascribed to the 

dominance of junction resistance, not necessarily related to 3D systems whose t ≈ 2. From our 
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theory, both 2D and 3D systems exhibit s ≈ 2 in junction-limit case. This has been verified by 

previous simulations.18 

We revisit the 2D stick systems in Fig. 1 and find that eqn (8) provides fitting as 

excellent as eqn (1) (Figs. 1a and 1b). More importantly, the extracted N0 is much closer to 

the critical value Nc (Fig. 1d) especially when Rj/Rs > 1. Because the DIR model addresses 

partly the clustering effects, the approach of N0 to Nc is anticipated. However, when Rj << Rs, 

the impact of Rj in eqns (7) and (8) is almost negligible. Thereby, the DIR model is not 

effective to address the clustering effects in that case and the deviation of N0 from Nc is still 

evident. Fortunately, since most realistic systems of CNPs stay within the region Rj/Rs > 1, 

eqn (8) should apply extensively in practical systems. Once Rj/Rs >> 1 is confirmed, eqn (8) 

can be further reduced as 

( )0 0σ σ φ φ φ′≈ − ,     (9) 

where 0 0 Mσ σ′ ≈ . That means only two parameters, 0σ ′  and 0φ , are sufficient for the 

supercritical scaling. To verify this, we investigate electrical conductivity of three 

independent systems reported in the literature. They comprises carbon nanotubes, 16 graphene 

flakes 15 and spherical gold CNPs,9 respectively. As shown in Fig. 3a, eqn (9) gives good 

fitting to all the systems, demonstrating its superiority to the power-law scaling [eqn (1)] 

which has to rely on three parameters with unclear physical meaning. In addition, we also 

study the thermal conductivity of junction-limited carbon nanotube networks43 where the 

carbon nanotubes have different aspect ratios r = RT/LT with RT being the tube radius and LT 

the tube length. An analytical scaling law was derived43 for the relative thermal conductivity 

as kr = F(r)N2 with 2 2 3 2 4( ) 1/12 [1 8 (72 6 ) 96 24 ]F r r r r rπ π π π π= + + + + + . This formula, 

however, only matches the asymptoitic behavior of the numerical simulation results.43 As 

shown in Fig. 3b, our eqn (9) gives excellent fitting to the simulation results throughout the 
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entire N region. Again, the extracted N0 (N0 = 5.51 for r = 0 and N0 = 4.04 for r = 0.03) agree 

well with their critical values (Nc ≈ 5.64 for r = 0 and Nc ≈ 4.88 for r ≈ 0.03).31,32  Furthermore, 

the extracted 0σ ′  ( 0σ ′  = 0.027 for r = 0 and 0σ ′  = 0.050 for r = 0.03) is in excellent agreement 

with F(r) [F(0) = 1/12π ≈ 0.0265 and F(0.03) ≈ 0.0499]. These suggest that if the DIR model 

is considered in such systems, a more comprehensive scaling may be obtained simply as 

( ) ( )
r c

k F r N N N= − . Since in the junction-limited systems, 0φ  in our eqns (8) and (9) is close 

to the critical value c
φ , this merit, in combination with the existing techniques or theory31,42 

for the determination of c
φ , greatly enhances the predictive power of our scaling law. 

However, it is worth noting that eqns (8) and (9) only apply to “genuine” percolation 

where only the junctions between two adjacent particles (or the nearest-neighbor tunneling)29 

contribute to the system conduction. Once tunneling between disconnecting CNPs (or high-

order neighbors) dominates, the average interfacial resistance of the particles may scale as 

~cR
αφ−  (α >1): In the case of tunneling, the junction resistance Rj drastically increases with 

the inter-particle distance d, which can be roughly expressed as ~
j

R d
β  ( 0β > ). With the 

increasing volume fraction φ , the average distance d between the disconnecting CNPs 

decreases, that is ~d
γφ −  ( 0γ > ), and hence ~

j
R

βγφ− . According to our DIR model, 

1~ / ~
c j

R R
βγ αφ φ φ− − −≡ with 1 1α βγ= + > . Then eqn (9) becomes ( )0 0e

ασ σ φ φ φ′≈ − . This 

may account for the higher-exponent power law [s > 2 in eqn (1)] observed in some 

tunneling-dominated systems,5,27 but has gone beyond the scope of the present work. 

In summary, through the combination between the dynamic interfacial resistance model 

and the effective medium theory, this work derives a comprehensive yet simple scaling law 

for supercritical conductivity scaling of extensive pure percolation systems consisting of 

various conductive nanoparticles, including carbon nanotubes, graphene and spherical metal 
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nanoparticles. While the currently widely-used power law suffers from the lack of theoretical 

backing, our new scaling law is explanatory and predictive. We believe it will offer 

opportunities to gain genuinely new insights into a variety of practical applications based on 

conductive nanoparticles. 

The simulations were performed on the computer clusters “Ferlin” and “Povel” at the 

PDC center in KTH. We acknowledge the financial support from the European Research 

Council through the Proof of Concept Grant (iPUBLIC, Grant No. 641416), the Swedish 

Research Council through the project grant iGRAPHENE (No. 2013-5759) and the 

framework grant (No. 2014-6160), and the Göran Gustafsson Foundation through the Young 

Research Prize (No. 1415 B). 
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FIG 1. (color online) Monte Carlo simulation results for a 2D percolation system 

comprising width-less conductive sticks. All sticks have length l = 1, linear resistivity ρ = 1, 

and then resistance Rs = ρl = 1. The system size is L = 30. (a,b) Simulated system conductivity 

σ (symbols) against N for (a) Rj/Rs = 10-5 and (b) Rj/Rs = 105. The curves are the data fittings 

by eqns (1) and (8). (c) s in eqn (1) and (d) N0 in eqns (1) and (8) extracted from the fittings to 

the simulated σ within 7 ≤ N ≤ 60 under different Rj/Rs. The curves are guides to the eyes. 
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FIG 2. (color online) Illustration of the dynamical interfacial resistance model. (a) Three 

CNPs interacting through inter-particle junctions with resistance Rj. (b) The DIR model 

equivalent to (a). An inter-particle junction in (a) is replaced by thin barrier layers coating the 

two interacting CNPs, and hence the coated CNPs are viewed as non-interacting. For a coated 

CNP in (b), the interfacial resistance Rc is inversely proportional to its junction number in (a): 

The middle CNP has two junctions and Rc = Rj/2, while each of the others has one junction 

and Rc = Rj. 
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FIG 3. (color online) Data fittings of eqn (9) to (a) experimental electrical conductivity 

of percolation systems comprising different CNPs, and (b) numerically simulated thermal 

conductivity of carbon nanotube networks with different aspect ratios (for easy discussion, the 

nanotube length is set as LT = 1 in this work). All the curves are the fittings by eqn (9) with 

the fitted equations shown beside. In (a), the symbols for carbon nanotubes, graphene and 

spherical gold nanoparticles are experimental data from Fig. 4 in Ref. 16, Fig. 3 in Ref.15, and 

Fig. 2 in Ref.9, respectively. In (b), the symbols are simulation data from Fig. 1 in Ref. 43, and 

the inset is a close-up view of the low-density region.  

 

 

Page 15 of 15 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t


