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Here we proposed a new concept for the fabrication of a semipermeable enzymatic nanoreactor as an 
efficient modulator to reversibly switch the pH of the aqueous environment. We used amino 
functionalized expanded mesoporous silica nanoparticles (EMSN) as model nanocarrier to load enzymes. 
In order to protect enzymes from the interference of complicated environment, the polyelectrolyte 
multilayers (PEMs) were coated on the surface of EMSN through layer by layer (LbL) assembly. These 10 

PEMs could be served as semipermeable membrane, allowing small molecules diffusing in and out freely 
while trapping the enzymes in the nanoreactors. Compared with traditional electrochemical stimulation or 
optical control methods, our enzymatic regulation platform was easy to operate without complicated 
instruments. In addition, this system could cover a wide range of pH values and was convenient to 
regulate the pH values by simply controlling the concentrations of catalysts or reactants. Meanwhile, this 15 

strategy was general for other enzymes or other nanocarriers to achieve the reversible pH regulation for 
different purpose. The switched pH values could be implemented for the modulation of the 
conformational changes of nucleic acid and activation of the charge conversion in the drug delivery 
application.

1. Introduction 20 

pH values play an important role in physical activities of 
organisms or microorganisms.1,2 A variety of chemical and 
biological transformations are modulated by the pH of aqueous 
environment.3,4 For example, numerous bio-transformations, such 
as biocatalyzed transformations, the denaturation of proteins, or 25 

the conformational switches of DNA, are controlled by the 
surrounding pH.5-7 In addition to those transformations, some life 
activities must be implemented in a particular physiological pH 
environment.1 Once the surrounding pH is not competent, those 
life activities can not be carried out successfully. Due to the 30 

crucial influence in the life system, a great deal of interests has 
been focused on the functions of pH in the biological external                                                                                                                                      
environment. For instance, pH changes were used to control the 
conformational transformations of some molecules in the 
application of controlled drug release systems.8-11 Also, the pH-35 

responsive feature of fluorescent chromophores was applied to 
develop logic systems.12 To this end, efforts to control the pH 
changes of aqueous environment have been suggested.7,13-17 For 
example, by using a bis-aniline-cross-linked AuNP composite, 
Willner et al demonstrated an electrochemically stimulated pH 40 

switch in aqueous media.13 In addition, Liu’s group applied a 
light-induced hydroxide ion emitter to reversibly control the pH 
changes.17 Although promising, these approaches often suffered 
from some shortcomings, such as the requirement for precision 
instruments, relatively harsh reaction conditions and the small 45 

changes in pH values.14-16 Therefore, there is an urgent need to 
develop novel, smart and effective approaches to achieve pH 

regulation. 
Recently, owing to the advantages of convenient operation, 

short reaction period and tunability in catalytic activities, 50 

enzymes have attracted an explosion of interests.18-21 The diverse 
and numerous biocatalytic reactions can generate acids or alkalis, 
leading to the pH changes of the surroundings.22,23 For example, a 
biofuel cell was constructed recently by integrating enzymatic 
systems with pH-switchable oxygen electrode.24 However, those 55 

enzymatic reactions were always in unconfined environment and 
the enzymes often suffered the difficulties in recovering and 
recycling.18-24 A solution to this problem may be offered by the 
rapid development of nanoreactors. Nanoreactors, which 
miniaturize reaction containers to mimic natural reaction 60 

environment, hold great promise for improved chemical 
transformations by protecting catalysts against the interferences 
from external environment.25-27 Within the confined space 
provided by the container, reactions could implement with higher 
selectivity or less side reactions.27 Furthermore, with the 65 

assistance of nanoreactor, the encapsulated catalysts could 
achieve the recycling of enzymes without losing their activity. In 
the past decades, different approaches have been utilized to 
construct nanoreactors.28-33 For instance, Hest and coworkers 
made use of block-copolymer amphiphiles to construct the 70 

polymersome-based nanoreactors. By using this system, they 
demonstrated the positional assembly of enzymes and a three-step 
cascade reaction was successfully implemented.28 Inspired by 
these unique features, herein, we proposed a new concept for the 
fabrication of a semipermeable enzymatic nanoreactor as an 75 
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efficient modulator to reversibly switch the pH values of the 
aqueous environment. Compared with electrochemical or 
photochemical methods to control the pH, we showed that the pH 
can be altered over three units through enzymatic reactions. The 
switched pH values were implemented for the modulation of the 5 

conformational changes of nucleic acid and activation of the 
charge conversion in the drug delivery application. 

2. Experimental section 
2.1. Reagents and materials 

Tetraethylorthosilicate (TEOS), sodium hydroxide, 2,2-azinobis 10 

(3-ethylbenzothiozoline)-6-sulfonic acid (ABTS), 1,3,5-
trimethylbenzene and citraconic anhydride were purchased from 
Sigma-Aldrich. Glucose was obtained from Sinopharm Chemical 
Reagent Co. (Shanghai, China). Hydroxylamine, 3-
aminopropyltriethoxysilane (APTES), N-15 

cetyltrimethylammonium bromide (CTAB) and urea were 
obtained from Alfa Aesar. Glucose oxidase, horseradish 
peroxidase, and urease were purchased from Sangon 
Biotechnology Inc. (Shanghai, China). Chitosan (molecular 
weight = 5495.1, number-average molecular weight and Mw/Mn 20 

= 2.299) was obtained from Golden-shell Biochemical Co., LTD. 
The oligonucleotides used in this paper were synthesized by 
Sangon Biotechnology Inc. (Shanghai, China). All other reagents 
were of analytical reagent grade and used as received. Ultrapure 
water (18.2 MΩ; Millpore Co., USA) was used throughout the 25 

experiment. 

2.2. Synthesis of expanded mesoporous silica nanoparticles 
(EMSN) 

The MSN was first synthesized according to the literature with 
little modification. After that, added N-cetyltrimethylammonium 30 

bromide (CTAB, 0.50 g) to 240 mL of pure water. Sodium 
hydroxide (1.75 mL, 2 M) was dissolved in CTAB solution, 
followed by adjusting the solution temperature to 80 °C. TEOS 
(2.5 mL) was added by dropwise while continuously stirring. The 
mixture was allowed to stir for 3 h and white precipitates were 35 

obtained. The solid product was filtered, washed with deionized 
water and ethanol, and dried in air. EMSN was prepared 
according to a swelling agent incorporation method with a slight 
modification. Briefly, the as-synthesized MSN (0.50 g) were 
dispersed in ethanol (15 mL) and then sonicated for 30 min. After 40 

that, adding 30 mL of 1:1 mixture (v/v) of deionized water and 1, 
3, 5- trimethylbenzene to the above solution. The mixture was 
placed in the autoclave, and kept at 140 °C for 24 h. The white 
powder was washed with ethanol and deionized water, 
respectively. To remove the surfactant template (CTAB), the 45 

white product was refluxed for 16 h in a solution of 1.00 mL of 
HCl (37%) and 50 mL of ethanol. Then, the product was washed 
with deionized water and methanol, and dried under vacuum. 
Next, amine modification of the silica surface was performed by 
suspending EMSN (200 mg) in a solution of APTES (1 mmol) in 50 

dry toluene (20 mL) and heating them under reflux for 24 h. The 
obtained products were then collected by vacuum filtration, 
washed thoroughly with toluene, and dried under vacuum. 

2.3. Preparation of mesoporous silica-encapsulated enzymes 

EMSN-GOx: EMSN (8 mg) were dispersed in 4 mL 10 mM 55 

phosphate buffer by sonication for 5 min, followed by the 
addition of GOx (4 mg). The mixed solution was stirred at 4 °C 
for 24 h. After that, the solution was centrifuged at 4,368×g for 8 
minutes. The supernatant was used to determinate the loading 
efficiency of GOx while the solid in the bottom of the tube was 60 

washed twice with water. 
EMSN-Ur: The preparation of EMSN-Ur was similar to EMSN-
GOx. EMSN (8 mg) were dispersed in 4 mL 10 mM phosphate 
buffer by sonication for 5 min, followed by the addition of Ur (4 
mg). The mixed solution was stirred at 4 °C for 24 h. After that, 65 

the solution was centrifuged at 4,368×g for 8 minutes. The 
supernatant was used to determinate of the concentration of Ur 
loaded in EMSN while the solid in the bottom of the tube was 
washed twice with water.  
EMSN-GOx/Ur: EMSN (16 mg) were dispersed in 4 mL 10 mM 70 

phosphate buffer by sonication for 5 min, followed by the 
addition of Ur (4 mg) and GOx (4 mg). The mixed solution was 
stirred at 4 °C for 24 h. After that, the solution was centrifuged at 
4,368×g for 8 minutes. The solid in the bottom of the tube was 
washed twice with water. 75 

2.4. Preparation of PEM-EMSN-enzyme 

A (PDDA/PSS)3 film (six layers) was assembled by sequential 
dipping of the substrate into PDDA (1 mg/mL) and PSS (1 
mg/mL) aqueous solutions for 30 min each until the desired 
number of bilayers was obtained. Every dipping was followed by 80 

sufficient buffer rinsing. 

2.5. Glucose oxidation reaction and ABTS oxidation reaction 

The reaction product, gluconic acid, was assayed by reaction with 
hydroxylamine and subsequent complex with Fe3+, which led to a 
red complex with a major absorbance at 505 nm. In brief, 250 mL 85 

of solution 1 (5 mM EDTA and 0.15 mM triethylamine in water) 
and 25 mL of solution 2 (3 M NH2OH in water) were added to 
the catalytic reaction solution. After 25 min of incubation, 125 
mL of solution 3 (1 M HCl, 0.1 M FeCl3, and 0.25 M CCl3COOH 
in water) was added to the above aqueous solution, and the 90 

reaction was allowed to proceed for 5 min before spectral 
measurements. In experiments, the nanoparticles were 
centrifuged to prevent the influence of the absorbance of the 
nanoparticles to the colorimetric reaction. The other product, 
H2O2 was tested interrogated through the oxidation of ABTS in 95 

the presence of HRP. The oxidation product in 10 mM phosphate 
buffer (pH 7.4) produced a green color with major absorbance 
peaks at 417 nm. 

2.6. Urea hydrolyzation detection 

Ammonia, The product of urea hydrolysis, was detected by acid-100 

base indicators (methyl red and phenolphthalein). We also used 
acid-base titration to determinate of the concentration of 
ammonia. 

2.7. Preparation of citraconic anhydride conjugated chitosan 
(CS-Cit) 105 

Chitosan (CS, 0.4 mg) was dissolved in 0.5 M NaHCO3 buffer 
(pH 9.0, 25 mL). After that, the mixture was stirred at 4 °C for 30 
min, and then added with citraconic anhydride (Cit, 1.39 g) 
slowly. The pH of the above solution was kept at 9.0 by adding 
with NaOH (0.1 M). After stirring for 24 h, the above solution 110 
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the C:C+ base pairs. We also evaluated the opposite experiment as 
was demonstrated in Fig. 5B. In order to eliminate the 
interference of nanoparticles, all solutions were centrifuged 
before CD measurements. The above results confirmed that our 
enzyme-based system could regulate the structural switch of i-5 

motif DNA reversibly. As we have mentioned before, the 
conformational transformation of DNA has physiological 
significance and is widely applied in DNA-nanomachine design. 
Therefore, we hope our method will benefit the application of 
smart devices or materials, allowing the development of new 10 

strategies for constructing new types of responsive systems or 
biosensors in the future. 

 
Fig. 6 A) The preparation process of CS-Cit; B）The ζ potential of the 
EMSN (green) and EMSN/CS-Cit (blue); C) The ζ potential of 15 

EMSN/CS-Cit at 25 °C as a function of time at different pH values: pH 
4.5 (red) and pH 7.4 (black). 

Furthermore, many other pH-dependent chemical 
transformations could be also activated by our enzyme-based 
nanoreactor. Recently, some polymer nanoparticles which have 20 

specific property of charge reversal in reaction to external pH 
stimuli have attracted an explosion of interests.50,51 When the 
surrounding pH dropped from neutral to acid, their charge would 
have a negative-to-positive reversal. Taking advantage of this 
unique feature, this kind of charge-reversal nanoparticle holds 25 

great promise in drug delivery for cancer chemotherapy. As one 
of the charge reversal materials, citraconic anhydride (Cit) can 
easily react with chitosan (CS) to form amide (Fig. 6A).52 The 
efficient pH regulation ability of our enzyme-based nanoreactor 
promotes us to explore its potential in controlling the charge 30 

conversion ability of these special polymers. In our experiment, 
we used CS-Cit modified EMSN-NH2 as a model charge reversal 
nanoparticle to verify our hypothesis. CS-Cit was synthesized 
through our previous approach52 and then adsorbed on the surface 
of EMSN through electrostatic interaction. Accordingly, the 35 

charge reversal behavior of this nanomaterial was evaluated by 
measuring their ζ potentials. As was shown in Fig. 6B, EMSN 
was positively charged under neutral conditions. After modified 
with negatively charged CS-Cit, the ζ potential turned to be 
negative. This result indicated the successful adsorption of CS-40 

Cit on the surface of EMSN. We then monitored the time-
dependence of the ζ potential of EMSN/CS-Cit at different pH 
values (neutral and acid). To produce an acidic solution, we 
incubated 120 μg/mL PEM-EMSN-GOx nanoreactor with 1 mM 
glucose for 1 h and the final pH value dropped to around 4.5. As 45 

shown in Fig. 6C, due to the presence of COOH group, the CS-
Cit maintained a ζ potential of about -15 mV after incubation at 
pH 7.4 for 20 h. While at pH 4.5, they immediately became 
positively charged owing to the hydrolysis of Cit. After 20 h 
incubating, CS-Cit reached a ζ potential of about 16 mV. These 50 

findings demonstrated that the enzyme-based nanoreactor could 
successfully induce this polymer to convert their charge which 
may promote the development of nuclear drug delivery system. 

4. Conclusions 
In conclusion, our present work proposed a conceptually new 55 

approach of an efficient nanoreactor to achieve reversible pH 
regulation based on the enzymatic reactions. Compared with 
traditional methods, this nanoreactor had several outstanding 
advantages. First, the platform was simple to synthesize, easy to 
operate, and the enzyme-based nanoreactor could be used for 60 

long-term operating or repeated use. Second, our system could 
cover a wide range of pH values and control the pH changes more 
easily. Third, it was convenient to regulate the pH values by 
simply controlling the concentrations of catalysts or reactants. 
Meanwhile, this strategy was general for other enzymes or other 65 

nanocarriers to achieve the reversible pH regulation for different 
applications. More importantly, we have extended the use of our 
nanoreactor to reversibly modulate the conformational switches 
of i-motif DNA which may have potential applications in the 
construction of novel DNA nanodevices and biosensors. We also 70 

showed that our system could be utilized in activation of the 
charge conversion in the drug delivery application. We envision 
that our new findings may pave the way to construct novel 
nanoreactor with versatile functionalities, and will be highly 
beneficial for a wide range of applications including food 75 

technology, industrial production and environmental treatment. 
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