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ABSTRACT: Here, we demonstrate broadband slow light effects in a new family of one 

dimensional photonic crystals, which are obtained by logically combining two photonic 

crystals of slightly different periods. The logical combination, slowly destroys the original 

translational symmetries of the individual photonic crystals. Consequently, the Bloch modes 

of the individual photonic crystals with different wavevectors couple to each other, creating 

vast number of slow modes. Specifically, we describe a photonic crystal architecture that 

results from a logical “OR” mixture of two one dimensional photonic crystals with periods 

ratio of r = R/(R-1), where R > 2 is an integer. Such a logically combined  architecture, 

exhibits a broad region of frequencies in which a dense number of slow modes with 

varnishing group velocities, appear naturally as Bloch modes. 
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Structures that are capable of slowing light in a broad range of frequencies are very 

useful in creating various slow light devices for optical communications [1-3]. Broadband 

slow light effects have been demonstrated in various optical systems. These include, 

adiabatically graded metallic gratings [4-6], flat band photonic crystal (PC) waveguides [7-

10], coupled periodic nanowires [11], chirped hyperbolic metamaterials [12], and 

metamaterials with double – continuum Fano resonance [13]. Most of these proposed 

structures involve geometries in two and three dimensions. It would be useful, if one could 

implement broadband slow light effects in one – dimensional (1D) systems, where the 

fabrication feasibility is very high. Here, we show broadband light effects in a simple 1D 

system that has a dual periodicity. Although, 1D dual periodic structures have been analysed 

[14-16], the potential broadband slow light behaviour of such systems were not shown. The 

dual periodic systems analysed previously, were created by sinusoidally modulating the 

dielectric constant values of perfect 1D PCs. The small depth of dielectric modulation in such 

system, hinders the creation of multiple slow modes.  

In this article, we demonstrate a novel technique of creating a dual periodic structure 

that has a huge refractive index contrast, and capable of showing broadband slow light 

effects. Particularly, we introduce the idea of logical combinations of PCs, for which the 

result of combination delivers a logically combined PC, which is a form of a dual periodic 

structure. The new 1D architecture requires only two materials, and it is easy to implement 

either as a multilayer system, or using planar nano-lithographical techniques. 

A dual periodic structure can be created, by periodically and slowly chirping the 

dielectric profile of an optical periodic structure [that has a fast changing dielectric profile]. 

This process is equivalent to a mixing of two periodic structures with almost the same 

periodicities. The two closely spaced periods are the basis for the “beat” effects occurring in 

the longer spatial scale. The mixing can be simply done by adding or averaging the two 
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periodic dielectric functions. However, the resulting dielectric function may not be feasible 

for fabrication. For example, take a binary 1D PC constructed with alternating materials of 

dielectric constants of εa and εb. The addition of the dielectric functions of two such 1D PCs 

(with different periods) would result in a new dielectric profile with dielectric constant values 

εa, εb and 0.5(εa+εb) [after dividing by two]. This new dielectric profile requires a third 

material with the dielectric constant, 0.5(εa+εb), and evidently, this imposes a tough 

constraint on the implementation of the addition of PCs. Therefore, we seek the method of 

logical combination of PCs, for which the result of combination retains the binary values εa 

and εb, and at the same time exhibit a similar spatial Fourier decomposition as of an addition 

process. 

Consider two 1D PCs, PC1 and PC2 with periods a and ra (r > 1), respectively. 

Assume these two PCs are constructed with a pair of dielectric materials with dielectric 

constants, εa and εb. We can combine the dielectric functions of the two PCs, ε1(x) and ε2(x), 

using a logical operation at every point along the x – axis, to generate a new dielectric 

function, ε(x). For the purpose of illustration, in this article we will use a logical “OR” 

operation to generate ε(x). The logical “OR” operation will result ε(x) of εa, when ε1(x) = 

ε2(x) = εa. When ε1(x) = ε2(x) = εb or ε1(x) ≠ ε2(x), the operation will give ε(x) of εb. In this 

procedure, εb and εa are treated similar to the logical values of 0 and 1, respectively. If r is a 

rational number, then ε(x) is periodic with a period, as = Ra, where R is the least integer 

multiple of r. The new 1D structure with the periodic ε(x) is defined as a logically combined 

photonic crystal (LCPC). 

In order to have a small value of r, we choose a system where in one period of the 

combined PC, we have R periods of PC1, and R-1 periods of PC2. This will result in a LCPC 

of ( 1) ,= = −sa Ra R ra  with / ( 1).= −r R R  Figure 1(a) illustrates the logical combination of 
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ε1(x) and ε2(x), for R=7, εa=12 [silicon], and εb=1 [air]. The thicknesses of the silicon slabs in 

PC1 and PC2 are taken as d = 0.2a. As we have shown in the figure, the logical combination 

of R and R-1 primitive unit cells of PC1 and PC2, produces one primitive unit cell of the 

LCPC. The primitive unit cell of the LCPC shown in Fig. 1(a), will repeat itself with the 

period, as. The geometries of all LCPCs with / ( 1),= −r R R  obtained via the logical “OR” 

operations can be described exactly. The number of silicon slabs in one period of the LCPC is 

2R–2nc, where nc is the integral ceiling of d/[a(r-1)]. If we take the floating point value for nc, 

then the filling ratio, F, can be shown to be exactly 22 / / ,= − −F f f r f R  where /=f d a  

is the filing ratio of PC1. There are two important limits of r, that are worth mentioning. 

• In the limit of r → ∞ (or equivalently R = 1), the period of PC2 is infinitely 

larger than the period of PC1. Thus in this case, the logical “OR” combination 

of PC1 and PC2, produces PC1. The filling ratio in this limit reduces to 

.=F f  

• In the limit of r → 1, the corresponding LCPC does not reduces to PC1, but to 

a LCPC with 22 .= −F f f  Note that, r = R/(R-1) only approaches one, and 

will never equal to one, for any value of R. When r → 1, R = r/(r-1) is a huge 

integer. Therefore, the period of the super cell, as = Ra, becomes large, and the 

LCPC in this limit will support large number of slow modes. 

In the reciprocal space, the length of the primitive reciprocal lattice vector for the 

LCPC is 
2 2

,
π π

= =
s

g
a Ra

 which is R times shorter than the length of the primitive reciprocal 

lattice vector for the original PC [i.e., PC1] which is 
2

.
π

=Rg
a

 The Brillouin zone (BZ) for 

wavevectors (k) in the LCPC is ,
π π

− < <k
Ra Ra

 and it is R times smaller than the BZ of 
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PC1, .
π π

− < <k
a a

 Figures 1(b) and 1(c) show the Fourier transforms of the dielectric 

functions of PC1 and LCPC, respectively. From Fig. 1(c), we can clearly see that LCPC has a 

strong mixture of two closely spaced spatial frequencies: 
2

,
π

=Rg
a

and 
2

( 1) .
π

− =R g
ra

 The 

spatial frequency decomposition remains similar for all higher values of R. As an additional 

example, spatial Fourier decomposition for a LCPC with R=16 is shown in Figure 1(d). 

Figures 2(a) and 2(c) show the band structures [17] of PC1 and LCPC (R=7), 

respectively, for wavevectors within their first BZs. Figure 2(d) shows the transmission 

spectrum of the LCPC calculated using a transfer matrix method [18], for four unit cells of 

the LCPC, assuming a vacuum ambience. The vertical axes in all these figures represent the 

normalized frequency, ,
2

ω

π
Ω =

a

c
 where ω and c are the angular frequency, and the vacuum 

speed of light, respectively. The calculated transmission spectrum for the LCPC [Fig. 2(d)] is 

in very good agreement with the calculated band structure [Fig. 2(c)]. From Fig. 2(c), we can 

see that, the band structure of the LCPC exhibits many flat bands. Flat bands have small 

group velocities, and they are the signatures of slow modes. In the transmission spectrum, flat 

bands emerge as sharp resonant peaks [Fig. 2(d)]. Note that, as a consequence of the band 

folding in the 1D PC [17], the bands can be either positive or negatively sloped (i.e., positive 

and negative group velocities). Positive and negative small group velocities indicate the 

propagation directions of the slowly moving forward and backwards waves, respectively 

[10]. The negative group velocity in the 1D PC made of linear dielectric materials does not 

correspond to a fast light [19–20]. This is different from a negative group velocity 

experienced by the light with positive phase index, near an atomic resonances in a nonlinear 

medium, which can indicate a fast light [21]. 
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Figure 3(a) shows a series of band structures for LCPCs with R ranging from 7 to 51. 

As we can see from this figure, the band structures of LCPCs are very much different from 

the band structure of PC1, even though / ( 1)= −r R R  is close to 1. In the band structures of 

the LCPCs, we can clearly see a specific frequency region [0.18 0.6]< Ω <  that houses the 

flat bands. For the reasons that we shall explain, we name this region as a strong coupling 

region. As we can see from Fig. 3(a), the density of the flat bands in the strong coupling 

region increases as R increases (i.e., r decreases towards one). 

Let’s understand the band structure of the LCPC in more detail, using a Bloch mode 

decomposition technique. The modes of PC1 are Bloch modes, and thus can be uniquely 

identified with their wavevectors. The Bloch modes with different wavevectors do not couple 

to each other, as long as the translational symmetry is conserved. When we combine PC1 

with another PC that has a slightly different period, the original translational symmetry of 

PC1 is altered slowly, and this leads to a coupling of Bloch modes with different 

wavevectors.  

The assessment on the mode coupling can be done by writing the dielectric function 

of the LCPC as 
1( ) ( ) ( ),ε ε ε= +

p
x x x  where 

1( ) ( ) ( )ε ε ε= −
p

x x x  is the perturbation to the 

original dielectric function of PC1 [ε1(x)]. The period of εp(x) equals to the period of ε(x), 

which is as = Ra. Since the period of the perturbing dielectric function [εp(x)] is R times 

larger than the period of unperturbed function [ε1(x)], the coupling between various modes of 

PC1 will take place only when the wavevectors of the modes differ by integer multiples of g. 

Therefore, it is instructive to consider a folded band structure of PC1. In the folded band 

structure, the original band structure of PC1 in the BZ of PC1 [ / / ],π π− < <a k a  is folded R 

times into the BZ of LCPC [ / ( ) / ( )].π π− < <Ra k Ra  In the folded band structure, the 

wavevectors of the neighbouring bands differ exactly by g. The folded band structure of PC1 

with R=7 is shown in Fig. 2(b). This band diagram is obtained by simply folding the bands in 
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Fig. 2(a), 7 times into the BZ of the LCPC. Therefore, each original band in Fig. 2(a) 

becomes 7 folded bands in Fig. 2(b). These 7 folded bands touch each other at the edges, and 

along the same vertical line, the wavevectors of the neighbouring bands differ exactly by g.  

When the perturbation εp(x) is switched on, the folded bands of PC1 couples and 

interacts each other forming the band structure of LCPC as shown in Fig. 2(c). When we 

compare the folded band structure of PC1 [Fig. 2(b)], and the band structure of LCPC [Fig. 

2(c)], we can see that in the long wavelength region (i.e., 0.2Ω << ), the bands of LCPC are 

similar to the folded bands of PC1. Thus, the long wavelength region is a weak coupling 

region, as there is no much coupling between the folded bands of PC1. On the other hand, in 

the frequency region, 0.18 0.6,< Ω <  the band structures of LCPCs exhibit many flat bands 

[Figs. 2(c) and 3(a)]. These flat bands occur as a result of a strong coupling between the 

folded bands of PC1. Consistently, we name this frequency region as a strong coupling 

region. 

We can quantify the Bloch mode coupling in the LCPC by expanding the electric 

field, E(x), in the LCPC, as a linear combination of Bloch modes of PC1. Therefore, we have  

( ) ( ),φ=∑ n n

n

E x a x  where ( )φn x is the Bloch mode of PC1 corresponding to the n – th folded 

band, and an is the Bloch mode expansion coefficient. Using this expression for E(x), we can 

transform the 1D time independent Maxwell equation into a linear eigenvalue problem. The 

coefficients an is then can be extracted from the eigenvectors. The details of the eigenvalue 

problem are given in the supplementary information.  

Figure 2(f) shows the electric field densities [E
2
(x)] for the first 14 bands of the LCPC 

with R=7. The modes have k=0.2π/as, and plotted for 4 unit cells of the LCPC. The 

corresponding Bloch mode spectrums (| an | versus n plots) for these modes are shown in 

Figure 2(e). From Fig. 2(e), we can see that, the modes of the LCPC in the long wavelength 

region [for e.g. bands 1– 3 in Fig. 2(c)] contain only one strong component of PC1’s Bloch 
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mode, whereas the modes corresponding to flatter bands (bands 7–14) are strong 

superpositions of many Bloch modes of PC1. Consistently, mode profiles [Fig. 2(f)] for the 

modes in the long wavelength region resemble those of a regular PC (i.e., PC1). However, the 

modes corresponding to the flatter bands (which are strong mixtures of Bloch modes) are 

strongly localized within each unit cell of the LCPC [Fig.2(f)]. The evanescent field of the 

localized mode from one unit cell is connected to the evanescent field of the identical 

localized mode in the adjacent unit cell. Evidently, this forms a chain of network that 

facilitates propagation of slow light [Fig. 2(f)]. This is very much similar to a propagation of 

slow light in the typical coupled resonator optical waveguides [22]. In Figure 2(g), we plot 

the enlarged versions of the mode profiles for the flat bands [bands 7–14], in one unit cell of 

the LCPC (R=7). Notice that, the electric field densities for the bands 7–10 of the LCPC are 

concentrated on the dielectric regions, at the middle of the unit cells [see Figs. 2(f) and 2(g)]. 

The electric field densities for the higher frequency bands (bands 11–14) are concentrated on 

the air regions, at the edge of the unit cells [notice the shifted unit cell in Fig. 2(g) for the 

bands 11–14]. 

What happens when R increases (i.e., r reduces towards 1)?  When R increases, the 

number of the folded bands of PC1 increases. Consequently, a strong coupling and 

interaction between these folded bands leads to an increase in the number and the density of 

flat bands of LCPC [see Fig. 3(a)]. Apart from the increase in the density of flat bands, the 

bands also become flatter as R increases. 

Let us analyse the flatness of bands in LCPC as function of R, by defining an average 

group velocity, and an average group index. The average group velocity is defined as 

/ (2 ),ω= ∆ ∆ = ∆Ω
g

v k c R  where / ( )π∆ =k Ra  is the length of half BZ, and ∆Ω = |Ω[k =0] 

– Ω[k =π/Ra]| is the frequency span of the band (i.e., bandwidth). The average group index is 

then defined as / 1 / (2 ).= = ∆Ω
g g

n c v R  As we can see from these expressions, vg and ng are 
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directly related to the product R∆Ω. Figure 3(b) shows the log10(ng) versus band mid 

frequency plots for R = 7, 11, 15 and 19. In order to calculate ng, we used the band structures 

that are obtained from an exact formulation of the transfer matrix method, with a very high 

frequency resolution. As we can see from Fig. 3(b), in the long wavelength region, LCPCs of 

all R exhibit similar ng. The value of ng in this region, can be well approximated using the 

effective refractive index formula, (1 ).ε ε+ −a bF F  Also from Fig. 3(b), regardless of R, we 

can clearly identify a region of frequencies (0.18 < Ω < 0.6) in which the enhancement of ng 

is very significant. This is the strong coupling region, in which modes of the LCPC occur as 

strong mixtures of Bloch modes of PC1. In the strong coupling region, as R increases, ng of 

the flat bands increase significantly. From Fig. 3(b), we can see that, ng can be as high as 

~10
8
 when R=15. We can get even larger ng, by increasing R. For the purpose of a 

comparison, we have also plotted log10(ng) versus band mid frequency for the folded band 

structure of PC1 with R=19 in Figure 3(c). In PC1, the enhancement of ng occurs only near 

the band edge [Fig. 3(c)]. However, in the LCPC the enhancement of ng occurs for a more 

broader spectrum (i.e., in the strong coupling region) with much higher magnitude. It is worth 

to note that, in all the plots shown in Fig. 3(b), there are troughs in the ng distribution between 

0.3 0.4.< Ω <  The troughs in the ng distributions occur around the transition point, where the 

electric field concentration transit from the middle to the edge of the LCPC’s unit cell [see 

Figs. 2(f) and 2(g)]. Note that in Fig. 3, the frequency axis represents normalized frequencies. 

Therefore, the exact positions of the discrete flat bands depend on the choice of a. Further, if 

one finds the bands (or peaks in the transmission spectrum) are too close, a and R can be 

adjusted so that a good signal to noise ratio, and therefore high fidelity [23], can be obtained. 

When R increases, r decreases towards one, and the size of the super cell as = Ra 

increases. The increase in as has two effects. Firstly, the density of the slow modes in the 

strong coupling region is increased. Secondly, the coupling of evanescent waves between the 
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modes of the adjacent supercells is reduced. Therefore, as R increases, the width of the flat 

band ( ∆Ω ) decreases, and the average group index (ng) increases [Fig. 3(b)]. 

The large number of slow modes is useful in creating broadband slow light 

applications in the digital telecommunication systems. An essential component of the 

broadband digital telecommunication is the wavelength – division multiplexing (WDM) 

technology [24]. In a WDM based broadband network, to make use the broad bandwidth, 

multiple data channels are multiplexed together in a single fiber. A single LCPC structure can 

provide slow light effect for all the data channels in the WDM network. The maximum 

bandwidth that a LCPC can support is equal to the length of the strongly coupling region [i.e., 

see Fig. 3(b)]. 

The positions of the strong coupling regions (and therefore the maximum bandwidth) 

remain the same for all R [see Figs. 3(a) – 3(b)]. This is due to the fact that, the corresponding 

Fourier transforms of the LCPC’s dielectric functions of all R with d = 0.2a are similar [see 

Figs. 1(c) – 1(d)]. If one would like to alter the position and the length of the strong coupling 

region, then one has to play with the parameters (such as d, type of logical operation and 

refractive index contrast) that will alter the Fourier transform of the dielectric function.  

A simplest method to fabricate the proposed LCPC is by mean of a multilayer 

deposition. When we logically combine two 1D PCs with periods a and ra, using the logical 

OR operation, the minimum difference in adjacent layer thickness is simply the difference in 

the two periods, t = a(r – 1) = a/(R – 1). The thickness t imposes a limit on r for practical 

realizations. To illustrate practical values of t, consider an implementation at the 

telecommunication wavelength,  λ = 1550 nm. Using the normalized frequency of Ω = 0.5 

[near this Ω, we have a large ng; see Fig. 3(b)], the period of PC1 is a = Ωλ = 775 nm. 

Therefore, for R = 21 and 51, we have t ~ 15 and 40 nms, respectively. 1D multilayer 
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structures with such dimensions can be easily fabricated using matured techniques such as 

chemical vapor deposition or bias – target depositions [25]. 

In conclusion, we have presented a new PC architecture that results from a logical 

combination of two 1D PCs of slightly different periods. The optical properties of the 

resulting logically combined PC is strikingly different from the individual PCs before the 

combination. In particular, the logically combined PC exhibits a region of frequencies, called 

strong coupling region that has high density of slow modes. The large number of slow modes 

is extremely useful in creating broadband slow light applications such as broadband rainbow 

trapping, and broadband optical buffers. Although, we have presented results for a logical 

“OR” operation with a silicon – air material system, the conclusion remains the same for all 

kind of logical operations, and for any combination of dielectric materials, as long as the 

corresponding spatial Fourier decomposition of the LCPC’s dielectric function comprises a 

mixture of two slightly different periodicities.  
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Figure 1 

 

FIG. 1 (a) Dielectric functions of PC1, PC2, and the LCPC. Fourier transforms of the 

dielectric functions. (b) PC1; (c) LCPC with R=7; (d) LCPC with R=16. 
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Figure 2 

 

FIG. 2 (a) Band structure of PC1; (b) Folded band structure of PC1 for R=7. (c) Band 

structure of the LCPC with R=7; (d) Transmission spectrum of the LCPC with R=7 (e) Bloch 

mode spectrums for the LCPC’s modes (R=7, k=0.2π/as). (f) Mode profiles in the LCPC 

(R=7, k=0.2π/as). (g) Enlarged version of the mode profiles for bands 7–14 plotted within one 

period. 
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Figure 3 

 

 

 

FIG. 3 (a) Band structures of the LCPCs for R = 7 to 51. (b) log10(ng) as a function of the 

band mid frequency for the LCPC with R=7, 11, 15 and 19. (c) log10(ng) for the folded band 

structure of PC1 with R=19.  
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