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Many metal oxide nanoparticles are able to cause persistent stress to live organisms, including humans, 

when discharged to environment. To understand the mechanism of metal oxides nanoparticles toxicity 

and reduce a number of experiments the development of predictive toxicity models is important. In this 10 

study, performed on a series of nanoparticles, the comparative Quantitative-Structure Activity 

Relationships (nano-QSARs) analyses of their toxicity towards E.coli and HaCaT cells were established. 

A new approach for representation of nanoparticles’ structure was presented. For description of 

supramolecular structure of nanoparticles “liquid drop” model was applied. It is expected that novel, 

proposed approach could be of general use for predictions related to nanomaterials. In addition, in our 15 

study fragmental simplex descriptors and several ligand-metal binding characteristics were calculated. 

The developed nano-QSAR models were validated and reliably predict toxicity of all studied metal oxide 

nanoparticles. Based on the comparative analysis of contributed properties in both models the LDM-

based descriptors were revealed to have almost similar level of contribution to toxicity in both cases, 

while other parameters (van-der-Waals interactions, electronegativity and metal-ligand binding 20 

characteristics) have unequal contribution levels. In addition, the models developed here suggest different 

mechanisms of nanotoxicity for these two types of cells. 
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Introduction 

 A group of metal oxide nanoparticles represents one of the most 

remarkable nanomaterials because of their outstanding magnetic, 

mechanical, catalytic, electronic, semiconducting and various other 

properties. Such properties depend greatly on nanoparticle’s size, 5 

structure, and shape and make them valuable components for broad 

range of applications, including industrial, medical, chemical, and 

scientific. Conservative market evaluated the production for metal 

oxide nanoparticles in 2012 at about 270,041 tons, likely rising to 

1,663,168 tons by 20201.  10 

 Most of the metal oxide nanoparticles are persistent and able to 

cause persistent stress to live organisms, including humans, when 

exposed to environment2-4. Since metal oxides in nano-sizes exhibit 

peculiar physico-chemical properties that make them dramatically 

different from bulk-sized forms these nanomaterials were subjected 15 

extensively to various experimental studies, including 

environmental and toxicological4, 5. 

 To reduce a number of experiments and reveal the mechanism of 

nano-sized metal oxides toxicity the combined experimental and 

computational modeling studies were performed by different 20 

research groups, resulting in development of various predictive 

models4-20. For example, the mathematical model based on 

quantum-chemically calculated descriptors to predict cytotoxicity of 

nano-sized metal oxides was recently reported6. In another study a 

QSAR model was built to predict cellular uptake for a series of 25 

nanoparticles separating the organic part (surface modifier) from the 

common core (metal and metal oxide core)7. Interesting study was 

performed by Zhang et al18 where authors were able to find a 

correlation between band gap and cytotoxicity. They also performed 

oxidative stress assays tests for series of metal oxide nanoparticles. 30 

Burello and Worth16 suggested similar band gap descriptor to 

estimate oxidative stress ability of metal oxides based on 6 metal 

oxides and utilized developed model to predict oxidative stress 

ability for another 64 hypothetical metal oxide nanoparticles. 

 For the last decade nanotoxicologists proposed several different 35 

mechanisms by which nanoparticles interact with cell systems and 

penetrate into microorganisms or cells6, 16, 19, 21-30. For example, 

some nanoparticles can penetrate into test-systems with no specific 

receptors on their outer surface. This uptake may be initiated by 

van-der-Waals forces, electrostatic charges and steric interactions 40 

(size, geometries, bonding)2. To describe this type of interactions 

various theoretical methods could be used, including quantum-

chemical calculations (QC), empirical formulas and 

approaches/software commonly used to calculate theoretical 

descriptors, like ChemAxon31, Dragon32, CDK33, and SiRMS 45 

(Simplex Representation of Molecular Structure) approach34 .  

 Based on our experience with predictive QSAR modeling and 

especially with nanoparticles properties prediction6, 8, 10, 11, 34-43, we 

suggest that for successful description of properties or mechanisms 

it is beneficial to use a combination of descriptors which  reflect 50 

nanoparticles’ structure for  the different levels of organization: 

from single molecule to supramolecular ensemble of molecules.  

 Thus, to simplify the representation of possible interactions on 

the nano-level in the present work we have  utilized a “liquid drop” 

model (LDM)44.  This is a very first, innovative study that applies 55 

models developed in physics to describe interactions of 

nanomaterials with biological systems. The study opens a new way 

of inclusions of several vital characteristics of nanomaterials in 

general parameters that could be used to uncover complex 

phenomena of their effects on biomolecules. It is worth to note, that 60 

LDM is able to describe such important properties of nanoparticle 

as surface area, surface to volume ratio, etc. Also LDM-based 

descriptors are size-dependent, that allows applying them for the 

series of nanoparticles with same chemical composition, but 

different sizes. Therefore, we believe that the proposed approach 65 

could be of general use for predictions related to nanomaterials. 

 Besides of some specific interactions of nanoparticle’s surface 

with a target system several studies suggest that the mechanism of 

nanoparticles’ toxicity depends on release of ions from the surface6, 

16, 17, 45. Also Mathews46 proposed that ionic forms of metals are 70 

more active and explained this fact by the process of ion binding to 

biomolecules. In this connection Tatara47  attempted to obtain a 

QSAR model for toxicity of metal ions using several ion 

characteristics. In addition,  Newman48 demonstrated that this 

approach was suitable for toxicity prediction of the same species. 75 

Based on this, in the current work we have applied similar ion 

characteristics to reflect the ability of metal ions to interact with 

membranes. 

 In summary, in the present study the new approaches were 

applied to perform a comparative analysis of the QSAR models 80 

based on metal oxide nanoparticles’ cytotoxicity to bacteria 

Escherichia coli (prokaryotic cells) and HaCaT cells (eukaryotic 

cells). 

Materials and Methods 

Biological activity data 85 

 The toxicity data for nano-sized metal oxides against E.coli and 

HaCaT cells were analyzed and all original experimental data were 

taken from our previous publications6, 49. Datasets consist of 17 and 

18 metal oxide nanoparticles well characterized and then tested 

against E.coli and HaCaT cells, respectively. Originally measured 90 

in vitro effective concentration EC50 toxicity data (mol/L) were 

expressed as logarithm of the inverse molar concentration 

(log(1/EC50)) response variables. The structures, investigated 

toxicity values and sizes of individual nanoparticles and aggregation 

sizes are given in Table 1. 95 

Computational Details 

 The main idea of proposed here approach was to use a 

combination of simple descriptors which reflect nanoparticles’ 

structure for the different levels of organization: from single metal 

oxide molecule (i.e. chemical structure) to supramolecular ensemble 100 

of molecules (i.e. nanoparticle size). To characterize a single metal 

oxide structure at the 2D level a Simplex Representation of 

Molecular Structure (SiRMS)34 methodology was used. To simplify 

the representation of possible interactions at the nano-level without 
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quantum-chemical modeling the “liquid drop” model (LDM)44 was 

utilized. In addition, the properties of single metal cations were 

expressed using Metal-ligand binding (MLB) theory. When 

applying these steps, extensive quantum-mechanical calculations 

for relatively large (from computational pointer view) molecular 5 

clusters might be avoided. 

 

Simplex Representations of Molecular Structure 

 The SiRMS (Simplex Representation of Molecular Structure) 

approach was used to encode the first level of organization of 10 

investigated objects. In the framework of SiRMS, any molecule 

(chemical structure) can be represented as a system of different 

simplexes (fragments of fixed composition and topology)34.  This 

approach expands features of other methods of fragment 

representation, by providing ability to perform the differentiation of 15 

atoms in simplex not only by their type, but also based on the 

different characteristics of atoms (electronegativity, lipophilicity, 

van-der-Waals interactions, etc). 

 In the current study we utilized a 2D level of molecule’s 

representation to generate simplex fragments. Initially, a molecule 20 

was represented as a molecular graph. All vertices in graph that 

represent characteristic features of atom, for example type of atom, 

the connectivity of atoms in graph, and bond nature were 

considered. Then atoms in molecule were encoded on the basis of 

various physicochemical properties and subsequently the 25 

organization of values’ range into definite discrete groups was 

performed. In this study all values of atoms’ differentiation were 

clustered into groups corresponding to their electronegativity 

(A<1.5<B<2.0<C<2.5<D<3.5<F) and Lennard-Jones potential 

(A<0.01<B<0.02<C<0.4<D for depth of the potential well and 30 

A<2.5<B<3<C<3.5<D<4<F for distance at which potential reaches 

minimum). Example of differentiation is shown in Fig.1. 

 
Fig. 1 Example of TiO2 attribution based on SiRMS differentiation of by 

electronegativity 35 

Since the electronegativity value of Al2O3 is equal to 1.61 and 

electronegativity of O is 3.5, after differentiation applied based on 

the above rule the initial molecule Al2O3 can be represented as 

B2D3. 

 After differentiation step molecular graphs were fragmentized to 40 

combination of simplexes. As a regular procedure, SiRMS approach 

utilize molecular fragment size of 2 to 4 atoms, however taking into 

account that the objects of study are metal oxides, the shorter 

molecular fragments (1 to 3 atoms) were considered. Example of 

fragmentization is shown in Fig.2. 45 

 
Fig. 2 Example of fragmentization 

As a result, the net number of fragments (simplexes) of each type 

was used as a descriptor in model development. 

 50 

Liquid Drop Model 

 Innovative approach is proposed in our study. We have 

introduced a liquid drop model, LDM, in order to encode the 

nanoparticle clusters (aggregates) in a solution. In LDM, 

nanoparticle is represented as a spherical drop, where elementary 55 

particles (molecules) are densely packed and density of cluster is 

equal to mass density44. In this model the minimum radius of 

interactions between elementary particles in cluster is described by 

Wigner-Seitz radius50: 

 
3
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3
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 (1) 60 

where M - molecular weight,  ρ -  mass density, NA - Avogadro 

constant. 

 LDM assumes that the most probable nanoparticles’ shape is 

spherical (as well as shape of nanoparticles’ aggregates in water). 

Based on this assumption the method assumes that the number of 65 

molecules in nanocluster is equal to: 

 









=

r w

r
n

0

3

 (2) 

where r0 - nanoparticle’s radius; 

 The equation (2) shows that the smaller the particle, the higher 

the ratio of surface to volume is. In other words, decreasing size of 70 

a particle considerably increases its surface area. It distinguishes the 

nanoparticles’ surface molecules from the other molecules in 

volume. It means that interaction forces between molecules located 

inside of molecular volume are not compensated by interaction 

forces of the same molecules located on the surface, i.e. the 75 

molecules on the surface are in special circumstances (Fig. 3).  
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Fig. 3 Liquid drop model of a nanoparticle. Interaction forces between 

molecules located in the volume (white circles); interaction forces of the 

molecules located on the surface on the nanoparticle (red circles) 

Based on that, the ratio of surface molecules (F) to molecules in 5 

volume is supposed to be significant: 

 3
1

4
−

= nF  (3) 

As a result, more specific and more interpretative descriptor (SV) is 

proposed that describes the ratio of surface molecules to molecules 

in volume: 10 

 
F

F
SV

−
=








=

1in volume molecules

molecules surface
)(  (4) 

Aggregation of nanoparticles also plays an important role in 

estimation of their toxicity51. For example, small nanoparticles can 

localize in organelles in contrary to larger ones.  Aggregation 

parameter (AP) reflects ratio of particles in aggregate in comparing 15 

to size of single particle:  

 
particle single of size

aggregate of size
)( =AP  (5) 

Metal-Ligand Binding Characteristics 

 Metal-ligand binding (MLB) theory pre-assumes that binding of 

metals to soft ligands on biomolecules plays an important role in 20 

toxicity exhibition46. 

 In the current study two ion characteristics (MLB) were used to 

describe ability of metal ion’s affinity to biochemical ligands: 

covalent index (CI) and cation polarizing power (CPP). 

 (CI) reflects the relative importance of covalent interactions 25 

relative to ionic during metal-ligand binding37. For example, this 

includes interactions with protein-bonded sulfhydryl’s or depleting 

of glutathione. (CI) represents combination of the electronegativity 

( χ ) and Pauling radius ( r ): 

 rmCI χ2)( =  (6) 30 

(CPP) encodes the energy of metal ion during electrostatic 

interaction with a ligand and represents the combination of ion 

charge ( Z ) and Pauling radius ( r ): 

 rZCPP 2)( =  (7) 

Model development. Random Forests method 35 

 The relationships between measured toxicity and calculated 

descriptors were established with Random Forest (RF) regression 

method using the RandomForest package52. 

 RF is an ensemble classifier proposed by Breiman53. It constructs 

a series of decision trees which are used to classify a new sample. 40 

At the regression process the average of the individual tree 

predictions of all trees are combined to produce one final 

prediction. Every node in tree called “decision rule”. For example, a 

decision tree is shown in Fig. 4. 

 45 

Fig. 4 An example of decision tree 

 In this scheme calculated descriptors are presented as decision 

rules. After calculations, every important descriptor can be 

extracted from random forest and importance (significance) of 

every descriptor is calculated52. 50 

Results and discussions 

Model development 

 At the initial preparatory step, a number of descriptors were 

generated. Then, non-significant, constant descriptors and 

descriptors with high cross-correlation (r > 0.90) were eliminated 55 

(one of two descriptors with cross-correlation). In RF approach the 

model fitting is performed by separate trees which are then 

combined to a final consensus model. Within each tree the highly 

correlated descriptors are avoided. 

 The initial datasets were splitted into training and test sets. 60 

Values of toxicity for both test-systems were clusterized by their 

activity to three groups. The splitting of the dataset to training and 

test sets (for both HaCaT cells and E.coli sets) was the same for 

both cases and fulfill two conditions: 1) metal oxides from each 

activity group should be presented in both training and test sets; 2) 65 

metal oxides presented in test set should cover all types of oxides 

(MeO, Me2O3, MeO2), similarly to training set. The splitting of data 

to training and test sets is displayed in Table 1. 
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Table 1. Nanoparticle Size, Aggregation, and Toxicity data for both E.coli 

and HaCaT toxicity cases 

Metal oxide 

nanoparticle 

E. coli, 

log(1/EC50) 

HaCaT cells, 

log(1/LC50) 

Size,  

nm 

Aggregation 

size, nm 

Set 

Al2O3 2.49 1.85 44 372 training 

Bi2O3 2.82 2.5 90 2029 training 

CoO 3.51 2.83 100 257 test 

Cr2O3 2.51 2.3 60 617 training 

Fe2O3 2.29 2.05 32 298 training 

In2O3 2.81 2.92 30 224 training 

La2O3 2.87 2.87 46 673 training 

NiO 3.45 2.49 30 291 training 

Sb2O3 2.64 2.31 20 223 test 

SiO2 2.2 2.12 150 640 training 

SnO2 2.01 2.67 15 810 training 

TiO2 1.74 1.76 46 265 training 

V2O3 3.14 2.24 15 1307 training 

WO3 - 2.56 50 180 training 

Y2O3 2.87 2.21 38 1223 training 

ZnO 3.45 3.32 71 189 training 

ZrO2 2.15 2.02 47 661 test 

 

Then, QSAR tasks were processed using Random Forests 

regression (5 trees, 3 descriptors in each). The statistical fit of a 5 

QSAR model was assessed by correlation coefficient r2 and root-

mean-square error of prediction RMSE. The resultant models are 

characterized with adequate statistical parameters and do possess a 

good predicting ability. Table 2 summarizes statistical results for 

both endpoints. 10 

Table 2. Statistical characteristics of RF models 

 HaCaT cells E.coli 

r2 (training set) 0.96 0.93  

RMSE (training set) 0.10 0.13  

r2 (test set) 0.92 0.78  

RMSE (test set) 0.12 0.32  

 

Specifications of developed models (predicted values, standard 

deviation data, plots of experimentally determined versus predicted 

values) are presented in Supplementary information. 15 

Model interpretation and comparative analysis 

As a result of RF modeling we obtained 6 significant descriptors for 

HaCaT keratinocytes and 7 descriptors for E.coli. Absolute impacts 

for each rule are presented in %. Descriptors S1, rw, ρ  are the same 

for both models.  20 

 List of important descriptors to HaCaT cell cytotoxicity: 

S1 – unbonded two-atomic fragments [ ] [ ]MeMe ⋅⋅⋅⋅⋅ , which were 

encoded based on SiRMS-derived descriptors, describing 

distance where potential reaches minimum at van-der-Waals 

interactions (43%); 25 

rw – Wigner-Seitz radius of oxide’s molecule (24%); 

ρ – mass density (6 %); 

(CI) – covalent index of the metal ion (10%); 

S2 – SiRMS-derived number of oxygen’s atoms in a molecule, 

which was described by their electronegativity (15%); 30 

(AP) – aggregation parameter (2%). 

 

 List of important descriptors to E.coli cytotoxicity: 

S1 – unbonded two-atomic fragments [ ] [ ]MeMe ⋅⋅⋅⋅⋅ , which was 

encoded based on SiRMS-derived descriptors, encoding 35 

distance where potential reaches minimum at van-der-Waals 

interactions (7%); 

rw – Wigner-Seitz radius (22%); 

ρ – mass density (2%); 

(CPP) – cation polarizing power (30 %); 40 

S2 – SiRMS-derived electronegativity aligned [13] descriptor of 

oxides molecules – in a sense of the acid-base property of 

oxides. This parameter increases with a number of oxygens in 

molecule (3%); 

S3 – tri-atomic fragments [ ] [ ] [ ]MeOMe −− , which were encoded by 45 

SiRMS-derived descriptors, encoding electronegativity (29%); 

(SV) – proportion of surface molecules to molecules in volume 

(7%). 

 To generalize classification of developed models all descriptors 

were combined into four groups: metal-ligand binding 50 

characteristics, LDM-based descriptors, SiRMS-based 

electronegativity’s descriptors and SiRMS-based van-der-Waals 

interactions’ descriptors.  

 The relative contributions of various descriptors (in %) based on 

decision rules are presented in Figure 5 (HaCaT cells) and Figure 6 55 

(E.coli).  

 
Fig.5 Diagram of relative contribution (in %) of certain descriptors to 

toxicity (HaCaT cells) 

Let’s take a look at developed models closely. As it can be seen 60 

from Fig. 4 and Fig. 5, only contribution sizes of LDM-based 

descriptors (32% and 31%) are approximately equal in both cases. 

However, different contributions of other structural parameters in 

both cases suggest that nanoparticles show different mechanisms of 

toxicity towards HaCaT and E.coli.  65 

 It is important to note that the Wigner-Seitz radius for both 

models has close values: 24% for HaCaT cells and 22% for E.coli. 

Most probably, Wigner-Seitz radius can describe availability 

fraction of free molecules on the nanocluster’s surface, which 

actually could be responsible for cytotoxicity. 70 
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Fig. 6 Diagram of relative contribution (in %) of certain descriptors to 

toxicity (E.coli cells) 

 Both models involve a descriptor (ρ) that encodes a mass 

density, which is one of fundamental properties in LDM (6% for 

HaCaT cells and 2% for E.coli). In addition, the developed model 5 

for E.coli contains a descriptor (SV) which reflects a ratio of surface 

molecules to molecules in volume and has the contribution to the 

toxicity ca 7%. We assume that the difference between 

contributions of the mass density descriptors in both cells arises 

from varied interactions of nanoparticle surface with these cells. 10 

Also, we suppose, since HaCaT cells as eukaryotic cells (about 

100nm) are much larger than E.coli bacteria cells (about 2nm), the 

interaction surface is larger for HaCaT cell and therefore the 

contribution of these kinds of descriptors is higher for eukaryotic 

cells. 15 

 Several studies suggest that the mechanism of metal oxide 

nanoparticles’ toxicity depends on release of ions from the 

surface45. Nanoparticles are characterized by a large surface area 

and it correlates with a high number of reactive surface molecules. 

Larger number of surface molecules contributes to massive 20 

oxidizing capabilities54. Earlier, it was suggested that nanoparticles 

can produce oxidative stress by generation of O2
•− and •OH radicals, 

so-called reactive oxygen species (ROS): 

 O2 ⟶  O2
•− (8) 

 O2
•−+ H2O2 ⟶ •OH + OH− + O2 (9) 25 

Nevertheless the straight link between ROS levels and the induction 

of toxic effects for different cell types is not explicitly proven yet, 

but most of the studies support that hypothesis. 

In addition, size-dependent LDM-based descriptors may also 

indirectly describe another mechanism of toxicity. Since in some 30 

cases nanoparticles are smaller than cells or cellular organelles, it 

allows them to penetrate into these main biological systems, 

disrupting their normal function3,5,46. This mechanism links damage 

of organelles with size of nanoparticles. 

 According to values of LDM-based descriptors for E.coli case it 35 

is possible to assume that nanoparticles with larger values of 

Wigner-Seitz radius (smaller number of molecules present in 

general nanocluster’s volume) exhibit higher toxicity. 

 Van-der-Waals interactions (S1) have a high impact in model of 

toxicity to HaCaT cells (43%). In contrast to this, contribution of 40 

van-der-Waals interactions to E.coli toxicity is considerably smaller 

(7%). This parameter is responsible for the number of contacts 

(interactions) between the molecules on surface and those that  

leave the surface and possibly interacts later with a cell. Therefore, 

this can contribute to transport of molecule (or cation) to the media 45 

or periplasmatic space in the cells. Since eukaryotic cells are 

capable of internationalizing MOx nanoparticles much easier, the 

process of detachment from the surface may occur inside the cell. 

This mechanism is in agreement with the second mechanism of 

toxicity cased by nano metal oxides explained in our recent study49. 50 

The difference in contributions of vdW descriptor also could be 

explained by considerably large difference in cell sizes for both 

considered cell systems. It seems that larger number of unbounded 

metal oxide molecules interact per cell in case of eukaryotic cells, 

i.e. HaCaT cells. 55 

 Descriptors S2 are different in both models, but have high 

correlation. It means that there is a possibility to compare impacts 

of these descriptors. In case of HaCaT cells the value of this 

descriptor has relatively high impact (15%), comparing with E.coli 

(3%). As these descriptors are related to a number of oxygen’s 60 

atoms in a molecule, the smaller electronegativity impact is linked 

to higher toxicity. This parameter characterizes acid-base properties 

of oxides and increases with a number of oxygens in a molecule. 

Descriptor S3 also represents the electronegativity in case of E.coli 

toxicity and has high impact (29%). Thus, the contribution of whole 65 

electronegativity is about twice as large for E.coli (32%), 

comparing with HaCaT cells (15%). 

 Descriptors of MLB characteristics for the HaCaT cells and 

E.coli toxicity are different. Covalent index (10%) in a model of 

toxicity to HaCaT cells reflects the interaction with protein-bound 70 

sulfhydryl’s and depleting of glutathione37. Cation polarization 

power (30%) in a model of toxicity to E.coli reflects electrostatic 

interactions37 and also this comes in agreement with the prevailing 

impact of SiRMS descriptors, which reflects electronegativity.  

 The overall schematic representation of suggested mechanisms 75 

are showed in Figure 7 (for HaCaT cell) and in Figure 8 (for E.coli 

cell). 

 
Fig. 7 Schematic representation of the mechanism of metal oxide 

nanoparticle toxicity for HaCaT cell 80 

 
Fig. 8 Schematic representation of the mechanism of metal oxide 

nanoparticle toxicity for E.coli cell 

 

Conclusions 85 

 In the present study we combined the analysis of two different 

experimental toxicity data of metal oxide nanoparticles to E.coli 

cells and HaCaT cells. We have utilized a computational modeling 

methodology to build classification models for quick predictions 

and to find the difference in contributions of various properties to 90 
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each type of toxicity (E.coli or HaCaT). The developed nano-QSAR 

models were validated and reliably predict toxicity for all studied 

metal oxide nanoparticles. Based on the comparative analysis of 

properties’ contribution in both nano-QSAR models we have found 

that LDM-based descriptors have almost similar level of 5 

contributions to toxicity in both cases, while other parameters (van-

der-Waals interactions, electronegativity and metal-ligand binding 

characteristics) have different contribution levels. Thus, the 

developed nano-QSAR models reveal the differences in the 

mechanisms of toxicity of metal oxide nanoparticles to bacteria and 10 

a human keratinocyte cell line, which belong to prokaryotic and 

eukaryotic systems, respectively. 
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