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An arginine-decorated amphiphilic dendrimer is able to promote enhanced cellular 

uptake of siRNA, leading to considerably improved siRNA delivery and gene silencing.   
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Abstract 

RNA interference (RNAi) with small interfering RNA (siRNA) is expected to offer 

an attractive means to specifically and efficiently silence disease-associated genes for 

treating various diseases provided that safe and efficient delivery systems are available. 

In this study, we have established an arginine-decorated amphiphilic dendrimer 

composed of a hydrophobic alkyl chain and a hydrophilic PAMAM dendron bearing 

arginine terminals as nonviral vector for siRNA delivery. Indeed, this dendrimer proved 

to be very effective at delivering siRNAs in human prostate cancer PC-3 cells and in 

human hematopoietic CD34+ stem cells, leading to improved gene silencing compared 

to the corresponding nonarginine decorated dendrimer. Further investigation confirmed 

that this dendrimer was granted with the capacity to form stable nanoparticles with 

siRNA and significantly enhance cellular uptake of siRNA. In addition, this dendrimer 

revealed no discernible cytotoxicity. All these findings demonstrate that decoration of 

the dendrimer surface with arginine residues is indeed a useful strategy to improve the 

delivery ability of dendrimers. 
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Introduction 

The application of nanotechnology for drug delivery is widely expected to bring 

promise and create novel therapeutics. Particularly exciting is the recent effort to apply 

nanotechnology to engineer nanovectors for small interfering RNA molecules (siRNAs) 

delivery, giving birth to entirely novel siRNA therapeutics. RNA interference (RNAi) 

makes use of siRNA, which can break down the target mRNA in a sequence-specific 

manner.
1
 The promise that siRNA can efficiently and specifically down-regulate 

disease-associated or even “undruggable” genes offers the compelling advantage to treat 

various diseases, creating a new era of pharmaceutical science which have the potential 

to revolutionize traditional medicine.
2-4

  

However, as a nucleic acid component, its intrinsic physicochemical properties 

make siRNA extremely poor as an active pharmaceutical ingredient and pose serious 

obstacles for clinical translation of RNAi. Generally, an unprotected, naked siRNA will 

be rapidly degraded by nucleases and/or esterases circulating in the biological fluids. In 

addition, siRNA molecules are highly negatively charged and hydrophilic, and hence do 

not readily cross cell membranes. Therefore, a safe and robust delivery system which 

can protect siRNA from degradation during the extra- and intra-cellular delivery and 

bring siRNA to the site of interest is an essential prerequisite of success clinical 

development of RNAi.  

In the past decades, a large number of nanovectors, such as lipids, natural 

macromolecules (e.g. cyclodextrin, chitosan, polysaccharide), organic polymers (e.g. 

polyethylenimine, dendrimers) or inorganic materials (e.g. carbon nanotubes, quantum 
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dots, gold nanoparticles), have been established for siRNA delivery.
5-9

 Among these, 

cationic dendrimers, a family of synthetic polymers,
10

 represent a particularly promising 

siRNA delivery platform
11-13

 by virtue of their precisely constructed structure, intriguing 

multivalency and high cargo payload confined within a nanosized volume. We have 

recently reported a small amphiphilic poly(amidoamine) (PAMAM) dendrimer (1a in 

Figure 1) featuring a hydrophobic long alkyl chain and a low generation hydrophilic 

PAMAM dendron for functional siRNA delivery.
14

 This dendrimer is able to harness the 

advantageous delivery features of both lipid and polymer vectors, successfully 

delivering siRNA and producing potent gene silencing and anticancer activity in 

prostate cancer models in vitro and in vivo.
14

  

In order to further improve the delivery efficiency of this amphiphilic dendrimer 

via increased cellular uptake of siRNA, we would like to conjugate this amphiphilic 

dendrimer with arginine entities (1b in Figure 1A). Our rationale for such initiation was 

motivated by several considerations. First of all, polyarginine peptides are well known 

as one of the widely used cell-penetration peptides for intracellular delivery system,
15, 16

 

and various delivery vehicles containing arginine-rich motifs have been reported for 

their improved cellular uptake to transport various therapeutics, such as small molecular 

drugs, proteins, nucleic acids, etc.
15, 17-23

 Secondly, the arginine residue harbors two 

positively charged functional groups at physiological pH 7.4, namely, the primary 

amine functionality and the guanidinium moiety, both are able to interact favorably with 

the negatively charged cell membrane-associated proteoglycans and the phosphate 

groups in lipid components, hence facilitating membrane penetration.
24-26

 Finally, it has 
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been demonstrated that certain number of arginine residues and length of the arginine 

peptide are required for the optimal cellular uptake.
15

 On the basis of the multivalent 

property of dendrimers, we inferred that the dendrimers bearing single arginine unit 

terminals could be considered as arginine-rich nanovectors. Indeed, our recent work 

with a triethanolamine (TEA) core poly(amidoamine) (PAMAM) dendrimer harboring 

single arginine units at its terminals showed significantly increased cellular uptake of 

siRNA, hence enhancing gene silencing efficiency in comparison with the 

corresponding nonarginine bearing dendrimer counterpart.
27

   

Based on all these rationales as well as our promising results obtained with the 

amphiphilic dendrimer 1a
14

 and with the arginine-conjugated TEA-core PAMAM 

dendrimer,
27

 we expected that the arginine-terminated amphiphilic dendrimer 1b could 

conserve the cell penetration advantage of arginine-rich motifs, as well as the beneficial 

features of the amphiphilic dendrimers for siRNA delivery.
14, 28, 29

 We present below the 

results that this amphiphilic dendrimer 1b enhanced siRNA delivery in prostate cancer 

cells as well as in human stem cells, and demonstrate that the improvement in delivery 

efficiency can be indeed attributed to the advantageous cell penetration ability imparted 

by the arginine terminals within the amphiphilic dendrimer 1b.  

Experimental  

Materials.  

The amine-terminated amphiphilic dendrimer 1a was synthesized according to the 

previously reported method.
14 

All chemicals were purchased from Acros Organics, 

Sigma Aldrich or Alfa Aesar (France). Methyl acrylate and ethylenediamine were 
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distilled before use. All the other reagents and solvents were used without any further 

purification. 
1
H NMR spectra were recorded at 600 MHz and 

13
C NMR spectra 

recorded at 75 MHz on Varian Mercury-VX600 and Varian Mercury-VX300 

spectrometers, respectively. Coupling constants (J) are reported in Hertz, and chemical 

shifts are reported in parts per million (ppm). ESI mass spectra were determined using 

Finnigan LCQ Advantage mass spectrometer. IR spectra were recorded with a Nicolet 

380 spectrophotometer.  

The sequence of heat shock protein 27 (Hsp27) siRNA used corresponds to the 

human Hsp27 site (5’-GCUGCAAAAUCCGAUGAGACdTdT-3’) (Thermo Fisher 

Scientific, Illkrich, France). A scrambled siRNA duplex (Thermo Fisher Scientific) 

(5’-AUCAAACUGUUGUCAGCGCUGdTdT-3’) and Dy647 labelled Hsp27 were 

purchased from Thermo Fisher Scientific. Cy3-labeled Tat/Rev Site I dsiRNA (27 mer, 

Sense: 5’-GCG GAG ACA GCG ACG AAG AGC UCA UCA-3’; antisense: 5’-UGA 

UGA GCU CUU CGU CGC UGU CUC CGC dTdT-3’), Anti-CD4 dsiRNA (Sense: 

5’-GAU CAA GAG ACU CCU CAG UGA GAA G-3’; antisense: 5’-CUU CUC ACU 

GAG GAG UCU CUU GAU CUG-3’ (2’-OMe modified U was underlined), and 

irrelative dsiRNA (NC1 dsiRNA) were purchased from Integrated DNA Technologies 

(Coralville, IA). Oligofectamine and RNAiMax were purchased from Life Technologies 

(Paisley, United Kingdom).  

All other reagents and solvents of analytical grade were used without any further 

purification from commercial sources. 

Synthesis of the arginine-terminated amphiphilic dendrimers 1b  
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To a solution of 4.0 eq (equivalent to one primary amine terminal of the 

amine-terminated dendrimer 1a) Fmoc-Arg(pbf)-OH, 4.0 eq 1-hydroxybenzotriazole 

(HOBt), 4.0 eq O-(benzotriazol-1-yl)-N, N, N′, N′-tetramethyluronium 

hexafluorophosphate (HBTU) and 8.0 eq N, N-diisopropylethylamine (DIPEA) in 5.0 

mL DMF stirring at 25 
o
C under argon, was added a solution of 50 mg of the 

amine-terminated dendrimer 1a in 5.0 mL DMF.
27

 The resulting solution was stirred at 

25
o
C under argon until completion of the reaction as indicated by TLC analysis. DMF 

was removed under reduced pressure, and the residue was purified by precipitation with 

CH3OH/Et2O (1.0 mL / 20 mL) at 4 
o
C for 12 h (three times). The residual precipitate 

was collected, dried by rotavap and then dissolved in 3.0 mL DMF and mixed with a 

solution of 3 mL 30% piperidine in DMF (v/v). The mixture was stirred at 25 
o
C under 

argon for 2 h, and DMF was then removed under reduced pressure. The residue was 

purified by precipitation with CH3OH/Et2O (1.0 mL / 20 mL) at 4
o
C for 12 h (three 

times). A solution of 7.6 mL trifluoroacetic acid (TFA), 2.0 mL triisopropylsilane (TIS) 

and 2.0 mL water was added to the residual precipitate and stirred 25 
o
C under argon for 

1 h. The crude product was dissolved in water (1-2 mL) and subjected to dialysis in 

water (800-1000 mL) (dialysis protocol: at the beginning, change water every 1 h for 

three times, then change water every 2-3 h for another three times). Then the product 

was lyophilized to offer the corresponding product 1b with a yield of 90%, which was 

analyzed using IR, 
1
H- and 

13
C-NMR. The resulting degree of modification with 

arginine was almost quantitative according to the molar ratio of Arg/PAMAM assessed 

by quantifying the corresponding NMR peaks at 3.8 ppm and 2.4 ppm for arginine 
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residue and PAMAM dendron, respectively. 

1
H NMR (600 MHz, D2O): δ 7.87 (s, 1H, CH), 4.26 (t, 2H, J = 6.3 Hz, CH2), 3.76-3.81 

(m, 10H, CH2), 3.11-3.28 (m, 28H, CH2), 3.05 (t, 16H, J = 6.9 Hz, CH2), 2.91-2.96 (m, 

28H, CH2), 2.66-2.80 (m, 28H, CH2), 2.37-2.43 (m, 28H, CH2), 1.71-1.79 (m, 18H, 

CH2), 1.46-1.48 (m, 16H, CH2), 1.00-1.05 (m, 30H, CH2), 0.65 (t, 3H, J = 6.6 Hz, CH3); 

13
C NMR (75 MHz, D2O): δ 173.8, 173.4, 170.2, 157.5, 156.9, 117.4, 115.5, 53.1, 53.0, 

51.8, 49.4, 40.4, 39.2, 38.8, 35.6, 32.3, 29.1, 28.2, 23.7; IR (cm
-1

): υ 1630.3; MS: calcd. 

for C137H278N64O22
+
 [M+H]

+ 
3197.3, found 3198.4; HRMS: calcd. for 

C139H278N84O22Na
+
 [M+Na]

+ 
3220.2520, found 3220.2493. 

Agarose gel analysis of siRNA/dendrimer complexes.  

Dendrimers were diluted to an appropriate concentration in 50 mM Tris-HCl buffer (pH 

7.4), with all solutions stored at 4°C. The siRNA was diluted with H2O. Both solutions 

were mixed at various N/P ratios and incubated at 37°C for 30 min. The final 

concentration of siRNA was adjusted to 25 ng/mL (100 ng/well). siRNA/dendrimer 

complexes were analyzed by electrophoretic mobility-shift assays in 2% agarose gel in 

0.5TBE buffer. The siRNA bands were stained by syber green (Life Technologies SAS, 

Saint Aubin, France) then detected by Fujifilm LAS-3000 Imager (FUJIFILM, Bois 

d’Arcy, France). 

Dynamic light scattering (DLS) analysis 

The siRNA solution was mixed with the indicated amount of freshly prepared 

dendrimer solution at an N/P ratio of 10. The final concentration of the siRNA was 1 

μM. After incubation at 25 °C for 30 min, size distribution and zeta potential 
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measurements were performed using Zetasizer Nano-ZS (Malvern Ltd., Malvern, Orsay, 

France) with a He-Ne ion laser of 633 nm. 

Cell culture.  

Human prostate cancer PC-3 cells were purchased from the American Type Culture 

Collection (Molsheim, France). PC-3 cells were maintained in DMEM (Invitrogen Ltd., 

Paisley, United Kingdom), supplemented with 10% fetal bovine serum (FBS). Cells 

were maintained at 37 °C in a 5% CO2 humidified atmosphere. 

Human hematopoietic CD34+ stem cells: Cord blood samples were obtained from 

StemCyte, Inc (Covina, CA). For transfection of hematopoietic stem cells, CD34+ cells 

were enriched from umbilical cord blood by anti-CD34 antibody-coupled magnetic 

beads (Miltenyi Biotech, Aubum, CA).  Freshly isolated CD34+ cells were cultured in 

active medium for 3 days. Forty-eight hours prior to transfection, the CD34+
 
cells were 

cultured in RPMI-1640 medium supplemented with 10% FBS, 1×PenStrep and 100 

U/mL interleukin-2. Cells should be cultured on the Non-Tissue Culture Treated plates 

(Becton Dickinson Labware). 

Cellular uptake studies. 

Flow Cytometry.  

Briefly, PC-3 cells were plated in 3.5 cm dishes, and treated with Dy647 labeled Hsp27 

siRNA/1b, using no treatment and Dy647 labeled Hsp27 siRNA/1a as controls. The 

cells were trypsinized after treatment and washed once with cold PBS. The fluorescent 

intensity of cells was analyzed by using flow cytometer (Beckman Coulter Epics Elite, 

Beckman Coulter, Inc., Marseille, France). Each assay was performed in triplicate. 
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Fluorescent Microscopy analysis.  

210
5
 suspension CD34+ cells per well were seeded in 48-well tissue culture plates in 

150 L fresh complete medium containing 10% FBS. Cells were transfected with 50 

nM Cy3-labeled Tat/Rev Site I dsiRNA (27 mer) using dendrimers as described below. 

The images were collected after transfection for 24 or 48 h using a Nikon Eclipse 

TE2000-S fluorescent microscopy system at 20X magnification.  

Transfection experiments.  

Human prostate cancer PC-3 cells. 

One day before transfection, 1.5 × 10
5
 cells were seeded in 6 cm dishes in 4 mL of fresh 

complete medium containing 10% FBS. Before transfection, a solution of the 

siRNA/dendrimer, and siRNA/oligofectamine complex was prepared accordingly. The 

desired amount of siRNA and dendrimers or oligofectamine was diluted in 200 μL of 

Opti-MEM transfection medium. The solutions were mixed with a vortex for 10 sec and 

then equilibrated 10 min at room temperature. The dendrimers or oligofectamine was 

added to the siRNA solution, homogenized for 10 sec with a vortex and equilibrated 30 

min at room temperature. Then 1.6 mL of serum-free medium was added into the 

complex solution and the final volume brought to 2 mL. Before addition of the 

transfection complexes, the complete medium with FBS was removed and cells were 

washed with PBS once. Then, 2 mL of complex solution was added and incubated at 

37 °C in the absence of 10% FBS. After 8 h of incubation, the transfection mixture was 

replaced with the complete medium containing 10% FBS, and maintained under normal 

growth conditions for further incubation of 72 h. 
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Human hematopoietic CD34+
 
stem cells  

410
5
 CD34+ cells per well were seeded in 24-well tissue culture plates in 300 L fresh 

complete medium. Before transfection, complexes of dsiRNA/dendrimer reagents were 

prepared. The desired amount of dsiRNA and dendrimer reagent was diluted in 50 L 

of serum-free medium (Opti-MED), respectively. The dendrimer solution was mixed 

gently and incubated for 10 min at room temperature. After the 10-minute incubation, 

the diluted dsiRNA and the dendrimer reagent were mixed gently and incubated for 30 

minutes at room temperature. The 100 L of dsiRNA/dendrimer complex was added to 

each well containing cells and medium and mixed gently by rocking the plate back and 

forth. The cells were incubated at 37°C in a CO2 incubator for 24~48 h for further 

assays. A commercial transfection reagent RNAiMax (Life Technologies) was used as 

control according to the manufacturer instructions. 

Total RNA isolation and cDNA synthesis.  

RNA-Stat60 was used to extract total RNA according to the manufacturer instruction 

(Tel-Test). The concentration and integrity of total RNA were measured by nano-drop 

spectroscopy. Residual DNA was digested using the DNA-free kit following 

manufacturer instructions (Ambion). cDNA was produced using 2 g of total RNA, 

Moloney murine leukemia virus reverse transcriptase and random primers in a 15 L 

reaction according to the manufacturer instructions (Invitrogen). GAPDH expression 

was used for normalization of the qPCR data. 

qRT-PCR analysis (determination of gene silencing).  

For CD4 expression, cells were transfected with 50 nM of 27-mer anti-CD4 siRNA 

Page 12 of 29Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



13 

using dendrimers as described above. 48 hours post-transfection, the total RNA was 

isolated with STAT-60 (TEL-TEST “B”, Friendswood, TX). Expression of the target 

genes was analyzed by quantitative Real time-PCR using 2 iQ SyberGreen Mastermix 

(BIO-RAD) and specific primer sets at a final concentration of 400 nM.  

Primers were as follows: CD4 forward primer: 5’ - GCT GGA ATC CAA CAT CAA 

GG -3’; CD4 reverse primer: 5’- CTT CTG AAA CCG GTG AGG AC -3’; GAPDH 

forward primer: 5’- CAT TGA CCT CAA CTA CAT G-3’; GAPDH reverse primer: 5’- 

TCT CCA TGG TGG TGA AGA C-3’ GAPDH expression was used for normalization 

of the qPCR data.  

Western blot analysis (determination of gene silencing).  

Samples containing equal amounts of protein (15 μg) from lysates of cultured PC-3 

cells were analyzed by Western blot analysis as described previously with 

1:5000-diluted anti-human Hsp27 rabbit polyclonal antibody (Enzo Life Sciences, 

Villeurbanne, France) or 1:2000-diluted anti-human vinculin mouse monoclonal 

antibody (Sigma Aldrich). Filters were then incubated for 1 h at room temperature with 

1:5000-diluted horseradish peroxidase conjugate anti-rabbit or mouse monoclonal 

antibody (Santa Cruz Biotechnology Inc., Nanterre, France). Specific proteins were 

detected using an enhanced chemiluminescence Western blotting analysis system (GE 

Healthcare Life Sciences, Velizy-Villacoublay, France). 

MTT assay.  

The metabolite toxicity of Hsp27 siRNA plus 1b on PC-3 cells was assessed using the 

MTT (Sigma Aldrich, France). Briefly, cells were seeded in each well of 12-well 
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microtiter plates and allowed to attach overnight. Cells were then treated once with 

dendrimer 1b and scramble siRNA/1b in the absence of 10% FBS. Every 1, 3 and 24 h, 

MTT solution (5 mg/mL in PBS) was added to each well and incubated for another 2-4 

h. And then the suspension liquid was removed and cells were resuspended in DMSO. 

The optical density (OD) of these DMSO solutions was read at 540 nm. The difference 

of OD values between treated and non-treated cells reflects the viability of cells after 

treatments and thus stands for the metabolite toxicity. Each assay was performed in 

triplicate.  

MTS assay.  

110
5
 CD34+ cells per well were seed in 96-well plates in 75 L fresh complete 

medium. Before transfection, complexes of dsiRNA/dendrimer reagents were prepared 

as described above. 25 L of dsiRNA/dendrimer complex was added to each well 

containing cells and medium and mixed gently by rocking the plate back and forth. The 

cells were incubated at 37°C in a CO2 incubator for 2 days for the MTS cytotoxicity 

assay. CellTiter 96® Non-Radioactive Cell Proliferation (Promega) assays were 

performed according to manufacturer protocol. 20 L MTS solution was added to each 

well and then incubated with cells for 1.5 h at 37°C. The absorbance was measured with 

a Wallack plate reader using the Kamings protocol at 490 nm. Experiments were 

performed in triplicate. Cell viability was expressed as the ratio of absorbance obtained 

from transfected cells to non-transfected cells.  

Statistical analysis  

Statistical analysis was performed by Student’s test (t-test) (Microsoft Excel 2003). p≤
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0.05 was considered significant (*); p≤0.01 (**); p≤0.001 (***). 

 

Results and discussion 

Synthesis. The synthetic strategy of the arginine-decorated amphiphilic dendrimer 1b is 

illustrated in Figure 2A, which began with the amine-terminated amphiphilic dendrimer 

1a 
14

 and proceeded by conjugation with the arginine building units. Precisely, the 

amine-terminated amphiphilic dendrimer 1a was first coupled with the protected 

arginine precursor, Fmoc-Arg(pbf)-OH, in the presence of HOBt/HBTU and DIPEA in 

DMF. Subsequent removal of the Fmoc groups and deprotection of the pbf groups 

offered the desired arginine-decorated amphiphilic dendrimer 1b with an excellent yield 

of 90%. 

The successful conjugation of arginine residues to the amine-terminated 

amphiphilic dendrimer 1a was confirmed by NMR analysis. For example, the peaks at 

1.5 ppm, 1.7 ppm, 3.1 ppm, and 3.8 ppm in the 
1
H NMR spectrum of the 

arginine-terminated amphiphilic dendrimer 1b belong to the characteristic NMR signals 

of the arginine components, which are distinct from those of the corresponding 

amine-terminated amphiphilic dendrimer 1a (Figure 2B), highlighting the successful 

appendage of arginine residues. Similarly, the characteristic 
13

C NMR signals relating 

to the arginine residues were found at 40 ppm, 157 ppm, and 176 ppm in the 
13

C NMR 

spectrum of 1b (Figure 2C), further validating the successful attachment of arginine 

residues onto the dendrimer surface. 

Dendrimer 1b formed nanoparticles with siRNA and protected siRNA from 
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degradation. Packing siRNA into stable and nanosized complexes by the nonviral 

vector is of paramount importance for effective delivery. We therefore first examined 

the complex formation between siRNA and the amphiphilic dendrimer 1b using 

dynamic light scattering (DLS) analysis, a method able to determine the size and 

surface charge of the nanoscale complexes in solution. DLS results revealed that the 

amphiphilic dendrimer 1b and siRNA formed uniform nanoparticles with an average 

size of 50 nm (Figure 3A) and a zeta potential of 22 mV. These results are similar to 

those observations with 1a.
14

 

We next inspected the complex formation between siRNA and 1b using gel 

electrophoresis, a widely used technique for assessing complex formation with nucleic 

acid. siRNAs migrate towards cathode during gel electrophoresis because of their 

negative charge, whereas dendrimer binding to siRNA retards siRNA migration in the 

gel, thereby the degree of complex formation can be inferred. Compared to naked 

siRNA control, siRNA formed complexes with the dendrimer 1b showed a significant 

retardation on migration at an N/P ratio of 5 or above (Figure 3B), indicating stable 

complex formation of siRNA with 1b. It is noted that the amine-terminated dendrimer 

1a could completely retard siRNA migration at a lower N/P ratio of 2.5,
14

 implying that 

1a exhibited somewhat stronger binding towards siRNA than 1b. This might be 

ascribed to the planar and rigid guanidiniums at the distal ends of the arginine terminals 

of 1b, making the binding of 1b towards siRNA less efficient than that of 1a.  

Nevertheless, the siRNA/1b complexes are stable enough to effectively protect 

siRNA against enzymatic degradation. As shown in Figure 3C, naked siRNA was 
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completely digested by RNase within 5 minutes, whereas siRNA complexed with 

dendrimer 1b remained intact even after 60 minutes incubation with the enzyme. This 

result demonstrates that siRNA was well protected from enzymatic degradation, which 

is also an additional evidence for the formation of stable siRNA/1b complexes. 

Collectively, all these results affirmed that the arginine-decorated dendrimer 1b is able 

to pack siRNA to form stable nanoparticles and to protect siRNA from degradation.  

Dendrimer 1b mediated superior siRNA delivery. The so-constructed siRNA/1b 

nanoparticles were indeed effective to deliver siRNA and produce potent gene silencing. 

Figure 4A displayed the resulting gene silencing of heat shock protein 27 (Hsp27) in the 

human castration-resistant prostate cancer PC-3 cells following the treatment with a 

siRNA targeting Hsp27 delivered by 1b. Hsp27, a ubiquitous small heat shock protein, 

is an essential player in the development of cancer and drug resistance, and has been 

recently considered as a novel target for treating drug-resistant prostate and other 

cancers.
30, 31

 Compared to the amine-terminated dendrimer 1a, the arginine-decorated 

dendrimer 1b showed considerably increased inhibition of Hsp27 protein (Figure 4A) 

with activity comparable to the commercial transfection vector oligofectamine (oligo). 

Such improved gene silencing with 1b could be ascribed to the presence of the arginine 

terminals, which is the sole difference between 1a and 1b. Additionally, no discernible 

cytotoxicity was observed with either 1b alone or the scramble siRNA/1b (Figure 4B). 

Most excitingly, 1b was able to deliver a dicer substrate siRNA (denoted as 

dsiRNA)
32,33

 targeting CD4, the primary receptor for HIV-1, and mediate successful 

gene silencing in human hematopoietic CD34+ stem cells, a particularly challenging 

Page 17 of 29 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



18 

cell type for nucleic acid delivery. Dendrimer 1b delivered anti-CD4 dsiRNA resulted 

in ~ 60% decrease in CD4 mRNA levels (Figure 2C), without any notable cytotoxicity 

(Figure 2D). In contrast, no inhibition was observed with dendrimer alone or a 

dendrimer delivered irrelative dsiRNA. The commercial transfection reagent RNAiMax 

was ineffective for delivery to CD34+ cells (data not shown). Taken together, these 

results demonstrate that the arginine-decorated amphiphilic dendrimer 1b was definitely 

bestowed superior capacity for siRNA delivery compared to its nonarginine dendrimer 

counterpart 1a. 

Enhanced cellular uptake of siRNA via arginine conjugated dendrimer. To 

understand how the arginine-terminated dendrimer 1b exhibits such promoted gene 

silencing efficiency than the parent amine-terminated dendrimer counterpart 1a, we 

inspect the cellular uptake by quantifying the internalization of the siRNA/1b 

complexes using flow cytometry with the far-red fluorochrome Dy647 labeled siRNA. 

Significantly stronger fluorescent intensity was observed in the cells treated with 

siRNA/1b than those with siRNA/1a (Figure 5A), demonstrating the improved cellular 

uptake ability of siRNA/1b complexes compared with their counterpart siRNA/1a.  

Likewise, the arginine-decorated dendrimer 1b was able to exercise efficient 

internalization of siRNA in human hematopoietic CD34+ stem cells. As shown in 

Figure 5B, whereas no considerable cellular uptake was observed with the Cy3-labeled 

dsiRNA alone, significant red fluorescent signals were revealed following the treatment 

of Cy3-labeled dsiRNA/1b complexes, entailing effective cell uptake. Importantly, the 

fluorescent signals were stronger than those treated with Cy3-labeled siRNA delivered 
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by 1a. Altogether, these results speak for the predominant cellular uptake of siRNA 

delivered by 1b.  

The observed advantageous cellular uptake mediated by 1b in comparison to 1a can 

be reasonably attributed to the arginine terminals, the sole structural difference between 

1b and 1a. Importantly, the positively charged guanidinium terminals, which, via 

bidentate hydrogen bonding, are able to form strong and important hydrogen bond 

networks with the negatively charged cell membrane constituents such as carboxylates, 

phosphates and sulfates. The so-resulting H-bond formation would promote their 

association with the cell membrane, hence enhancing cell membrane penetration and 

internalization.
15, 34

 Therefore, appending arginine residues on the dendrimer surface 

effectively improves the cellular uptake ability of siRNA, and the arginine-terminated 

amphiphilic dendrimer 1b is thereby able to exhibit enhanced ability to transport siRNA 

and mediate more efficient gene silencing than the nonarginine bearing dendrimer 1a.  

CONCLUSIONS 

SiRNA-based RNA interference (RNAi) is expected to offer an attractive means to 

sequence-specifically and efficiently silence disease-associated genes for treating 

various diseases. However, safe and efficient siRNA delivery system is a crucial issue to 

improve the pharmacokinetic properties of siRNA and promote cellular uptake of 

siRNA therapeutics. In this study, we have established an arginine-decorated 

amphiphilic dendrimer 1b composed of a hydrophobic alkyl chain and a hydrophilic 

PAMAM dendron bearing arginine terminals as nonviral nanovector for siRNA delivery. 

Indeed, this dendrimer has conserved the cell penetration advantage of arginine-rich 
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structural motifs and is able to mediate improved siRNA delivery and potent gene 

silencing through enhanced cellular uptake of siRNA via arginine structural entities at 

the dendrimer surface. Our study suggests that decoration of the dendrimer surface with 

arginine residues is indeed an effective strategy to improve the delivery ability of 

dendrimers, and the so-constructed dendrimer 1b is a highly promising nanovector for 

efficacious siRNA delivery, holding great potential for further therapeutic applications.  
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Figure 1. Amphiphilic dendrimers 1a and 1b studied in this work. 
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Figure 2. (A) Synthesis of the arginine-terminated dendrimer 1b starting with the 

amine-terminated dendrimer 1a. (B) 
1
H-NMR and (C) 

13
C-NMR spectra of 1b and 1a. 

The peaks marked with ★ belong to the characteristic NMR signals of arginine 

residues. 

A   

 

B 

 

Page 25 of 29 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



26 
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Figure 3. (A) DLS analysis of Hsp27 siRNA/1b complexes at N/P ratio of 10. (B) 

Migration of Hsp27 siRNA (200 ng/well) in agarose gel in the presence of dendrimer 

1b at N/P ratios varying from 0 to 10. (C) Hsp27 siRNA/1b complexes (N/P ratio 10) 

are able to prevent Hsp27 siRNA from RNase digestion. 
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Figure 4. (A) Dendrimers-mediated siRNA delivery and gene silencing of Hsp27 in 

human prostate cancer PC-3 cells at N/P ratio of 10 with 50 nM Hsp27 siRNA, using 

commercial vector oligofectamine (oligo) as a positive control. *, siRNA/1b differs 

from siRNA/1a (p ≤ 0.05) by Student’s t test. (B) Cytotoxicity profile of 1b mediated 

delivery system was determined by MTT assay with 1b alone and scramble siRNA/1b 

(50 nM siRNA) in PC-3 cells with varying N/P ratios. Experiments were carried out in 

triplicate. (C) 1b-mediated siRNA delivery and gene silencing of CD4 expression in 

human hematopoietic CD34+ stem cells at N/P ratio of 5 with 50 nM CD4 dsiRNA. *, 

siRNA/1b differs from control (p ≤ 0.05) by Student’s t test. (D) Cytotoxicity profile of 

1b-mediated delivery system was determined by MTS assay with 1b alone, CD4 

dsiRNA/1b and irrelative dsiRNA/1b (50 nM dsiRNA, at N/P ratio 5) in human 

hematopoietic CD34+ stem cells. Experiments were carried out in triplicate. 
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Figure 5. Cellular uptake of the siRNA/1b complexes. (A) Cell uptake kinetics of the 

Dy647-labeled siRNA/dendrimers (1a or 1b) complexes (50 nM siRNA at N/P ratio of 

10) at different time points in prostate cancer PC-3 cells evaluated using flow 

cytometric analyses. Experiments were carried out in triplicate. ***, siRNA/1b differ 

from siRNA/1a (p ≤ 0.001) by Student’s t test. (B) Uptake of Cy3-labeled dsiRNA 

alone, Cy3-labeled dsiRNA/1b complexes and Cy3-labeled dsiRNA/1a complexes (50 

nM siRNA, N/P ratio 5) in human hematopoietic CD34
+
 stem cells at 24 (left) and 48 h 

(right) analyzed using a Nikon Eclipse TE2000-S fluorescent microscopy system at 20X 

magnification. Non-treated cells were used as control. 
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