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We investigate the spin-dependent electric and thermoelectric properties 

of ferromagnetic zigzag α-graphyne nanoribbons (ZαGNRs) using the 

density-functional theory combined with the non-equilibrium Green’s 

function method. A giant magnetoresistance is obtained in the pristine 

even-width ZαGNRs and can be as high as 106 %. However, for the doped 

systems, a large magnetoresistance behavior may appear in the odd-width 

ZαGNRs rather than the even-width ones. This suggests that the 

magnetoresistance can be manipulated in a wide range by the dopants on 

edges of ZαGNRs. Another interesting phenomenon is that in the B- and 

N-doped even-width ZαGNRs the spin Seebeck coefficient is always 

larger than the charge Seebeck coefficient, and a pure-spin-current 

thermospin device can be achieved at specific temperatures. 

 

1. Introduction 

Page 1 of 22 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



2 
 

Graphene’s unique electron transport properties make it a promising material for 

nano-devices1-4, including the extraordinary high carrier mobility1,5, anomalous 

integer Quantum Hall Effect6, 7. It can be viewed as a zero gap semiconductor with a 

linear dispersion relation near the Dirac points1, 8. The charge carriers are described by 

a two-dimensional (2D) Dirac Hamiltonian without the spin degree of freedom 1 and 

behave like massless, relativistic fermions with a “speed of light” equal to the Fermi 

velocity. In addition, its hexagonal symmetric structure contains two equivalent 

sublattices and results in two equivalent Dirac points, K and K’, in the first Brillouin 

zone.  From the perspective of application, we need to open an energy gap. A 

feasible method is to pattern graphene to nanoribbons9. 

Top-down10 and bottom-up11, 12 techniques have been developed to fabricate 

graphene nanoribbons (GNRs) with different widths. Interesting device-orientated 

properties have been predicted or found in GNRs such as negative differential 

resistance10,13-15, current rectification12,16, giant magnetoresistance17,18, spin filtering19, 

and thermoelectric properties20. Specifically, the edge magnetism exists in zigzag 

GNRs (ZGNRs) though graphene is a nonmagnetic materials21 and their transversal 

geometry symmetry can play a key role in determining their transport properties22, 23. 

Employing doping and other modification techniques, we can easily manipulate the 

magnetic properties in ZGNRs and might make them important materials for 

spintronics. 

In the last few years, 2D carbon allotropes have attracted tremendous attention 

since 2D-graphdiyne, which consists of hexagons connected by linear carbon chains 

and shows similar energy bands as graphene, has been successfully synthetized by G. 

Li et al.24. 2D carbon allotropes and their stable structures were first predicted in 

198725. In the next year, Narita et al.26 optimized graphyne and graphdiyne structures 

and found that the linear carbon (C) chain is the acetylenic linkage (—C≡C—) rather 

than the ethylene-like one (=C=C=)26. Very recently, Enyashin et al.27 published the 

electronic properties of twelve different 2D carbon allotropes.  Malko et al.28 

presented a systematic comparison of the electronic structures of graphene, 

α-graphyne, shown in Fig. 1(a), β-graphyne, and γ-graphyne, and found the same 
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Dirac cones as in graphene. Moreover, they noticed that γ-graphyne has two 

self-doped nonequivalent distorted Dirac cones because of its non-hexagonal 

symmetry29. Lately, Ouyang et al.30 investigated the thermal transport in γ-graphyne 

ribbons and Yue et al.31, 32 reported properties of the electronic structure and transport 

in zigzag α-graphyne-based nanoribbons (ZαGNRs).  

Electron transport is the physics origin of many properties concerning the 

movement of electron charge and spin in materials under external electric and 

magnetic fields or around an environment with thermal gradient. Those properties 

have been widely used in device designing. For example, the electric properties like 

giant magnetoresistance is the physical mechanism behind the key technologies for 

many high-density storage devices33. And the thermoelectric properties such as the 

Seebeck effect can be used to convert thermal energy to electric energy or vice versa 

and produce spin current from thermal gradient34. Both the external-bias-induced 

electric properties and the temperature-difference-induced thermoelectric properties 

are determined by the low-energy electron excitations and are related to the 

conductance near the Fermi energy. Nevertheless, they reflect the excitations from 

different perspectives and have versatile applications. In the classical level, Mott 

relation reveals an inverse trend between the electric conductivity and the Seebeck 

coefficient. In the quantum level, however, this classical result may not hold35. It is 

necessary to study both properties of nano materials in a parallel manner where 

quantum effects dominate the electron transport. 

Recently, a giant magnetoresistance is predicted in monohydrogenated zigzag 

silicone nanoribbons36,37 of even-width, similar to the case in ZGNRs17,18. This is due 

to the sharp change of conductance near the Fermi energy in different magnetization 

configurations. Since the Seebeck coefficient is related not only to the magnitude but 

also to the slope of conductance spectra at the Fermi energy, it may reveal extra 

information. For example, a thermoelectric measurement has been used to explore the 

effect of chemical structure on the electronic structure and charge transport38. 

Furthermore, using a latest developed spin-detection technique, Uchida et al. have 

successfully measured a spin voltage in a metallic magnet subjected to a temperature 
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gradient34. This phenomenon, now called the spin Seebeck effect, provides an 

alternative method to achieving a pure spin current by using the temperature gradient 

in the absence of the electric fields. This pioneering experiment has inspired many 

theoretical and experimental studies on the spin thermoelectric effect in various 

systems39-45. Very recently, a perfect spin-filtering effect and large Seebeck effect was 

achieved in ZGNRs by a non-magnetic edge doping20.   

In this paper, we report a systematical study of the electric and thermoelectric 

properties in both pristine and edge-doped ZαGNRs in the ferromagnetic (FM) state. 

The geometric structure of a 2D α-graphyne is shown in Fig. 1(a) and a two-probe 

ZαGNR of width n (the number of zigzag chains therein), denoted as n-ZαGNR, is 

illustrated in Fig. 1(b). The black solid spheres are the C atoms and the small gray 

ones the hydrogen atoms that passivate their edge σ bonds. We show that an impurity 

atom (in orange) that replaces an edge C atom can make n-ZαGNRs, with n odd, 

materials of large magnetoresistance. In contrast, large magnetoresistance appears 

only in pristine n-ZαGNRs of even n. Furthermore, we predict that pure spin Seebeck 

effect (with zero charge Seebeck coefficient) can be observed in n-ZαGNRs of even n. 

In section 2 we present the transport model and some details of the calculations and in 

section 3 the results. A summary follows in section 4. 
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Fig. 1. (Color online) (a) Geometric structure of 2D α-graphyne; 1a
v

 and 

2a
v

 are basis vectors. (b) A two-probe ZαGNR system of width n, denoted 

as n-ZαGNR, is composed of the left and right leads and the central 

device region of size mn× . Here the width n is defined as the number of 

parallel zigzag C atom chains in the ribbon and the length m is defined by 

the number of unit cells in the central region. An impurity atom, in orange, 

replaces a C (in black) atom on the lower edge. The gray spheres are H 

atoms. (c) The atomic magnetic moments versus the atom index for atoms 

in a unit cell of a 4-ZαGNR as shown in the inset. The atom indices (from 

1 to 24) refer to the atom rows (from bottom to top in the inset) of the 

4-ZαGNR as guided by the dotted lines to the right. The arrows indicate 

the direction of the magnetization on the edges. The red (blue) bars are for 

spins up (down). (d) Electronic band structure and density of states (DOS) 

of spin up (solid curve) and spin down (dotted curve) electrons in the FM 

state with the Fermi energy at E=0. 

 

2. Model and method 

As shown in Fig. 1(a), the structure of α-graphyne is formed by inserting an 

acetylenic linkage (—C≡C—) into each C—C bond of graphene 25 and there exist sp2 

and sp orbital hybridizations. Similar to GNRs, the ZαGNRs and the armchair 

α-graphyne nanoribbons also have edges of zigzag and armchair forms, respectively. 
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To study electronic transport of an n-ZαGNR with the dangling edge σ bonds 

saturated by H atoms, as shown in Fig. 1 (b), we establish a two-probe system by 

partitioning the ZαGNR into three parts, the central region where an impurity atom 

may exist and the semi-infinite left and right electrodes. The size of the central region 

is n× m with length m the number of the unit cells along the longitudinal direction. 

There are two magnetization configurations for ferromagnetic electrodes: the 

magnetization directions of the two electrodes can be parallel (P) or anti-parallel (AP) 

to each other. Using the Atomistix ToolKits (ATK) package, we have at first 

optimized the structure geometry using the Newton method with a force tolerance of 

0.05 eV/Å and a trust radius of 0.5 Å. The following parameters are obtained: the 

lengths of the triple and single C−C bonds are 1.23Å and 1.40 Å, respectively; the 

C−H bond length is 1.10 Å, and the lattice constant 6.98 Å in agreement with Ref. 46. 

We choose m=5 corresponding to a central region of length 34.9Å, which is long 

enough to ensure that the left and right electrodes do not couple with each other and 

also are not affected by the impurity atom. 

Our calculations for the electronic structure and transport properties are carried 

out using the NanoAcademic Device Calculator (NanoDcal) package 47 based on the 

density functional theory (DFT) combined with the non-equilibrium Green’s function 

(NEGF) method. We employ an exchange-correlation functional in the local density 

approximation with the Perdew-Zunger (PZ) parameters 48, a real space cutoff energy 

of 400 Ry and a double-ζ polarization linear-combination-of-atomic orbital basis set 

for all atoms, and a k-point sampling of 1×1×100 grid in the 1D Brillouin zone. A 

vacuum layer 15Å wide is inserted between the edges and planes of the ZαGNRs in 

the supercell. 

The simulation procedure in NanoDcal is described briefly as follows: The 

electronic structure of the two electrodes is first calculated to get a self-consistent 

potential. This potential provides natural real space boundary conditions for the 

Kohn-Sham effective potential in the central scattering region. Then from the Green’s 

function of this region, we obtain the density matrix and thereby the electronic density. 

Once the latter is known, the DFT Hamiltonian matrix, which is used to evaluate the 
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Green’s function, is computed using the above boundary conditions. This procedure is 

iterated until the self-consistency is achieved. In the linear response regime, the total 

conductance of this system is obtained from the Landauer formula 49,50 

2( ) ( ) ( ) ( )TG G e hσ σ
σ σ

ε ε τ ε= =∑ ∑                                (1) 

with ( )Gσ ε  the conductance of spin σ (up ↑ or down ↓ ) and the corresponding spin 

polarization is defined by 

)()( ↓↑↓↑ +−= GGGGη .           (2) 

Here heG 2
0 =  is the conductance quantum and )(ετσ  the electronic transmission 

of spin σ  given by 

σσ εεεεετ )]()()()([)( a

R

r

L GGTr ΓΓ= .                          (3) 

The retarded (advanced) Green’s function of the central region, )()( εarG , is 

calculated from the Hamiltonian of this region and the self-energies of the electrodes. 

The broadening function, )()( εRLΓ , is evaluated by doubling the imaginary part of the 

self-energies of the left (right) electrode. The self-energies are computed recursively 

from the Hamiltonian of infinite electrodes, obtained from an initial bulk calculation 

of the electrodes 47,51,52.  

The tunneling magnetoresistance (MR) for the two-probe system with magnetic 

electrodes can be evaluated as 33 

−
=MR

Min{ , }

P AP

T T

P AP

T T

G G

G G
,                (4) 

where the linear conductance 
↑ ↓

= +P P P

TG G G  and 
↑ ↓

= +AP AP AP

TG G G  are the total 

ones at the Fermi energy in the P and AP magnetization configurations of the 

electrodes, respectively. 

 The spin-dependent electric current through the two-probe system is calculated 

by 

I [ ( , , ) ( , , )] ( )L L L R R R

F F

e
d f E T f E T

h
σ σ σ σ σ σε ε ε τ ε= −∫ ,      (5) 
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where Lfσ  and Rfσ  denote the Fermi-Dirac distribution function 

( , , ) 1/{1 exp[( ) / ]}F F Bf E T E k Tε ε= + − for spin σ in the left (L) and right (R) 

electrode, respectively. T is the electron temperature and FE the Fermi energy. From 

Eq. (5) we see that the spin current Iσ  can be manipulated by the temperature 

difference T∆ or a spin-dependent voltage bias Vσ∆  between the two electrodes. The 

spin-dependent Seebeck coefficient Sσ describes Vσ∆  generated by T∆  in an open 

circuit ( I 0σ = ). In the linear response regime, Sσ is given by 53-55 

1

0
0

( , )1
lim

( , )
F

T
F

V K E T
S

T eT K E T

σ σ
σ

σ
∆ →

∆
= − = −

∆
,              (6) 

where [ ]( )( , ) ( , , )
F F F

K E T d f E T E
ν

νσ σε ε ε ε τ ε= − ∂ ∂ −∫ （ ）with 0,  or 1ν = . At low 

temperature, Sσ reads approximately20 

2 2 ' ( )

3 ( )
FB

F

Ek T
S

e E

σ
σ

σ

τπ
τ

≈ − .                  (7) 

This expression shows that Sσ is related not only to the value of ）（ετσ  but also to its 

slope at the Fermi energy. The usual charge Seebeck coefficient is SC = (S↑ + S↓)/2 

whereas the spin Seebeck coefficient is defined as SS = (S↑ − S↓)/2.  The coefficient 

SS reflects the ability of the device to produce a spin current induced by a temperature 

gradient. 

3. Results and discussions 

A. Spin-dependent energy structure 

There are two spin states for ZαGNRs: the FM state and the antiferromagnetic 

(AFM) one. In the FM state, both edges are spin-up polarized as illustrated in the inset 

of Fig. 1(c) for the primitive cell of a 4-ZαGNR while in the AFM state the upper 

edge is spin-down polarized. The AFM state is the ground state with a lower total 

energy of 0.01eV per primitive cell in the absence of an external field. The FM state 

can be easily obtained with the help of an external magnetic field. The edge 
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magnetization originates mainly from the spin splitting of the edge states near the 

Fermi energy. In Fig. 1(c), we present the magnetic moment of each atom marked by 

the row number of the 4-ZαGNR in the FM state. The H atoms are polarized in the 

same direction as their edge and the magnetic moment of the C atoms changes sign 

alternatively and decreases oscillatorily with the distance from the edge. The atoms 

with even indexes are much less magnetized. The corresponding electronic band 

structure and the density of states (DOS) are plotted in Fig. 1(d) for spin up (solid 

curve) and spin down (dashed curve) electrons with the Fermi energy EF=0. The band 

structure is spin dependent and shows a metallic behavior. The π and π* bands of the 

edge states near wave vector point X have almost the same energy and may twist with 

each other for each spin. The energies of edge states for majority or up (minority or 

down) spin are 0.1 eV below (0.06 eV above) the Fermi energy. 

 

B. Conductance in the parallel configuration 

For a pristine FM n-ZαGNR with the two electrodes magnetized in the same 

direction, i.e., in the parallel (P) configurations, the conductance spectra can be 

directly derived from its band structure. In Fig. 2(a) we plot the spin dependent 

conductance σ
PG  for n=3, 4, 5, and 6 from top to down along one column. A wide 

conductance platform of value 0G  appears with a possible sharp peak above (below) 

the Fermi energy for spin-up (down). This corresponds to at least one transport 

channel for each spin and more channels in the energy range of the band twist as 

shown in Fig. 1(d) for n=4. 

When one edge atom C is replaced by a doping atom, conductance dips appear 

due to the Fano effect arising from the formation of impurity bound states. The 

positions of the dips in energy indicate the doping type determined by the electrons 

transferred from the impurity to host atoms. Sharp dips may also appear beside the 

peaks due to the twist of π and π* bands. In addition, the conductance becomes 

strongly spin dependent near the Fermi energy due to the breakdown of geometry 

symmetry in the system though it is only slightly spin polarized at the Fermi energy 
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for all the cases doped by elements of groups III and V (B and N). The spin-up (solid 

red line) and spin down (dotted blue line) conductance of edge-doped 3-, 4-, 5- and 

6-ZαGNRs in the P configuration is presented in Figs. 2 (b)-(c) for doping elements 

of groups III and V. As can be seen, a dip appears near 0.3 (-0.3) eV for B (N) 

corresponding to the n type donor (p type acceptor) doping and the dip width narrows 

as n increases. The electron transfer analysis indicates that the B (N) atom donates 

(accepts) electrons to (from) the host C atoms. This transition phenomenon of doping 

type on edge is similar to that in zigzag graphene and silicene nanoribbons 36,56. 
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Fig. 2. (Color online) Spin dependent conductance PGσ  in the P 

configuration. The panels in the 1-4 rows are for 3-, 4-, 5-, 6-ZαGNRs, 

respectively and those in the three columns from left to right are for 

pristine, B-, and N-doped ZαGNRs, respectively. The solid red (dotted 

blue) line represents the spin up (down). 

 

C. Conductance in the anti-parallel configuration 

In the anti-parallel (AP) magnetization configuration of the two electrodes, the 

conductance APGσ shows a strong dependence on the parity of ZαGNRs. In Figs. 

3(a)-(c) we present the spin-dependent conductance spectra of n-ZαGNRs with 

different width n. For odd width pristine n-ZαGNRs, the conductance spectrum has a 

plateau without gap at EF. In contrast, for even width pristine n-ZαGNR, a gap of 
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0.15 eV emerges at EF. This result suggests that odd width pristine ZαGNRs behave 

like metal while even width pristine ZαGNRs show semiconductor characteristics in 

the AP configuration. As a result, giant magnetoresistance appear in even-width 

ZαGNRs similar to that observed in pristine graphene 17 and silicene 37 nanoribbons. 
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Fig. 3. (Color online) (a)-(c) Spin-dependent conductance APGσ  in the AP 

configuration. The panels in the 1-4 rows are for 3-, 4-, 5-, 6-ZαGNRs, 

respectively and those in the columns (a)-(c) from left to right are for 

pristine, B-, and N-doped ZαGNRs, respectively. The curves are marked 
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as in Fig. 2. (d)-(g) Band structures of the left (L) and the right (R) 

electrode for FM 3-, 4-, 5- and 6-ZαGNR, respectively, in the AP 

configuration. The arrows (crossed arrows) indicate the allowed 

(forbidden) tunneling processes near the Fermi energy. The corresponding 

wave functions, with phases marked by colors, of π and π* subbands at 

the Fermi energy are plotted beside. The horizontal black dash-dotted 

lines denote the mirror plane.  

 

We note that n-ZαGNRs have similar band structures for even and odd n and 

there is no energy gap near EF. The even-odd effect on transport does not originate 

from the difference of the band structures but result from wave function mismatch. In 

Fig. 3(d) and (f) we present the band structures in the left and right electrodes and a 

top view of the wave functions of bands π and π*, at the Fermi energy, for 3- and 

5-ZαGNRs. Both the π and π* states do not show any specific symmetry. There is no 

symmetry restriction at the Fermi energy for spin up (down) electrons in the π* (π) 

state of the left electrode to transport into the π (π*) state of the right electrode in the 

AP configuration, as indicated by the arrows. On the contrary, as shown in Fig. 3(e) 

and (g), for 4- and 6-ZαGNR, the π (π*) states of both spins are antisymmetric 

(symmetric) with respect to the central axis (dash dotted line) due to the transversal 

geometry symmetry of even-width ZαGNRs. For each spin, the π state in one 

electrode is orthogonal to the π* states in the other electrode and electrons at EF 

cannot tunnel between the two electrodes as indicated by the crossed arrows. This 

mismatch of the wave functions between π and π* bands results in the conductance 

gap near EF in even-width pristine ZαGNRs. 

In an even-width edge doped ZαGNR, the impurity bound states can couple the 

π states in one electrode with the π* states in the other electrode and then can close up 

the conductance gap at EF in the AP configuration as shown in Figs. 3(b)-(c). In 

addition, the conductance becomes spin dependent with a spin-up peak below EF and 

a spin-down one above EF. In general, increasing the width of the ZαGNRs makes the 

spin conductance peaks shift towards or away from EF. Surprisingly, a dip appears in 
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the conductance of odd-width ZαGNRs edge doped by the elements of groups III and 

V as shown in panels of the first- and third-rows of Fig. 3(b)-(c). Furthermore, the 

conductance of doped odd-width ZαGNRs appears almost spin degenerate. The 

common feature in doped ZαGNRs of both even and odd width is that conductance 

dips appear at energies of the impurity bound states due to the Fano effect, similar to 

the cases in the P configuration (see Fig. 2). In Fig. 3, we observe a conductance dip 

near 0.3eV (-0.3eV) in each B (N)-doped ZαGNR. 

D. Tunneling Magnetoresistance 

As discussed above, the conductance may vary greatly between P and AP 

configurations because the electrons of opposite spins near the Fermi energy are in 

states of π and π* bands, respectively. In transversally symmetric even-width pristine 

ZαGNRs, the π and π* states have different symmetries. Strong even-odd 

characteristics on the MR should be observed. In table 1, we present the linear 

conductance and the corresponding MR of pristine and doped n-ZαGNRs for odd n = 

3, 5 and even n = 4, 6 in the AP and P configurations. It is seen that the MR values in 

pristine 4- and 6-ZαGNRs are in the order of 106 % in contrast to the values of order 

10 % or less in pristine 3- and 5-ZαGNRs. This result is similar to that in graphene 

and silicene nanoribbons 17, 32, 36,37,57. Interestingly, when ZαGNRs are edge doped by 

Ⅲ and Ⅴ group atoms, the situation reverses: the MR in 4- and 6-ZαGNR decreases 

by at least five orders of magnitude (105) while that in 3- and 5-ZαGNRs increases by 

three-to-four orders of magnitude (103−104). Furthermore, the absolute value of the 

MR increase (decreases) with the width in odd-width (even-width) ZαGNRs. This 

even-odd effect corresponds to the disappearance of the conductance gap in doped 

even-width ZαGNRs and the appearance of the conductance dip in odd-width 

ZαGNRs at the Fermi energy in the AP configuration as shown in Fig. 3. All these 

phenomena suggest that the transversal symmetry of ZαGNR plays a vital role in 

determining the electronic and magnetic properties. 

 

Table1. Magnetoresistance (MR) in the pristine and doped 3-, 4-, 5- and 6-ZαGNR. 
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 3-ZαGNR 4-ZαGNR 

Dopant G
P
 (µS) GAP (µS) MR(%) G

P
 (µS) GAP (µS) MR(%) 

pristine 77.3 77.1 0.2 77.2 1.8×10-3 4.4×106 

B-doped 47.1 9.8×10-1 4.7×103 56.5 65.1 -15 

N-doped 48.9 2.5 1.9×103 58.5 67.1 -15 

 5-ZαGNR 6-ZαGNR 

Dopant G
P
 (µS) GAP (µS) MR(%) G

P
 (µS) GAP (µS) MR(%) 

pristine 77.3 69.6 11 77.3 2.6×10-3 2.9×106 

B-doped 61.9 6.0×10-1 1.0×104 65.9 63.5 4 

N-doped 63.5 8.1×10-1 7.7×103 67.2 65.2 3 

 

To understand how the doping atom affects the electronic structure and the 

observed transport properties, we present the spin-dependent projected density of 

states (PDOS) of the atom at the doping site on the lower edge of the central region. 

For pristine systems in the P configuration as shown in Fig. 4(a), the spin-up 

(spin-down) PDOS of the C atom peaks near E=−0.1 eV (0.06 eV), the energy of the 

edge states (see Fig. 1(d)). When a B (N) atom replaces a C atom, the PDOS peaks of 

both spins shift to the same energy of the impurity bound states E=0.3 (−0.3) eV. The 

PDOS curves have similar profiles and the spin polarization on the doping site is 

suppressed. The interaction between the extended edge states and the bound impurity 

states leads to the Fano conductance dip at E=0.3 (−0.3) eV as illustrated in Fig. 

2(b)-(c). In addition, the PDOS curves of edge C atoms on the neighbor sites show 

mixed features of the C atom in pristine systems and the B (N) atom in doped system 

on the doping site. 
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Fig. 4. (Color online) PDOS of the C, B, and N atom at the doping site in 

pristine, B-doped and N-doped ZαGNRs, respectively, is plotted in the (a) 

P and (b) AP configurations. Positive (negative) values of PDOS are for 

the spin up (down). (c) The scattering states at EF for electrons incident 

from the left electrode in pristine, B-doped, and N-doped 3- and 

4-ZαGNRs in the P configuration. (d) The same as in (c) for the AP 
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configuration. The color bar represents the amplitude, in unit of Å3/2, of 

the scattering states normalized to the unit current in the electrodes. 

 

In the AP configuration, the left electrode is spin-up polarized and the right one 

is spin-down polarized. The majority spin in the central region varies gradually from 

spin-up on the left side to spin-down on the right side. In the studied case as shown in 

Fig. 1(b), the doping site is closer to the left electrode than to the right one. The C 

atom on this site in pristine ZαGNRs is slightly spin-up polarized. The spin-down 

PDOS peak has a higher energy than the spin-up one and the difference between them 

increases with the width n as depicted in Fig. 4(b). When the C atom is substituted by 

a B (N) atom the PDOS peaks shift to E = 0.3 eV (E=-0.3eV) and have almost the 

same profile as those in the P configuration. 

In Fig. 4(c), we show the scattering states at EF incident from the left electrode in 

the P configuration for n-ZαGNRs of odd (n=3) and even (n=4) widths. In pristine 

systems, the wave functions are extended along the ribbon and confined on the two 

edges state. When the C atom on the doping site is replaced by a B (N) atom, the 

wave functions are weakened on the doped edge after scattered by the impurity. 

Nevertheless, the wavefunctions extend to the right electrode and contribute to the 

transport. As a result, the linear conductance is only slightly affected in the P 

configuration as shown in Fig.2.  

The scattering states at EF in the AP configuration are presented in Fig. 4(d). In 

odd-width pristine 3-ZαGNRs, the wave function extends all the way from the left to 

the right electrode and is more strongly confined to the edges when passing through 

the non-magnetized area in the middle of the central region. The conductance of each 

spin is close to the conductance quantum as illustrated in Fig. 3(a). In contrast, in 

even-width pristine 4-ZαGNRs, the wavefunction of each spin penetrates through the 

central region and then vanishes gradually in the right electrode. It is observed that the 

spin-down wave function decays faster than the spin-up one. When the C atom on the 

doping site is substituted by a B (N) atom, the wavefunctions behave oppositely for 

even and odd width number n as shown in the right panels of Fig. 4(d). In 3-ZαGNRs, 
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the impurity blocks the extension of the states and the wave functions decay after 

passing the impurity which results in the conductance dip at EF as shown in Fig. 

3(b)-(c). In 4-ZαGNRs, however, the impurity breaks the transversal symmetry of the 

system and the wave function becomes transversally asymmetric. Interestingly, the 

wave functions of both spins can go around the impurity and extend to the right 

electrode though they behave in different ways. The linear conductance in this case 

can be close to the conductance quantum as shown in Fig. 3(b)-(c). 

 

E．．．．Spin thermoelectric effects 

In Fig. 5(a)-(f) we plot Sσ on the left column and the absolute value of SC and SS 

in the right column, as functions of the temperature, for pristine and edge-doped 

n-ZαGNRs (n=3, 4, 5, and 6) in the P and AP configurations. We plot the absolute 

values of SC and SS to better compare their magnitude and indicate their zeros, the 

values at which a pure spin or charge current is produced by the temperature gradient. 

Sσ  is linear in temperature at low T and become strongly nonlinear as T increases58. 

For pristine ZαGNRs in the P configuration, the conductance is equal to 0G  near EF. 

The coefficient Sσ  is quite small, due to ' 0στ ≈ , and SS ≈  SC as shown in Fig. 

5(a). In doped cases the Seebeck coefficients are greatly enhanced for narrow 

nanoribbons (n = 3 and 4) at high temperature due to the Fano conductance dips at 

E=±0.3eV. In particular, for the N-doped 5-ZαGNR and 6-ZαGNR, S
↑

is negative 

and S↓  positive in a wider temperature region, as shown in Fig. 5(c). As a result, we 

note that the maximum of SS is more than 10 times larger than that of the SC below 

room temperature. SC become zero at T=86 and 301 K for N-doped 6-ZαGNR (see 

the last panel of Fig. 5(c)), while SS has a finite value.  

In the AP configuration, the transversal symmetry plays an important role in 

determining the conductance of the ribbons. For pristine odd-width n-ZαGNRs (n=3 

and 5), as shown in Fig. 5(d), the conductance is a constant in a large range of energy 

and the Seebeck coefficient is negligible up to room temperature. For pristine 

Page 17 of 22 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



18 
 

even-width ZαGNRs, there is a conductance gap near the Fermi energy and the 

Seebeck coefficients are greatly enhanced. However, the systems are spin degenerate 

and the spin Seebeck coefficient is near zero.  

The doping can bring some interesting results as illustrated in Fig. 5(e) for 

B-doped and in Fig. 5(f) for N-doped ZαGNRs. At low temperature, the magnitude of 

the Seebeck coefficients increases linearly as described by Eq.(7) and SS is always 

positive. The sign of Sσ and SC, however, shows a strong even-odd effect. In 

odd-width n-ZαGNR (n = 3, 5), S↑ and S↓ have the same sign and they are positive in 

B-doped systems while negative in N-doped systems. In even-width n-ZαGNR (n=4, 

6), on the contrary, S↑ and S↓ have opposite signs and SC is negative in B-doped 

systems while positive in N-doped systems.  

At high temperature the Seebeck coefficients become nonlinear versus the 

temperature. In odd-width n-ZαGNR (n=3, 5), SS changes sign and a pure charge 

Seebeck effect (SS=0) occurs below temperature T=100K. In addition, usually we 

have |SS|<|SC| except in the temperature region [136, 236] K and [151, 371] K for 

B-doped 3- and 5-ZαGNR, respectively, as indicated in Fig.5(e). In even-width 

n-ZαGNR (n=4, 6), we have always |SS|>|SC| because S↑ and S↓ have opposite signs. 

This suggests that the edge-doped, even-width ZαGNRs are ideal materials for 

realizing high-spin-polarization current by using a temperature gradient. More 

interestingly, we observe that |SC| can reach to zero at T=266 K and 216K in the 

N-doped 4- and 6-ZαGNR, respectively. This suggest that the N-doped even-width 

ZαGNRs can be used as the pure spin current generator by a temperature gradient and 

might be valuable to thermo-spintronics. 
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Fig. 5 (Color online) Spin-dependent (Sσ) Seebeck coefficients (left column) 

and the absolute value of charge (|SC|), and spin (|SS|) Seebeck coefficients 

(right column), as functions of temperature T in (a) pristine, (b) B-doped, and 

(c) N-doped n-ZαGNRs. The left and right panels are for the P and AP 

configuration, respectively. 

The even-odd effect on the Seebeck coefficients observed in doped ZαGNRs has 

similar origin as the effect on the magnetoresistance. The strong spin Seebeck effect 

in doped even-width ZαGNRs with AP configuration can be understood from the 

conductance spectra shown in Fig. 3(b)-(c). There is a spin-up (spin-down) 

conductance peak just below (above) the Fermi energy which results in sharp but 

opposite slopes of the conductance spectra at the Fermi energy for opposite spins. 

From Eq. (7) we then have positive S↑ and negative S↓ and |SS|>|SC|. 

 

4. Summary 

We studied transport properties of pristine and edge-doped ferromagnetic 

ZαGNRs in the parallel and antiparallel electrode configurations, using the density 
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functional theory combined with the non-equilibrium Green’s function method. We 

found that pristine ZαGNRs exhibit strong width-dependent transport characteristics 

in the antiparallel configuration. This feature originates from the different wave 

function symmetries of electrons near the Fermi level between odd- and even-width 

ZαGNRs. In edge-doped, even-width ZαGNRs the dopant breaks the symmetry of the 

system and the linear conductance recovers to almost G0= e2/h for both spins. On the 

contrary, in edge-doped, odd-width ZαGNRs the dopant blocks electronic transport 

via the edge states, the conductance decreases to almost zero. The swap of linear 

conductances between odd- and even-width ZαGNRs after being edge doped leads to 

the drastic change of the corresponding magnetoresistance by several orders of 

magnitude. This results can be very useful in manipulating magnetoresistance in 

devices. 

In addition, due to the same mechanism, we found that the thermoelectric 

properties also show a strong odd-even effect in the antiparallel configuration. For 

doped even-width ZαGNRs, the magnitude of the charge Seebeck coefficient is much 

smaller than that of the spin Seebeck one below room temperature and can even 

become zero at specific temperatures. This suggests that edge-doped ZαGNRs can be 

used to make thermospin devices which create pure spin current upon applying 

temperature gradients. 
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