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Using reactive molecular dynamics simulations, the melting behavior of nickel-carbon nanoclusters is examined. The phase
diagrams of icosahedral and Wulff polyhedron clusters are determined using both the Lindemann index and the potential energy.
Formulae are derived for calculating the equilibrium constants and the solid and liquid fractions during a phase transition,
allowing a more rational determination of the melting temperature with respect to the arbitrary Lindemann value. These results
give more insight into the properties of nickel-carbon nanoclusters in general and can specifically be very useful for a better
understanding of the synthesis of carbon nanotubes using the catalytic chemical vapor deposition method.

1 Introduction

Carbon nanotubes (CNTs) are envisaged for a wide variety
of applications, including electronics, material science, med-
ical applications and more1. A lot of research is therefore
conducted in search of an effective synthesis method for car-
bon nanotubes that is also able to control the properties of the
tubes produced. One of the most often used synthesis methods
is the catalytic chemical vapor deposition (CCVD) method.
Here, a hydrocarbon source gas is catalytically decomposed
on the surface of a nanoparticle, allowing the carbon atoms to
dissolve in the nanocluster. Upon supersaturation, the carbon
atoms segregate to the surface where they bind to each other
and eventually grow into a solid nanotube. It is believed that
this growth mechanism is strongly dependent on the physi-
cal state of the cluster. Due to the Gibbs-Thomson effect2–4,
nanoclusters melt at lower temperatures than their bulk coun-
terparts. At the temperatures used in CCVD, typically in the
order of 1000K, the cluster may thus be liquid, semi-liquid,
or solid, depending on the exact catalyst material, shape and
size. Clearly, a good understanding of the melting behavior of
the nanocluster is essential.

The melting behavior can be examined through various
methods, including calculating the average potential energy of
the cluster and the interatomic distances during a number of
MD steps, or by calculating some order parameter, like for in-
stance the Lindemann index3,5–7. Since in liquids, atoms can
move further from their equilibrium positions than in solids,
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their average potential energy will be higher. The melting be-
havior of a system can thus be derived from a plot of the po-
tential energy as a function of temperature.

The Lindemann index is defined as:

δ =
2

N(N−1) ∑
i< j

√
< r2

i j >−< ri j >2

< ri j >
(1)

where N is the number of atoms, and ri j is the interatomic
distance between atoms i and j. Since atoms in liquids can
move more freely than in solids, the Lindemann index typi-
cally has low values for solids and higher values for liquids.
The temperature at which the Lindemann index has a sudden
increase, can thus be called the melting point. The Lindemann
index for bulk materials will therefore look like the step func-
tion, with the discontinuity at the melting point. It is actually
not exactly a step function, since the Lindemann index is also
a function of temperature (increasing temperature will cause
lattice expansion and an increase in atomic motion) and so
the horizontal lines will actually have a slope slightly higher
than zero. The Lindemann index for nanoclusters does not
show this discontinuity, it rather shows a temperature interval
where the index will gradually increase. The Lindemann in-
dex has, inter alia, been applied to a variety of nanoclusters,
including nickel6,7, iron3,5,8, silicon9 and molybdenum10. At
the macroscopic scale, fcc nickel has a melting temperature
of 1724K6, while at the nanoscale melting occurs at signifi-
cantly lower temperatures. For a bulk system the number of
atoms at the surface is negligible compared to the total num-
ber of atoms, while for nanostructures the number of atoms
at the surface is of the same order of magnitude as the total
number of atoms. Therefore, also the surface energy has to be
taken into account. This affects the thermodynamical proper-
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ties of the system and these effects are generally referred to
as the Gibbs-Thomson phenomenon2–4. Also, when carbon
atoms are dissolved in the cluster it partially breaks the crystal
lattice, thus lowering the melting point even more11,12.

As mentioned above, nanoclusters have a melting interval
rather than a melting point. In this interval the cluster can
be found in either a liquid or a solid state. More specifically,
at a fixed temperature within the melting interval, the smaller
nanoclusters show phase fluctuations in time3,6,8. These fluc-
tuations may easily take more than a few nanoseconds mak-
ing traditional MD simulations of this process practically im-
possible. In order to deal with this problem, we here com-
bine MD simulations with force bias Monte Carlo simula-
tions13–15, which allows a much faster sampling of configu-
ration space.

Fig. 1 Crystal structures of nickel: (a) a bulk fcc lattice; (b) an
icosahedral cluster (147 atoms), and (c) a Wulff polyhedron (201
atoms)

Bulk nickel, in its most stable form, has an fcc lattice, with a
lattice parameter of 3.52Å16,17. At the nanoscale, nickel clus-
ters appear with different geometries depending on their num-
ber of atoms. Two often observed geometries are the icosa-
hedron and the Wulff polyhedron, shown in Fig. 1. In this
contribution, we calculate the phase diagrams for the smallest
clusters of these two (often occurring) geometries.

The bulk Ni/C phase diagram is shown in Fig. 218. The dif-
ferent regions in this diagram represent the equilibrium states
of a nickel-carbon cluster as a function of concentration and
temperature. For example, at 2000 ◦C, a system with 50%
carbon is not stable and will decompose into a liquid state
with a carbon concentration of about 30% and a state of pure
graphite. At about 1327 ◦C one observes the eutectic line. A
system on this line, will decompose into a triple-state system
(a solid state consisting of nickel and carbon, a solid state of
pure graphite and a liquid state of nickel and carbon). The
concentration of this liquid state determines the eutectic point.
At the nanoscale, the phase diagram depends both on the clus-
ter size and the geometry of the cluster. The melting interval
in a phase diagram of a bulk structure denotes the existence of
a double-state system. In this case, melting intervals for nan-
oclusters should be interpreted differently. Because of their
small sizes, fluctuations in a small part of the cluster will im-

Fig. 2 Phase diagram of a nickel-carbon system at the macroscale

mediately affect the rest of the cluster. This makes it impos-
sible for a cluster to have both a liquid and a solid part at the
same time. Therefore, the notion of a double-state system in
the classical way, has no meaning at the nanoscale. The phys-
ical state of the cluster might change as a function of time, so
that we could say that there is a double-state system in time,
instead of in space. We here propose that in order to denote
how long a nanocluster is in the solid or liquid state, one can
make use of an equilibrium constant K, where:

K =
time in liquid state
time in solid state

(2)

Ideally, this value is zero for temperatures well beneath the
melting interval (i.e., the cluster is always solid) and infinite
at values well above the melting interval (i.e., the cluster is al-
ways liquid, ignoring the liquid-gas phase transition). Within
the melting interval, K will increase with increasing tempera-
ture.

2 Simulation Setup

To perform the calculations we made use of molecular dy-
namics and Monte Carlo simulations which let the nanoclus-
ters evolve through the configuration space. During the var-
ious steps in these simulations several instantaneous values
are calculated, like the distances between the atoms in the
cluster, the potential energy and the kinetic energy. Subse-
quently, these values can be used to calculate time average
quantities and order parameters, like the Lindemann index,
to describe the properties of the observed nanoclusters. The
actual calculations consist of an equilibration stage, followed
by a stage calculating the Lindemann index and the potential
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energy. The equilibration part is used to let the nanocluster
evolve towards a stable configuration before the actual calcu-
lations begin. This is done by alternating between MD and
fbMC simulations. The fbMC steps guide the atoms of the
nickel-carbon cluster towards stable positions in configuration
space, while the MD steps are used to equilibrate the temper-
ature of the cluster. For the different nickel-carbon clusters,
we used an icosahedral or Wulff polyhedron starting lattice
for the nickel atoms. If at a certain temperature or carbon con-
centration a different configuration, like e.g. a decahedron,
is more stable, the fbMC steps will guide the cluster to this
configuration. In the actual calculation stage, the nanoclus-
ters are followed for 2.106 MD steps with a time step of 0.25
fs, again regularly alternated with fbMC steps. After every
fbMC cycle the velocities are re-equilibrated during 2000 MD
steps before calculating the interatomic distances as well as
the potential energy of the cluster. Subsequently a new fbMC
cycle starts. To control the temperature throughout the calcu-
lations we made use of the Bussi thermostat, generating the
canonical ensemble19. Energies and forces on the atoms are
calculated using the ReaxFF potential20. ReaxFF is an em-
pirical force field where the link between the energy and the
geometry of the cluster is given by a superposition of different
energy contributions12,16, which are constructed such that not
only covalent bonding can be described, but also Coulomb and
van der Waals interactions, which allows to take into account
interactions at longer distances12. The ReaxFF parameters for
Ni/C were developped by fitting against a large body of quan-
tum mechanical (QM) data. The Ni-Ni parameters were fitted
against QM heats of formation for nickel at various densities
in fcc, bcc, a15, simple cubic, and diamond crystal structures
as calculated with QM. C/Ni (as well as H/Ni) parameters
were fitted against QM binding energies for hydrocarbons at
nickel surface, subsurface, and bulk sites, as well as against
QM heats of formation for Ni3C, Ni2C, and the B1, B2, B3,
and B4 phases of NiC. This extensive fitting data set, together
with the force fields ability to reproduce properties relevant to
the Ni/C system that were not included in the fitting database,
demonstrates the applicability of Reax to the studied system.
Chemical bonds can be formed and broken in this force field,
making it possible for the atoms to leave their equilibrium lat-
tice positions. A more exact description of the different terms
are explained in the references, and the references therein16,20.

3 Results and discussion

An example of a calculated Lindemann index curve and a po-
tential energy curve using the methodology described above is
shown in Fig. 3. From these curves, the lower and upper limit
of the melting interval are deduced (see below) and drawn in
the phase diagrams.

In Fig. 4, we show the phase diagrams for the nickel-carbon

Fig. 3 Calculated Lindemann index and potential energy curve of
the icosahedral Ni55 nanocluster

system for the 4 smallest icosahedral clusters and the 4 small-
est Wulff polyhedrons. We note the presence of a melting
interval with a magnitude ranging roughly from 50 to 500
K, depending on the size of the cluster, the geometry of the
cluster and the carbon concentration. Specifically, the melt-
ing interval increases with increasing carbon concentration, is
somewhat larger for the Wulff clusters, and decreases with in-
creasing cluster size. For the bulk diagram a eutectic point
exists around a carbon concentration of about 10%, denoting
a concentration (different from 0% and 100%) where the sys-
tem does not have a melting interval but a melting point. The
nanoclusters, on the other hand, show a melting interval for
all carbon concentrations examined. When looking at the up-
per bound of the melting interval, we see that, starting from
the pure Ni-cluster, the temperature decreases with increasing
carbon concentration until a minimum around 10% carbon, af-
ter which it increases again. This trend is more clear for the
icosahedral clusters than for the Wulff polyhedrons. This is
comparable to the macroscopic system, where a similar trend
can be observed, and where the minimum corresponds to the
eutectic point which can also be found at a carbon concen-
tration of about 10%. Upon inspection of the lower limit of
the melting intervals, we can see that for all clusters, the cor-
responding temperature is at a maximum for the pure state,
decreases with increasing carbon concentration and stays con-
stant at higher concentrations. We could therefore conclude
that there exists a eutectic line just like in the case of a bulk
system. Additionally, we also note that the phase diagrams can
be significantly different for different cluster sizes and differ-
ent cluster geometries. Firstly, we notice that the smaller clus-
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Fig. 4 Nickel-Carbon phase diagrams of icosahedral clusters (top series) and Wulff polyhedrons (lower series). The lower line depicts the
temperature where the liquid fraction is 5%, the middlemost line depicts the temperature where the liquid fraction is 50% and the upper line
depicts the temperature where the liquid fraction is 95%. The number of nickel atoms in the clusters is shown on the top left corner of each
graph.

ters have wider melting intervals than the bigger clusters, as
expected, since thermodynamic fluctuations have higher im-
pact on small clusters than on large clusters. Secondly, at low
carbon concentrations, we observe larger melting intervals for
the Wulff polyhedrons compared to the icosahedral clusters,
which means that fluctuation amplitudes are greater in an fcc
lattice than in a Mackay icosahedron. At larger concentra-
tions, this difference vanishes since the fcc lattice and icosa-
hedral lattice become more and more distorted. When we look
at the pure clusters (the values corresponding to 0% carbon)
we can see that the melting point increases with the number of
atoms. This phenomenon is well known in literature and a lin-
ear dependence of the melting point on the inverse diameter
of the cluster is suggested in several papers3,6,10,21. Finally,
we note that the phase diagrams for the icosahedrons seem to
be more dependent on the cluster size than the phase diagrams
for the Wulff polyhedrons. Due to the absence of shells in the
latter, carbon atoms can move more freely inside the nanopar-
ticle, as will be shown further on in the section on the struc-
tures of the clusters. Consequently, also the melting behavior
will depend less on the size of the cluster.

For the derivation of the equilibrium constant we consider
an isothermal process starting in the solid state and moving to
an equilibrium state with liquid fraction y and solid fraction
x. This transition is shown in Fig. 5 by the arrow ∆U. We em-
phasize again that the liquid fraction and solid fraction are the
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Fig. 5 Total energy curve of the Ni55 nanocluster.

time fractions of the cluster being in a liquid state or a solid
state. One should also realize that the traditional principles of
thermodynamics are not to be applied to nanosystems without
serious consideration22. In this case, however, we choose to
work with the change in Gibbs free energy since we are look-
ing for time averaged values, and not instantaneous values.
The lower straight line in Fig. 5 denotes the total energy of the
solid cluster as a function of temperature, the upper straight
line the total energy of the liquid cluster as a function of tem-
perature and the full line denotes the results obtained from
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the calculations. Note that the solid and liquid line imply an
extrapolation to higher/lower temperatures. However, the rel-
ative stability of the different structures of nanoparticles (in-
cluding the equilibrium structure) is function of temperature
and thus extrapolation should take these changes into account.
In our simulations, the correct relative stability of the different
states is achieved by the implemented MC steps, as explained
above.

Since in our simulation the external pressure is constant
(and equal to zero), the minimum in Gibbs free energy will
determine the point of equilibrium. We are thus looking for
the solution to the equation:

0 = ∆H−T ∆S (3)

The enthalpy H is defined as U + pV, with p equal to zero, so
that H equals U. One then finds (along with the definition of
entropy):

0 = ∆U−T
∫ f

i

δQ
T

(4)

Since the system fares in isobaric surroundings, and since
only a fraction y melts, this leads us to:

0 = ∆U−T.
y∆ f H

T
(5)

Where ∆ f H is the enthalpy of fusion shown in Fig. 5 as
∆ fU , since for zero pressure H equals U. Consequently, the
liquid fraction y is given by:

y =
∆U
∆ fU

(6)

and the solid fraction x is given by:

x =
∆ fU−∆U

∆ fU
(7)

where x+y = 1. We conclude that the equilibrium constant K
(= y/x) is:

K =
∆U

∆ fU−∆U
(8)

showing the ratio of the liquid and solid fractions as an average
in time. One can easily see that for temperatures well beneath
the melting interval, ∆U equals zero, causing y to be 0 and
x to be 1, and analogously we see that for temperatures well
above the melting interval y will become 1 and x will become
0, since in these regions ∆U equals ∆ f U.

To apply this to our calculations we construct the internal
energy lines of the solid and the liquid system. In particular
we calculate the total energy for several temperatures well be-
low the melting interval (x = 1) and fit these results to a first
order polynomial, and then the same is done for temperatures
well above the melting interval (y = 1). The result are the

Fig. 6 Calculated liquid fraction and equilibrium constant of the
icosahedral Ni55 nanocluster. The dashed lines in the upper plot
represent a liquid fraction of 5% and 95%

two straight lines in Fig. 5. Subsequently we can calculate ∆U
and ∆ f U for any temperature, as shown in the picture, by sub-
tracting the value of the fitted solid line from the total energy
obtained through our calculations at that temperature. Then
we can calculate K, y and x with the formulae above.

Fig. 6 shows the calculated liquid fraction y and the equi-
librium constant K as a function of temperature for the Ni55
icosahedral nanocluster. The dashed lines in the upper plot
represent a liquid fraction of 5% (y = 0.05) and of 95%
(y = 0.95). The intersections with the calculated liquid frac-
tion are then chosen to be the start and the end of the melt-
ing interval. This method gives a more intuitive alternative to
the often vaguely determined melting points in the literature.
From the plot of the equilibrium constant, we can for example
conclude that at a temperature of 800K, the cluster is almost
constantly solid (K = 0) while at 1150K the cluster will be
approximately 150 times longer in the liquid state than in the
solid state (K = 150).

Finally, we also discuss the structure of the examined
nickel-carbon nanoclusters. For this we make use of an
adapted Radial Distribution Function (RDF). Usually, to con-
struct a traditional RDF, one starts by calculating all inter-
atomic distances between the atoms in the system and the
number of atoms in the range from r to r + dr is then put in
a graph. An RDF is useful for the description of interatomic
distances but in the following we will try to depict the en-
tire structure of the nanoclusters. Fig. 7 displays the average
structure of the Ni147C5 icosahedral cluster. The graphs show
the distances from the atoms to the central atom of the clus-
ter. These graphs are constructed in a similar way as a tradi-
tional RDF, except that instead of considering all interatomic
distances, we here consider only the distance from the atoms
to the central atom of the cluster. For comparison, the first
graph in Fig. 7 shows the structure of the pure Ni147 icosa-

1–8 | 5

Page 5 of 8 Nanoscale

N
an

os
ca

le
A

cc
ep

te
d

M
an

us
cr

ip
t



hedral cluster. We can distinguish 1 peak for the first shell,
2 peaks for the second shell and 3 peaks for the third. The
second graph shows the positions of the nickel atoms in the
Ni147C5 cluster. We ascertain that the inner shells remain per-
fectly intact and that there are only small distortions in the
outer shell. The third graph shows the distance of the car-
bon atoms to the central atom. When we compare this to the
previous graph we can clearly see that the carbon atoms are
situated between the second and the third shell, and thus not
in the shells themselves. The last graph shows the depth of
the carbon atoms in the clusters, the obtained values are the
distances from the carbon atoms to the surface of the clus-
ter. At higher concentrations, see Fig. 8, we can still distin-
guish the original nickel lattice, although the structure is much
more distorted, the innermost shells remain always intact and
the carbon atoms are still mostly found in between the shells,
but some carbon atoms are positioned deeper into the cluster
or sometimes attached to the surface. In Fig. 9 we display
the average structure of the Ni201C20 Wulff polyhedron. It is
important to notice that the carbon atoms can position them-
selves more freely than in icosahedrons because of the absence
of shells. This explains, as mentioned above, why the melt-
ing behavior of a Wulff polyhedron depends much less on the
size of the cluster, compared to icosahedrons. Since the car-
bon atoms can move more freely inside the nanoparticle, their
positions are much less influenced by the size of the cluster.
Consequently, also the melting behavior will depend less on
the size of the cluster.

4 Conclusions

In conclusion, we calculated the phase diagrams of the four
smallest icosahedral as well as the four smallest Wulff poly-
hedron nickel-carbon clusters using combined MD/MC simu-
lations. The results are derived from the Lindemann index of
the atoms and the potential energy of the clusters. The results
show that both the geometry and the size of the cluster have
a significant influence on the melting behaviour. The icosa-
hedral clusters show different phase diagrams than the Wulff
polyhedrons. Moreover, the size of the cluster also influences
the width of the melting interval. One can distinguish a eutec-
tic line similar to the macroscopic system. Although no real
eutectic point is observed, one does observe a minimum in
the upper bound of the melting interval around the same car-
bon concentration as the eutectic point at the macroscale. This
kind of knowledge is obviously very important if we want to
examine the influence of the crystal structure on the growth
mechanism of carbon nanotubes with the CCVD method or if
one wants to examine the carbon diffusion rate for different
geometries, at different temperatures. Furthermore, we intro-
duced a method to calculate time averaged liquid and solid
fractions and an equilibrium constant as a function of tem-

Fig. 7 From top to bottom, RDF of a) Ni in Ni147 (Icosahedron); b)
Ni in Ni147C5; c) C in Ni147C5 and d) the depth of C in Ni147C5
Distances are calculated with respect to the central atom

Fig. 8 From top to bottom, RDF of a) Ni in Ni147 (Icosahedron); b)
Ni in Ni147C40; c) C in Ni147C40 and d) the depth of C in Ni147C40
Distances are calculated with respect to the central atom
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Fig. 9 From top to bottom, RDF of a) Ni in Ni201 (Wulff
polyhedron); b) Ni in Ni201C20; c) C in Ni201C20 and d) the depth of
C in Ni201C20 Distances are calculated with respect to the central
atom

perature. These quantities give a better understanding of the
existing phase oscillations of the clusters in time and can also
be used to determine their melting intervals.

In general these results give more insight on the thermo-
dynamic and structural properties of nanoclusters. The liquid
and solid fractions and equilibrium constants can be useful
tools for the description of the clusters. And finally the phase
diagrams can be used for optimising synthesis mechanisms (as
for example the growth of carbon nanotubes) and to explain
experimental observations.
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