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On the Mechanical and Electronic Properties of 

Thiolated Gold Nanocrystals 

K. Smaali,aλ S. Desbief,aλ G. Foti, b,c T. Frederiksen,c,d D. Sanchez-Portal,b,c A. 
Arnau,b,c,e J.P. Nys,a P. Leclère,f D. Vuillaumea and N. Clémenta* 

We present a quantitative exploration, combining experiment and simulation, of the 

mechanical and electronic properties, as well as the modifications induced by an alkylthiolated 

coating, at the single NP level. We determine the response of the NPs to external pressure in a 

controlled manner by using an atomic force microscope tip. We find a strong reduction of their 

Young modulus, as compared to bulk gold, and a significant influence of strain in the 

electronic properties of the alkylthiolated NPs. Electron transport measurements of tiny 

molecular junctions (NP/alkylthiol/CAFM tip) show that the effective tunnelling barrier 

through the adsorbed monolayer strongly decreases with increasing the applied load, which 

translates in a remarkable and unprecedented increase of the tunnel current.  These 

observations are successfully explained using simulations based on finite element analysis 

(FEA) and first-principles calculations that permit to consider the coupling between the 

mechanical response of the system and the electric dipole variations at the interface. 

 

 

A Introduction 

Central to the success of virtually all applications of NPs1,2  is 
the need to tailor their properties with organic coatings, often 
self-assembled monolayers (SAMs), which impact both 
stability and specific functionality.3  Substantial effort has 
focused on optimizing the activity of the immobilized layer of, 
for example, antibodies or enzymes. Nevertheless, only recently 
has the influence of the SAM on the properties of the 
underlying NP been studied. It has been found that the covering 
layer might have a remarkable impact in the NP structure. In 
the case of thiolated molecules, instead of a sharp gold-
molecule boundary, a 0.25-nm-thick interfacial shell was found 
to contain enlarged Au-Au distances and an interpenetration of 
the thiol ligand species.4,5  Another study revealed that the use 
of a simple propane thiol monolayer on a nanocrystal was 
enough to modify its facets.6   
A large number of questions still remain regarding both the 
electric and mechanical properties of gold NPs, with and 
without organic coatings, at the single-NP level. For example, it 
is still unclear whether the mechanical properties of the NPs are 
comparable to those of bulk6,7 and how they are modified by 
the presence of organic coatings. Furthermore, although the 
tuning of the electronic properties of Au NP by 
functionalization has been demonstrated,8,9 the impact of the 
strain of the covering layer in those changes remains largely 
unexplored at a quantitative level. Here we present an example 
of such a quantitative analysis. Our measurements are based on 
a recently developed technique to grow NP with an organic 
coating on only one side and an ohmic contact on the other,10 a 
powerful test-bed for molecular electronics.11 This allows us to 

address the mechanical and electronic properties of thiolated 
nanocrystals, by using an array of 10-nm facetted nanocrystals 
with an ohmic bottom contact and a top contact made by an 
atomic force microscope (AFM) tip at an adjustable loading 
force. Contrary to the case of extended SAMs on flat surfaces, 
the use of nano-SAMs (lateral dimensions on the nanoscale) 
makes the contact area independent of the applied force. 
Therefore, with this set-up it is possible to measure the load 
dependence of the mechanic and electric properties with high 
precision. 
With the fabrication technique reported in Reference 10 (see 
Methods), half of the nanocrystal is buried in highly doped 
silicon (Fig. 1a). Its structure is very close to that of an ideal 
cuboctahedron or truncated octahedron NP (Fig.1b).12 A 
scanning tunneling microscope (STM) image shows a flat top 
surface (Fig.1c) and scanning transmission electron microscopy 
(STEM) clearly reveals the facets (Fig. 1d) for this NP.10 This 
structure is ideal for testing the mechanical properties of naked 
gold nanocrystals or molecularly functionalized nanocrystals 
with an AFM tip, for several reasons. First, the force applied 
with the tip can be precisely tuned. Second, the tip curvature 
radius (~40 nm) is much larger than the flat top surface of the 
nanocrystal (<10 nm); thus, this system can be considered as an 
ideal parallel-plate scenario. Third, statistical analysis can  
easily be performed by using an array with a large number 
(typically several thousands) of nanocrystals. Finally, due to the 
ohmic contact between the nanocrystal and highly doped 
silicon, the electronic and mechanical properties of the SAM 
coating can be measured simultaneously with a conducting 
AFM (CAFM) tip (Fig.1e). 
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Figure 1 Gold nanocrystals description and experimental setup.  

a, Schematic cut-view of the facetted gold nanocrystal. Thanks to the unique fabrication technique (see methods), these nanocrystals are well 
attached to a highly doped substrate with an ohmic contact. 
b, Fabricated gold nanocrystals resemble to either ideal truncated octahedron or cuboctaedron NPs. Annealing temperature (260°C) was very 
close to the predicted temperature to obtain these ideal NPs.12  
c, Scanning Tunneling Microscope (STM) image obtained on a single Au nanocrystal. The cut line shows a flat top (roughness < 2Å). The green 
step observed in the STM image is linked to the HF etching prior to imaging in Ultra-High Vacuum (UHV) (partial consumption of highly doped 
silicon). 
d, STEM images taken from ref. 10 on five (left) and single (right) Au nanocrystals. Atoms and facets of the nanocrystal are clearly seen. 
e, Schematic view of the experimental setups. From left to right: peak-force AFM on an uncoated nanocrystal, on a alkylthiol-coated nanocrystal 
and CAFM on a coated nanocrystal. 
 
In this work, we show that the Young modulus of tiny single 
crystal NPs (<8 nm in diameter) buried in silicon substrate is 
~20 GPa, smaller than the one of free-standing NPs (~40 nm). 
We also estimate that the Young modulus of alkylthiol 
monolayers, self-assembled on top of them, is in the range 0.5-
2.8 GPa. Electron transport measurements of tiny molecular 
junctions made with NPs by self-assembled alkylthiol 
monolayers (chain length from 8 to 18 carbon atoms) reveal 
unprecedented behaviors: i) a strong decrease of the tunnel 
current decay factor β from 0.9 to 0.2 per carbon atoms when 
the loading force is increased only up to 30 nN, ii) a decrease 
by ~0.4 eV of the HOMO level with respect of the Au Fermi 
energy. These results are well explained by a force-induced 
modification of the Au-alkylthiol interface dipole, and 
supported by DFT calculations. 

 

B Elastic properties 

A Young’s Modulus of a gold NP  

 

 Peak-force AFM experimental study 

The mechanical properties are obtained by direct measurement 
of the deformation with a peak-force Atomic Force Microscope 
(AFM, Brüker©, see Methods) on an array of nanocrystals at a 
given load (peak force) of 150 nN (Fig. 2a). This force 
generates sufficient deformation of the nanocrystal for 
quantitative study, but is still in the elastic deformation regime. 
The inset in Fig. 2b shows a zoom on three nanocrystals. Each 
nanocrystal exhibits a bright ring that indicates a large 
deformation when the AFM tip is on the facets. When the 
maximum deformation is measured on the facets and at the 
center of the top surface for each nanocrystal in a large array of 
686 nanocrystals, the constructed deformation histogram 
reveals two peaks (Fig. 2b) corresponding to top and facets. 
The deformation value on the facets (~3 nm on average) seems 
large, given the dimensions of the nanocrystal (height of about 
2‒3 nm; see Fig. 1d). However, one should take into account 
that peak force deformation measurements are only relevant 
along the vertical axis and, therefore, the deformations of tilted 
facets cannot be obtained reliably (see Supplementary 
Information [SI], Fig. S1). When the tip is on top of the 
nanocrystal, the total deformation (tip and nanodot) of 0.93 ± 
0.08 nm is found experimentally (Fig.2b). Below, we use FEA 
to estimate NPs Young modulus. 
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Figure 2 Elastic properties of uncoated and coated Au nanocrystals. 
a, Peak-force AFM image of the measured deformation on an array of uncoated Au nanocrystals. 
b, Histograms of deformation related to top and facets of Au nanocrystals. Inset: zoom on three Au nanocrystals. 
c, 2D-FEA von Mises stress map of the tip indentation at 150 nN in the Au nanocrystal. NP Young’s modulus ENP~20 GPa has been selected to get 
a total deformation of 0.93 nm. This structure, considered as “ideal” might differ from the experimental structure such as the presence of air gap at 
the gold/Si interface, however the STEM image in Fig.1c present a close-to-ideal structure at atomic resolution. Right: cut view of the von Mises 
stress along the symmetry axis. 
d, Peak-force AFM deformation image of a C12-alkylthiolated Au nanocrystal 
e, Histograms of deformation related to the top of coated nanocrystals.  
f, 2D-FEA von-Mises stress map of the tip indentation in the SAM at 10 nN. SAM’s Young modulus ESAM~1.4 GPa has been tuned to get a total 
deformation of 0.24 nm (ENP=20 GPa). 

 Finite Element Analysis of gold nanocrystals Elastic 

properties 

The experimentally measured deformation is correctly 
simulated (Fig. 2c) by FEA if we assume a Young’s modulus 
ENP of 20 ± 2 GPa. We considered the full structure including 
the silicon substrate in which the gold NP is half buried and 
found a negligible deformation of the substrate (see Fig.S1). 
For FEA, we have selected to show the von Mises stress, often 
used in determining whether an isotropic and ductile metal will 
yield when subjected to a complex loading condition. It has the 
advantage to clearly delimit each material on the images which 
is useful for SAM deformation estimation and to highlight 
stressed regions. The von Mises stress is equally distributed at 
both sides of the contact, with a maximum located 4 nm from 
the contact. The obtained Young modulus value is lower than 
the bulk value that is usually considered for ENP (74-80 GPa).6,7 
Below, we discuss the low Elastic modulus estimated for sub-
10 nm gold nanocrystals.  

 Discussion on the 20 GPa gold nanocrystal Elastic modulus 

Theoretical studies suggest that Young’s modulus for spheric 
NPs can be reduced by up to 50% from the bulk value.13  

Previous reports on the elastic properties of gold nanocrystals 
obtained by time-resolved spectroscopy (mainly nanorods of 20 
nm diameter and 100 nm length) have reported either a bulk 
value14  (~79 GPa) or lower15  (~64 GPa). Very recently, it was 
shown that the Young’s modulus is reduced (to ~40 GPa) when 
the cylindrical symmetry of these nanorods is ruptured by the 
presence of facets and that this effect is amplified as the length 
of the nanorod is reduced.16  This effect was explained by the 
anisotropic elastic properties of single-crystal nanorods and 
heating effect of optical-induced plasmonic resonance. Our 
facetted gold NPs are also single-crystal NPs.  As a 
consequence, the elastic modulus is likely anisotropic with 
values down to 42 GPa. But even more importantly, we 
observed microtwins with {111} twin boundaries.10 Twins 
likely reduce the elastic modulus of our single-crystal NPs.17,18  
It remains that the large surface to volume ratio may further 
lower the measured NP elastic modulus. 

B Young’s modulus of SAMs covering gold NPs 
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Figure 3 Theoretical study of Alkyl SAM elastic properties 
a, FEA corresponding to Fig. 2f for 3 different alkyl chain lengths (C8, C12, C18) at ESAM=1.4 GPa. A linear deformation is not observed with a 
planar SAM (i.e., a SAM with a large lateral extension grafted on an Au surface), in which, due to the tip indentation into the SAM, the contact 
area increases with force (supplementary, Fig.S2). 
b, Schematic view of the SAM representation. The molecular tilt angle θ is the angle between the molecular principal axis and the surface normal 
while Φ and Ψ represent the rotational and twist angle, respectively. The parameter d is the intermolecular distance. 
c, Tilt versus force for two possible configurations of the C8 and C12 SAM estimated from DFT calculations. 
d, Estimated Young’s modulus E for C8 and C12 as a function of the applied force from DFT calculations. 

 

 Peak-force AFM experimental study 

Fig. 2d shows the measured deformation, and Fig. 2e the 
related histograms when a dodecanethiol monolayer (archetype 
of a tunnel barrier in molecular junctions19-24 with 12 carbon 
atoms) is chemically grafted on the nanocrystals (see Methods). 
A mean deformation of 0.24 nm is obtained under a pressure of 
10 nN (the load is reduced to keep the SAM deformation in the 
elastic limit). The dispersion (1 nm at half peak) is large but in 
the range of previously reported deformation dispersion for 
laterally extended SAMs (0.3 nm at half peak for same 
monolayer and same deformation).26 Difficulty of precise 
deformation measurements in the Å range on such thin layers 
coating nanocrystals may be at the origin of larger measured 
dispersion. Below we consider the full width half maximum 

deformation to estimate the Young modulus of SAMs coating 
gold NPs by FEA. 

 Finite Element Analysis and discussion on SAM coated gold 

nanocrystals 

Based on FEA with ESAM, the SAM Young modulus, we get 
0.5<ESAM<2.8 GPa. ENP=20 GPa is considered as reported 
above to take into account the deformation of the NP below the 
SAM (considering ENP=78 GPa, as previously reported, would 
only affect ESAM by 2%). Peak-force AFM images indicate that 
adhesion is almost cancelled on alkylthiolated nanocrystals, in 
agreement with expected contrast of 
hydrophilicity/hydrophobicity of SiO2/alkyl SAM 
(supplementary, Fig. S3). This structure prevents parasitic role  
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of hydration on the electronic properties of alkylthiolated gold 
nanocrystals.25 A similar result is obtained for octanethiol 
molecules. The FEA simulation reveals a large stress at the 
monolayer boundary with the NPs (Fig. 2f), the importance of 
which will be further discussed below. The Young’s modulus 
extracted here for a SAM with 12 methyl groups on a gold 
nanocrystal is lower than the ESAM of ~4 GPa estimated for 
close-packed alkylthiol-functionalized NP arrays6 (with the 
assumption of an ENP similar to that of bulk), but is on a par 
with results by Del Rio et al.26  for SAMs on a planar substrate 
and by Callister et al. for polyethylene.27 Supposing the same 
“average” Young’s modulus ESAM of 1.4 GPa for different alkyl 
chain lengths CN, where N is the number of carbon atoms, the 
SAM deformation ∆d as a function of the loading force 
obtained by FEA is plotted in Fig. 3a. The observed 
dependence follows closely that of Hooke’s parallel-plate 
formula: 

SAMSE

FNd
Nd

)(
)( 0≈∆  (1) 

where F is the applied force, S is the contact area (~55 nm²), 
and d0(8)=1nm, d0(12)=1.5 nm, d0(18)= 2.5 nm are the 
theoretical lengths of alkyl chains in their all-trans 
configuration at zero force, that also agree with the average 
experimental thicknesses measured by AFM (see SI, Fig.S4).  

Below, we use first-principles density functional theory (DFT) 
simulations to complement our FEA approach and obtain a 
molecular-level understanding of the behavior of the monolayer 
(C8 and C12) under an external force.  

 First principles density functional theory 

We study the effect of the applied force, depending on the 
length and orientation of the molecules in the SAM, excluding 
the effects of the substrate and anchoring groups. The 
orientation of molecules in the monolayer is defined by the 
three angles (Fig.3b): tilt (θ), rotational (Φ) and twist (ψ). A  

3 x 3   30° lattice geometry is assumed for the molecular 

organization in the SAM on the <111> oriented Au top surface 
of the nanodots,9 with an experimental intermolecular distance 
d of 5.05Å.  Electronic structure calculations and relaxations 
are described in the Methods and SI (Fig. S5 and S6).  

Fig. 3c shows the variation of the tilt angle under strain for 
several configurations corresponding to different values of Φ 
and  ψ. As explained in detail in the SI we tilt the molecules as 
rigid rods using different configurations. This allows obtaining 
a smooth behavior of the energy versus tilt angle that can be 
numerically differentiated. Although the deformation properties 
barely depend on the chain length (i.e., the tilt angle-force 
dependence is the same for the C8 and C12 molecules), they 
strongly depend on (Φ, ψ) as shown in the SI. This highlights 
the dependence of the calculated elastic constants on the 
detailed structure of the layer, which agrees with the large 
variance in the measured Young’s modulus. An initial analysis 
of the energy landscape for a tilt angle θ=30º, close to the 
equilibrium value at zero load, reveals the minimum of energy 
around (8º, 132º) for both molecules. Using this configuration 
we obtain an estimation of the Young’s modulus for applied 
load in the range 0-20 nN of ESAM~7 GPa [our definition of the 

Young’s modulus for finite deformation can be found in Eq. 
(S1) of the SI]. This value is considerably larger than our 
experimental estimation. However, we must take into account 
that our estimations provide upper limits for the Young 
modulus of the layer. Indeed, it is easy to find starting 
configurations that are not far in energy and give rise to 
“softer” layers. Under applied stress these “softer” 
configurations will be the most relevant, since configurations 
with large Young’s modulus will be rapidly destabilized as a 
function of the applied stress (since its energy increases faster). 
For example, for the (30°, 90°) configuration we estimate a 
ESAM~2 GPa for both C8 and C12 molecules, which is fairly 
independent of the applied force as shown in Fig.3d.  This 
result is close to the experimental and FEA values. The fact that 
the values of ESAM estimated by first-principles DFT 
calculations using plausible monolayer configurations are close 
to those obtained from the experiments can be interpreted as a 
validation of the FEA approach. In the electronic properties 
section below, we consider the SAMs as homogeneous films 
with a constant Young’s modulus.  

C Electronic properties 

 Current histograms generated by CAFM on a large array of 

thiolated gold NPs 

At a given load and bias, the electronic properties of the SAM 
can be investigated by Conducting AFM (CAFM, Fig. 4a, inset 
and Methods). The bridging of metal electrodes by alkanes 
(simple saturated carbon chains) is used as a prototype tunnel 
junction for investigating electronic and transport properties 
across molecule-electrode interfaces.20-23,29,30  Alkanes have a 
large energy gap (of several eV) between the highest occupied 
and the lowest unoccupied molecular orbital (HOMO-LUMO 
gap).21,31-33  Alkane junctions display typical off-resonance 
transport characteristics as the Fermi energy EF of the metal 
electrodes falls into the insulating HOMO-LUMO gap. The 
low-bias tunnelling probability of electrons can be understood 
in terms of an energy barrier ϕ, related to the position and 
alignment of the molecular level with respect to EF, and a 
tunneling length set by the number of carbon atoms in the 
molecular backbone. Because alkylthiolated nanocrystals have 
a lower resistivity than native silicon oxide, they are clearly 
distinguished in the CAFM image (Fig.4a).11 Due to the linear 
scale, bright spots mainly correspond to high conductance 
junctions. After thiol adsorption and cleaning in an ultrasonic 
bath, typically 80-85% of the dots are still there (see SI, Fig.S3 
and S11). The 15-20% remaining dots are sometimes lying on 
the surface but do not respond electrically because of the 
presence of a native oxide layer. As a consequence, they are not 
considered in the statistical study. 

Histograms of the current are generated from the CAFM image, 
with one count per nanocrystal. Histograms for C8 at 3, 7.5 and 
30 nN are shown in Fig.4b. Two peaks of conductance, fitted 
by two log-normal distributions (see SI, Fig. S7), can be 
observed. They are attributed to different molecular 
organization phases in the SAM,11,14  and tend to merge when 
the applied force is increased. The distribution is rather large 
but in the same range as the one typically observed in single-  
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Figure 4 Electronic properties of Alkylthiolated gold nanocrystals 

a, CAFM image of C8-coated Au nanocrystals at 0.2 V and 30 nN. Inset: schematic view of the experimental setup. 
b, Current histograms for C8-coated nanocrystals at 0.2 V and 3 different loads. The number of counts is about 1600 per histogram. 
c, Current vs number of carbon atoms for C8, C12, C18 at 3 different loads. Each point corresponds to the maximum of a peak in current 
histograms. Two colors (black and red) are used to distinguish both peaks. 
d, βeff obtained from c, is plotted as a function of force. Inset: band diagram showing the potential φ between the HOMO and Fermi level of the 
electrodes. The βeff decreases rapidly with increasing force from 0 to 30 nN (Fig. 4d) and above 50 nN, Joule-induced heating are observed on C8 
SAMs, leading to nanocrystal sublimation (supplementary, Fig. S6).  

 

molecule break junction experiments.35 The mean current level 
increases up to several orders of magnitude with a load of 3 to 
30 nN (Fig. 4b and 4c).  

 Discussion on tunnel decay rate 

If we assume a model where the SAM acts as a tunneling 
barrier, then the conductance can be defined as G=Ae-βeffN 
where A is the contact conductance and N the number of carbon 
atoms. The decay constant βeff, extracted by fitting the current I 
vs. N log-lin plots shown in Fig.4c supposing A constant,35-38  is 
a parameter including both the variation of the tunnel barrier 
height and the tunnel distance (i.e., SAM thickness) with the 

applied force. βeff is not strictly equal for the two conductance 
peaks, but for simplicity, we considered a single βeff  for both 
peaks with an error bar (Fig.4d). βeff decreases rapidly with 
increasing force from 0 to 30 nN and above 50 nN, Joule-
induced heating is observed on C8 SAMs, leading to 
nanocrystal sublimation (see SI, Fig. S8). As βeff tends to zero, 
the measured current level barely depends on the number of 
carbon atoms in the monolayer. For comparison, in planar alkyl 
SAMs, βeff remains above 0.75.41 The most representative effect 
is the current level for C18, which is negligible at 3 nN and 
becomes similar to that of C8 at 30 nN. This finding is partly 
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Figure 5: Molecular orbital position of Alkylthiolated gold nanocrystals 
a, I-V for the two representative curves of the high and low conductance peaks for C8 molecules. 
b, Normalized TVS obtained from (a) used to extract minima VTLC and VTHC relative to low-conductance and high-conductance peaks, 
respectively. 
c, φ=0.87 VT is plotted as a function of force for C8, C12 and C18 SAMs. Parameter a is extracted from these datas using Eq. 3. 
d, Schematic picture proposed in ref.48, to denote the tilt-dependent molecular gate effect arising from changes in the effective interfacial dipole 
(vector sum of the red arrows), which has contributions from a permanent surface dipole and a molecular dipole oriented along the S-C bond. 
When the molecules are tilted by θ, the perpendicular component (with respect to the surface) of the molecular S-C bond dipole gets reduced and 
the work function of the decorated surface increases. As sketched, this results in an upward shift of the molecular orbitals with respect to the 
Fermi energy, and hence in an enhanced tunnelling through the tail of HOMO resonance. 
e, KFM CPD image for C8 decorated Au nanocrystals. 
f, CPD histograms (up) for C8, C12 and C18 decorated Au nanocrystals. The increased tilt angle for short molecules tends to reduce the molecular 
dipole. When CPD is plotted as a function of the number of C, a linear dependence is obtained (slope 14 mV/C). We obtained CPD=220 mV for 
reference sample with uncoated Au nanocrystals (see SI). 

 

related to the fact that C18 SAMs are more deformed under 
strain than C8 SAMs (Fig. 3a).  

Considering the SAM deformations ∆d determined above (Eq. 
(1) and Fig. 3a), the force-dependent βeff is written as:    









−≈




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
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−=
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F
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d
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0

0

00

0 ϕ
ϕ

β
ϕ
ϕ

ββ  (2) 

where β0 and φ0 are the tunnel decay ratio and the tunnel barrier 
height, respectively, when no force is applied on the SAM; and 
ϕ(F) is the average force-dependent tunnel barrier (Fig. 4d,  
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Molecule θ 
(deg) 

F (nN)  
=(1-cosθ)ESAM.S 

EHOMO 

 

∆φ 
(eV)* 

Theoretical 
a 
(eV/nN) from 
DFT  

Experimental a 
(eV/nN) from 
TVS 

 0 0 -3.05 0   

C8 26 4 -2.81 -0.24 0.077 
(0.019-0.108) 

0.03 

 35 7 -2.44 -0.61   

 0 0 -2.9 0   

C12 30 5 -2.54 -0.36 0.062 
(0.016-0.088) 

0.014 

 50 14 -2.08 -0.82   
 

Table 1: Comparison of the force coefficient a obtained from DFT and experiments.  

Variation of EHOMO (the energy of the HOMO referred to the Fermi energy of the substrate) versus the tilt angle taken from references 48,49 for C8 
and C12 dithiol molecules. Here we use the relation F=(1-cosθ).ESAM.S with ESAM=0.7 GPa, corresponding to the value obtained from β-F curves 
(Fig. 3d). ∆φ gives the movement of EHOMO with respect to the reference at θ=0. From the calculated slope of ∆φ(F) we obtain a theoretical 
estimation of the parameter a in Eq.(3), [we also show the corresponding values if ESAM is allowed to change within the experimental estimates 
0.5-2.8 GPa] in the range of the experimental results obtained by TVS (Fig. 5c). 

 

inset). In the first step, (considering only the monolayer 
deformation, i.e. ϕ=ϕ0), a good fit is obtained (Fig. 4d) for 
F<10nN with β0=1.05 per carbon atom, and using ESAM=0.7GPa 
(in the range of measured values). β0 is in agreement with 
values previously reported for alkyl chains (0.8-1.2 per carbon 
atom)20-22,35,36 either for SAMs or single-molecule junctions  
and either for monothiol or dithiol junctions, as discussed more  

extensively in review papers.39,40  Above 10 nN, we observe 
(Fig. 4d) a deviation of βeff from linear dependence, which can 
be ascribed to an additional effect such as a possible 
dependence of the tunnel energy barrier on force.  To check this 
issue, the transition voltage spectroscopy (TVS) method is used 
to determine the energy position of the molecular orbital in the 
junction.42-46   

 TVS technique to discuss force-induced HOMO level shift  

In this method, the energy barrier height, namely the energy 
offset ϕ (Fig. 4d, inset) between the Fermi energy of the metal 
electrode and one of the molecular orbitals, is estimated from 
the current-voltage (I-V) measurement (see Methods). In the 
interpretation of electron transport through a tunnelling barrier, 
the voltage at which a minimum is observed in this plot 
represents the transition voltage VT between the direct and 
Fowler-Nordheim tunnelling regime. In the case of molecular 
junctions, VT can estimate the energy position of the molecular 
orbital (relative to the Fermi energy of the electrodes) involved 
in the transport mechanism (here, we suppose that for 
Au/alkylthiol junctions the HOMO level35,36 dominates 
transport, see the discussion below), via a simple relationship ϕ 

= αVT, with α ~ 0.87 for symmetric barriers.47   

We performed direct spectroscopic I-V measurements on an 
alkylthiolated nanocrystal with C8 molecules (C-AFM tip at a 
stationary point contact on the nanodot junctions, see Methods) 

representative of each conductance peak (i.e., measured on 
nanodot molecular junctions belonging to the maximum of each 
peak). Replotting I-V curves (Fig. 5a) as TVS plots (Fig. 5b), 
we get the VTLC and VTHC for the low-conductance and high-
conductance peaks, respectively. The Pt top and Au bottom 
electrodes work functions are in the same range and do not 
induce significant asymmetry (see SI, Fig. S9). The results of 
ϕ ~ 0.87 VT are shown in Fig.5c for C8,C12 and C18 molecules at 
forces up to 30 nN. For all nanodot junctions, the ϕ values at 
low force are in the range of the previously reported values for 
alkylthiol junctions on Au (1-1.9 V).35-42 We observe a linear 
dependence of ϕ with the applied force  

                            ϕ= ϕ0-aF    (3) 

with ϕ0 = 1.25 ± 0.15 eV and a~0.013-0.03 eV/nN (Fig.5c).  
When we use Eq. (3) with averaged “a” in Eq. (2), we obtain a 
good fit of the whole βeff vs. force curve (Fig. 4d, other 
parameters in Eq. (2) unchanged). 

 Discussion on electronic properties and interfacial dipoles 

Such a large force modulation of βeff and the position of the 
HOMO level in molecular junctions were not previously 
observed from C-AFM measurements for SAMs with large 
lateral extension on Au substrate electrode. These previous 
results are puzzling and contradictory, showing that βeff is almost 
constant48,49 or slightly increasing50 or decreasing51 with the C-
AFM loading force. This difference can come from several 
reasons: i) contrary to our case, the contact area is increased with 
force and consequently the force per surface unit is not constant; 
ii) these previous experiments used SAMs on polycrystalline 
evaporated Au, thus the Au/alkylthiol interface may have 
hindered the behaviour reported in our work.   
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Studies based on DFT calculations also show that EHOMO (the 
energy of the HOMO level referred to the Fermi level of the 
substrate) increases and ϕ decreases with increased tilt angle 
θ (Table 1) due to the interfacial dipole (Fig.5d) that is expected 
to be located between the sulfur and first carbon atom.52,53  
Moreover, ϕ(F), derived from ϕ(θ) (see Table 1), shows a 
linear decrease with the applied force and a, extracted from Eq. 
(3), is in agreement with the experimental results. As a simple 
picture, the tilt angle increases with load while the interfacial 
dipole, is reduced. The large stress arising at the NP interface 
below the SAM (320 MPa @ 10 nN, Fig. 2f) could also play a 
role in ϕ(F) through a modification of NP’s work function.54,55  
However, considering a typical bandgap pressure coefficient for 
NPs (<10 mV/100 MPa),54,55 estimated ∆ϕ, due to the sole Au 
NP work function, would have been lower than 15% of the 
measured effect.  

The ϕ -F results obtained on alkylthiolated NPs from βeff-F, 
using the TVS technique, and DFT calculations converge to a 
value of a~ 0.025 eV/nN (Eq. 3). This result is one order of 
magnitude larger than the value reported for molecular 
junctions on planar substrate.41 In addition, the proposed 
mechanism, tilt-dependent interfacial S-C dipole projection 
perpendicular to the NP interface, also differs from the previous 
suggestion41 of thickness-dependent field effect, such as image-
charge.  

 Interfacial dipoles investigated by Kelvin probe force 

microscopy 

We further examine the role of interfacial dipoles in thiolated 
NPs by considering the reduction of ϕ with the alkyl chain 
length at low force (Fig. 5c). Smaller alkylthiol SAMs have a 
larger tilt angle because the van der Waals forces between the 
molecules are reduced.56  This observation is compatible with 
the interfacial dipole hypothesis. Kelvin probe force 
microscopy (see Methods and SI, Fig. S10) image obtained on 
C8 is shown in Fig. 5e. From similar measurements on C12 and 
C18, we build contact potential difference (CPD) histograms 
(between the SAM and the tip). They reveal that the CPD 
measured on the alkylthiolated nanocrystals increases linearly 
(14 mV/C) with chain length (Fig. 5f). This feature corresponds 
to a decrease of the work function of the alkylthiolated Au 
(WAu) when increasing chain length. This result is compatible 
with the dipolar representation in Fig. 5d. From the Helmoltz 
equation (see SI), we deduce that the perpendicular projection 
of the Au/SAM dipole (µz) decrease from ~0.6 D (for C18) to 
~0.35 D (for C8). The smaller the chain length, the higher the 
tilt angle and smaller S-C µz. The CPD results on thiolated NPs 
are in the same range as those obtained on thiolated gold 
substrates,57 and are also in par with Ultraviolet Photoelectron 
spectroscopy (UPS) measurements.58  The force-dependent 
experiments presented here, together with DFT simulations and 
KFM experiment suggest that charge transport occurs through 
HOMO level (Fig.5d). In fact, an increase of WAu, when 
decreasing chain length, would correspond to an increase of the 
energy barrier height with the LUMO and a decrease of the 
energy barrier with the HOMO (Fig.5d). According to our TVS 
results (Fig.5c), we can conclude to a HOMO mediated 
transport in our case.  

Conclusions 

Here, we described the elastic and electronic properties of 
alkylthiolated gold nanocrystals. We find that the estimated 
Young’s modulus of pure facetted gold NPs is four times 
smaller than the usually considered bulk modulus, which could 
be explained with the recent suggestion16 that anisotropy in 
elastic properties should be considered for single-crystal NPs, 
the presence of twins in our NPs and the large surface to 
volume ratio. We also estimated the Young’s modulus of the 
alkylthiol monolayer to be ~ 1.4 GPa, by combining AFM 
measurements of the monolayer deformation and FEA 
simulations. This value is consistent with the results of 
structural relaxations based on DFT calculations that estimate 
the Young's modulus of the layer as a function of the rotational 
and twist angles. The nanoscale molecular junctions formed by 
these alkylthiolated nanocrystals contacted by a CAFM tip 
show strong decreases of the tunnel decay constant β(F) and of 
the effective potential barrier height φ(F) as function of applied 
force even in the few nN regime. Combined with FEA and ab-
initio calculations, these results are satisfactorily explained by 
the strain-induced molecular deformation and the strong impact 
of the interfacial dipole on the molecular orbital position. This 
study at the single nanocrystal level provides a reference on a 
model system for the elastic and electronic properties of NPs, 
important for various NP-based applications such as strain 
gauges59 and self-powered triboelectric sensors.60 As SAMs 
Young modulus is not expected to change significantly with 
complexity, these results should be partly transposed to 
different organic coatings with consideration of lower β0 for π-
conjugated oligomers. In addition, linkers composed of a thiol 
bond and a short alkyl chain are often part of more complex 
molecules, including biomolecules, which suggests a similar 
contribution from interfacial dipoles. These findings show that 
even small van der Waals interactions in the nN range,61 for 
example between NPs or between NPs and carbon nanotubes62 
or graphene, could be sufficient to alter the electronic properties 
of a wide variety of NP-based molecular devices. Similar 
measurements would be of great interest to other “functional” 
molecular junctions, such as “mechanical” switches 
(diaryethene, azobenzene) for which the applied force may also 
impact the isomerization, and thus the electrical conductance 
switching of these molecular devices. 
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† Methods: 

 

Self-Assembled Monolayers(SAMs).  

For the SAM deposition, we exposed the freshly evaporated gold 

nanodots to 1mM solution of alkylthiols (from Aldrich) in ethanol (VLSI 

grade from Carlo Erba) during 15 h. Then, we rinsed the treated 

substrates with ethanol followed by a cleaning in an ultrasonic bath of 

chloroform (99% from Carlo Erba) during 1 min.  

 

AFM (peak-force, C-AFM and KFM).  

Peak-force AFM measurements were performed with the recently 

developed peak force tapping mode (PeakForce-Quantitative Nano-

Mechanics). Silicon cantilevers (Bruker AXS ©) with a spring constant of 

150-250 N.m−1 were used for experiments on uncoated Au nanocrystals 

and of 0.1-0.3 N.m-1 for coated Au nanocrystals. Cantilever spring 

constant and sensitivity were calibrated before and after each experiment. 

In the present experiment, we didn’t use the DMT modulus package to 

directly obtain an image of the young modulus this model is not 

appropriate to our nanocrystals that have a dimension much smaller than 

tip curvature radius. As a consequence, we have selected the direct 

measurement of deformation that can be converted into a Young modulus 

by FEA. Data processing was performed using the commercial 

Nanoscope Analysis software (Bruker AXS ©) and Wsxm (Nanotec.es).63   

 We performed current voltage measurements by conducting atomic force 

microscopy (C-AFM) in N2 atmosphere (Dimension 3100, Veeco), using 

a PtIr coated tip (same tip for all C-AFM measurements). Tip curvature 

radius is about 40 nm (estimated by SEM), and the force constant is in the 

range 0.17-0.2 N/m. The conductance of the Au nanodot without 

molecule is much larger than that for Au nanodots with molecules and, in 

that case, dots are often burnt after/during such measurements probably 

due to the large current density. In the scanning mode, the bias is fixed 

and the tip sweep frequency is set at 0.5 Hz. Since our experimental setup 

is limited to 512 pixels/image, it leads to a typical number of counts of 

2700 for a 6x6 µm C-AFM image. In the spectroscopy mode, 

representative molecular junctions belonging to each conductance peak 

are first identified from the C-AFM image. Because of imprecise 

positioning of the tip, 100 spectroscopic I-V curves are taken around this 

dot using a square grid (10 x 10 points with a lateral step of 2 nm). A 

significant current can only be measured when the tip is on top of the dot 

and thus a single I-V (with the maximum current) from these 100 I-V 

curves is selected per dot. TVS is obtained by plotting the I-V data in the 

form of a Fowler-Nordheim plot (ln(I/V2)). 

The KFM measurements  were conducted using a Dimension 3100 

atomic force microscopy (AFM) system in a controlled Nitrogen 

environment glove box. We used Pt/Ir (0.95/0.05) metal-plated 

cantilevers with spring constant of ~3 N/m and a resonance frequency of 

~70 kHz. First, the height profile was recorded in tapping mode. Then the 

potential or phase profiles were measured in noncontact lift mode at a 

height of 25 nm above the surface. 

  

 

Nanodot histograms 

We use our developed OriginC program for threshold analysis (given in 

Supporting Information). One count corresponds to the maximum current 

for one nanodot. 

 

FEA 

COMSOL v4.3 with Structure and deformation package was used to 

evaluate the Young modulus of both NP and SAMs. The design was 

performed in 2D-axisymmetry to simplify calculations. Tip and silicon 

substrate Young moduli of 170 GPa and 131 GPa, respectively, were 

considered.  

 

DFT calculations 

The monolayer was modeled using periodic boundary conditions with one 

molecule in each unit cell. The orientation of the molecule in the 

monolayer is defined by the three angles shown in Fig. 3b. A  x  30° 

lattice was assumed with the experimental intermolecular distance d = 

5.05 Å. Several structural relaxations were performed as explained in the 

Supplementary Information. First the tilt angle θ of the molecules was 

fixed to the commonly reported value of 30° and the relevant values of 

(Φ, ψ) were determined by exploring the energy landscape. Afterwards 

the energy versus tilt curve was obtained for several configurations with 

fixed values (Φ, ψ). We chose this approach to determine, on the one 

hand, the dependence of the results on the details of the structure and, on 

the other hand, to obtain smooth curves that would allow numerical 

differentiation to obtain an estimation of the F(θ) curves.  The electronic 

structure calculations and the relaxations were performed with the DFT 

code SIESTA64 using a real-space grid of 400 Ry and a double-ζ plus 

polarization (DZP) basis for the C, and H atoms with an energy shift of 

0.02 Ry. We used a Brillouin zone sampling of 6 × 6 × 1 k-points. The 

height of the supercell in the z-direction was fixed to 25 Å for C8 and 30 

Å for C12, so there is enough vacuum to avoid interactions among 

periodic replicas of the monolayers. Total energy was converged with 

respect to these parameters. 

 

Electronic Supplementary Information (ESI) available: [details of any 

supplementary information available should be included here]. See 

DOI: 10.1039/b000000x/ 
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