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In silico approaches have been widely recognised to be useful for drug discovery. Here, we consider the 

significance of available databases of medicinal plants and chemo- and bioinformatics tools for in silico 

drug discovery beyond the traditional use of folk medicines. This review contains a practical example of 10 

the application of combined chemo- and bioinformatics methods to study pleiotropic therapeutic effects 

(known and novel) of 50 medicinal plants from Traditional Indian Medicine. 

 

1 Introduction 

Natural products have been used in folk medicine for thousands 15 

of years. One-third of the adult population in industrially 

developed countries and more than 80% of the population in 

developing countries uses herbal medicinal products to promote 

health and to treat common illnesses such as colds, inflammation, 

heart diseases, diabetes and central nervous system disorders. It is 20 

believed that plants interact with changing environmental stresses 

and adapt to these changes1. This adaptation is accompanied by 

unusual phytochemical diversity. More than 70% of new 

chemical substances (New Chemical Entities - NCEs), introduced 

into medical practice from 1981 to 2006 were derived from 25 

natural products.2 These data confirm the assertion by Dhawan 

that the study of plants, based on their use in traditional systems 

of medicine, is a viable and cost-effective strategy for the 

development of new drugs.3 Because there are several thousand 

pharmacological targets and because most natural compounds 30 

exhibit pleiotropic effects by interacting with different targets, 

computational methods are the methods of choice in drug 

discovery based on natural products.4 The use of chemo- and 

bioinformatics methods for the exploration of their pleiotropic 

pharmacological potential beyond the traditional uses may be 35 

possible with the availability of medicinal plant databases 

including data on chemical structures and therapeutic uses of 

phytoconstituents identified over the years from medicinal plants. 

 Chemoinformatics and bioinformatics tools help in the 

identification of complementary leads and targets. Many of these 40 

approaches facilitate lead discovery against individual targets 

using molecular docking,5,6 pharmacophores,4 (Q)SAR, and 

machine learning methods.7,8 Combinatorial approaches straight-

forwardly conduct parallel searches against each individual target 

to find virtual hits that simultaneously interact with multiple 45 

targets. Despite wide use of 3D target-based approaches they 

have limitations with respect to the number of targets with 3D 

structures. Therefore, the use of 2D structures appears more 

reasonable in facilitating leads for multiple targets. Plant 

phytoconstituents are explored either based on bioactivity-guided 50 

fractionation or through random screening of plant extracts. To 

date, only the bioactive principles for traditional activities have 

been used as templates for new drug discovery for known 

bioactivities using molecular docking. Thus, phytochemicals for 

which the biological activity is unknown are largely unexplored. 55 

Their potential can be efficiently investigated using multi-

targeted in silico approaches. 

 Bioinformatics and systems biology approaches are becoming 

increasingly important along with the above-mentioned 

chemoinformatics methods to study the therapeutic potential of 60 

medicinal plants.9 They are used to select targets for docking and 

to identify relationships between the revealed actions of 

phytochemicals on targets and the known therapeutic effects of 

medicinal plants. Thus, the aim of this review is a critical 

consideration of the various available databases of medicinal 65 

plants and in silico tools for their utilisation in new drug 

discovery based on expanding the use of folk medicinal plants 

through the exploration of phytochemical diversity. 

2 Medicinal plant databases 

The databases of medicinal plants are collections of particular 70 

information about plants used in folk medicine. Dozens databases 

and Internet sources partially containing such information 

became available during the last decade. We collected a list of 

currently available sources with English interface and data which 

were mentioned in peer-reviewed scientific journals and may be 75 

useful in studies of medicinal plants (Table 1). These databases 

were analysed for the following information:  
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1. Availability (freely accessible or commercial). 

2. Plant Name. 

3. Traditional uses. 

4. Plant parts which are used for treatment. 

5. Phytoconstituents. 5 

6. Phytoconstituents with their 2D/3D structures. 

7. Pharmacological and toxic activities of the 

phytoconstituents.  

8. Possibility of download of phytoconstituent structures 

and properties. 10 

The majority of databases contain different types of data on 

medicinal plants; therefore, in practical applications, scientists 

usually have to combine data from several databases. Most of the 

databases contain the botanical name, vernacular name and 

traditional uses of each of these plants; examples include 15 

databases on ethno-medicinal plants and the PFAF database. 

Other databases, such as the Dictionary of Natural Products, 

TradiMed, and SuperNatural, contain information about 

phytoconstituents discovered in these plants.  

  In this review we discuss application of virtual screening for 20 

identification of new leads for different biological targets beyond 

traditional use from these medicinal plants. Therefore the 

medicinal plant databases ideally requires to provide 

phytochemical and pharmacological information of medicinal 

plants, so we further screened 54 selected databases with respect 25 

to the phytochemistry and found 14 databases, discussing the 

phytochemistry of natural product (BoDD, Cardiovascular 

Disease Herbal Database (CVDHD), Chemical Abstract Services 

(CAS), Dictionary of Natural Product Database (DNP), 

Ethanobotany of the Peruvian amazon, Herbal think-TCM, Indo-30 

Russian traditional medicine database, IBS natural product 

library, KNApSAcK core DB, Pubchem substance database, 

Super natural II database, Traditional Chinese Medicine 

Information Database (TCMID), TIPdb and TradiMed). Four 

from 14 databases have a limited access (paid access), which 35 

limits their use in new drug discovery: CAS, DNP, Herbal think-

TCM and TradiMed. Plants are composed from a plurality of 

compounds belonging to different chemical classes and 

exhibiting diverse biological activities. They may enhance each 

other’s actions or compensate for toxicity, or their interaction can 40 

lead to side effects. Traditional national medicines (TNM) rely on 

a wide range of plants and herbs. For example, approximately 

1,250 plants are used in various Traditional Indian Medicine 

(TIM) preparations.20 Both parts of plants and the whole plants 

are used in TNM. TNM compositions can also include various 45 

parts of different plants. The parts of plant can be extracted and 

prepared by various ways, and constituents of the same plants 

may vary in different geographical regions. We confirm the 

statement of Polur that, at the present time, there is no database 

reflecting all the current knowledge about the composition, 50 

method of preparation and use of medicinal plants, but existing 

databases can be used for in silico work associated with the drug 

discovery process.21 The main database that may be used for drug 

discovery based on TNM is DNP, containing over 270,000 

records. Unfortunately, it does not allow the extraction of data on 55 

sets of structures in SD files, but extracting single molecules is 

possible. CVDHD, TCMID, TIPdb and TradiMed are others 

useful resources of data containing information both about 

phytochemicals and therapeutic effects. Most databases include 

information about taxonomy, TNM usage and photos of plants. 60 

SuperNatural II database and IBS Natural products library 

containing structures of phytoconstituents may be the basis for 

virtual screening. Taxonomic databases (e.g. The Plant List, 

Tropicos) are helpful for validation of plant taxonomy. 

 The number of available databases increases every year. This 65 

opens up the possibility for the detailed study of plants and the 

utilisation of knowledge of their traditional use for the drug 

discovery process. In general, the data in a database should be as 

comprehensive as possible to allow its use in various biomedical 

studies. 70 

3 Cheminformatics tools for exploring biological 
activity of medicinal plants 

The amount of available data on the biological activity of the 

investigated compounds (including herbal medicines) and the 

number of target macromolecules related to their therapeutic 75 

effects increase every year (e.g., ChEMBLdb contains data on 1.5 

million compounds acting on more than 9,000 targets). At the 

same time, the pool of data on compositions of medicinal plants 

has also increased (e.g., Natural Product Database contains 

information for more than 226,000 natural products with 80 

approximately 210,000 structures). Therefore, the need for use of 

in silico methods to determine the biological activity of medicinal 

plants is obvious. 

 The classic methods of (Q)SAR (quantitative or qualitative 

“structure-activity” relationships), molecular modelling and 85 

virtual screening widely applied for synthetic compounds in drug 

discovery may be used for exploring the biological activity of 

medicinal plants if information about the structures of 

phytochemicals is available. All these methods are based on 

assumption that activity of compounds depends on their 90 

structures. Three key components are necessary for creation of 

(Q)SAR models: 

(1) Noncontradictory data on structures and biological 

activity of studied compounds;  

(2) Descriptors for structures’ presentation (structural 95 

fragments, fingerprints, constitutional, topological, 

electro-topological, quantum-chemical and 

physicochemical descriptors); 

(3) Machine learning methods (multiple linear regressions, 

neural networks, support vector machine, random forest, 100 

similarity etc.) for identification of the relationship 

between descriptors, which are traditionally used as 

independent variables, and biological activity.  

 (Q)SAR models created on the basis of heterogeneous data are 

considered as global models with wide applicability domain and 105 

may be used for virtual screening, prediction of biological 

activity and target fishing. (Q)SAR models created on the basis of 

homogeneous data are called local models. They are traditionally 

used for optimisation of hit or lead compounds. Local 3D-QSAR 

models may be also used for pharmacophore generation. 110 

Pharmacophore describes a group of atoms in the molecule which 

is considered to be responsible for a pharmacological action. 
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Table 1. Databases and Internet resources about plants, their therapeutic effects, names of phytoconstituents and their structures. 

SourceReference Description and URL 
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A Guide to Medicinal 

and Aromatic Plants10 

Information about medicinal, spice and aromatic plants: 

http://www.hort.purdue.edu/newcrop/med-aro/default.html 

Y 510 Y N Y Y Y N N N N N 

AGRIS10 International Information System for Agricultural Sciences and Technology. 

Bibliographic data: http://agris.fao.org/agris-search/index.do 

Y ND Y Y N Y Y N N Y N N 

Ayurvedic Medicinal 

Plants of Sri Lanka 

Medicinal plants used in all of the traditional medicine systems in Sri Lanka 

and Ayurveda: http://www.ayurvedicmedicinalplantssrilanka.org/ 

Y 1635 Y Y Y Y ND N N N N N 

Botanical 

Dermatology 

Database (BoDD)10 

Description of plants used in the treatment of dermatological diseases, 

medicinal use and adverse effects: http://www.botanical-dermatology-

database.info/ 

Y 300 Y N Y Y ND Y Y Y Y N 

Botanical.com10 The electronic version of "A Modern Herbal" by Maud Grieve, published in 

1931: http://www.botanical.com/botanical/mgmh/comindx.html 

Y 800 Y N Y Y N N N Y Y N 

Chemical Abstracts 

Service (CAS)10 

Collect and organize publicly disclosed chemical substance information 

including plant components: http://www.cas.org 

N ND Y N N N Y Y Y Y Y N 

Chinese Herbal 

Medicine Dictionary10 

Includes also examples of recipes and dosages of plants: 

http://alternativehealing.org/chinese_herbs_dictionary.htm 

Y ~900 Y N Y Y Y N N Y Y N 

ClinicalTrials.gov11 Database of publicly and privately supported clinical studies of human 

participants including studies of plant extracts: http://clinicaltrials.gov/ 

Y ND Y N N Y ND N N Y ND N 

CMKb10 Medicinal plant used by Australian Aborigines: http://biolinfo.org/cmkb Y 456 Y Y Y Y Y N N N N N 

Cardiovascular 

Disease Herbal 

Database (CVDHD)12 

Provides docking results between phytocomponents and 2398 target 

proteins, cardiovascular-related diseases, pathways and clinical biomarkers: 

http://pkuxxj.pku.edu.cn/CVDHD/index.php 

Y 3518 Y N N N 35230 Y Y N N Y 

Database on ethno-

medicinal plants 

Medicinal plants and their active components that can be used for the 

development of new drugs: http://www.assamphytocure.org/scien.php 

Y 80 Y Y Y Y Y N N Y N N 

Dictionary of Natural 

Products (DNP)10 

Major commercial source of chemical information on natural products: 

http://dnp.chemnetbase.com 

N ND Y N N Y 210000 Y Y Y Y Y 

Dr Duke’s 

Phytochemical and 

Ethnobotanical 

Databases13 

Provides search tools for plant selection and information on ethnobotanical 

use, phytochemicals and activities: http://www.ars-grin.gov/duke 

Y 1000 Y N Y Y Y N N N Y N 

eBDB10 International Ethnobotany Database provides multilingual data on plants Y ND Y Y N Y N N N N N N 
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from Ecuador, Peru, Kenya and Hawai’i: http://ebdb.org 

ECOPORT10 Wiki like database including ethnobotanical data: http://ecoport.org/ep Y 88291 Y Y Y Y N N N N Y N 

Ethnobotany of the 

Peruvian Amazon10 

Medicinal and useful plants in the Amazonian region of Perú: 

http://www.biopark.org/Plants-Amazon.html 

Y 16 Y Y Y Y Y Y N Y N N 

EXTRACT 

Database10 

An expert-based knowledge system' on medicinal plants http://www.plant-

medicine.com/index.asp 

Y 24 Y Y Y Y N N N Y N N 

FDA Poisonous Plant 

Database10 

References in the literature describing studies of the toxic effects of plants.   

http://www.accessdata.fda.gov/scripts/plantox/index.cfm 

Y ND Y N N Y N N N Y Y N 

FRLHT Indian 

Medicinal Plants 

database10 

Covers natural resources used in the Indian System of Medicine, geo-

distribution data, propagation and trade information: http://envis.frlht.org/ 

Y 6198 Y Y N Y N N N Y N N 

GBIF10 Global Biodiversity Information Facility database includes also data on 

medicinal plants: http://www.gbif.org/  

Y 1454695 Y Y Y Y N N N Y Y N 

GlobinMed10 Data on medicinal herbs and plants from different countries including 

dosage and interactions with drugs and herbs: http://www.globinmed.com 

Y ND Y Y Y Y Y N N Y Y N 

HerbalThink-TCM10 Interactive software to learn aspects of Traditional Chinese Medicine: 

http://www.rmhiherbal.org/herbalthink/index.html 

N 430 Y Y Y Y Y Y N Y Y N 

Herbalist10 Description of principles of medicinal plant usage at appropriate diseases 

and data on medicinal plants: http://www.hoptechno.com/herbmm.htm 

N 161 Y Y Y Y Y N N Y N N 

HerbMed10 Categorised, evidence-based resource for herbal information, with 

hyperlinks to clinical and scientific publications: http://herbmed.org/ 

Y 242* Y Y Y N N N N Y Y N 

MedlinePlus: Herbs 

and Supplements10 

Dietary supplements and herbal remedies, their effectiveness, dosage, drug 

interactions: http://www.nlm.nih.gov/medlineplus/druginfo/herb_All.html 

Y 80 Y Y N Y N N N Y Y N 

Herbs&Auyrveda Ayurveda plants: http://herbsandayurveda.wordpress.com Y 20 Y Y Y N Y N N Y N N 

Indian-Russian 

Traditional Indian 

Medicine database 

Plants used in Traditional Indian Medicine, includes pharmacological 

activities of plants and their phytoconstituents (experimental and predicted 

by PASS software): http://ayurveda.pharmaexpert.ru/ 

Y 50 Y N Y Y 2100 Y N Y N Y 

IBS Natural products 

library 

Information on natural compounds and their derivatives, with samples 

available for biological activity screening: http://www.ibscreen.com/ 

Y ND N N N N 45895 Y Y N N Y 

KNApSAcK Core 

DB14 

Metabolites related to plants, medicinal/edible plants that are related to the 

geographic zones: http://kanaya.naist.jp/KNApSAcK_Family/ 

Y 1432 Y N N N Y Y Y Y N Y 

MAROWINA 

FACTS®10 

Natural remedies, dietary supplements, medicinal plants and herbs of 

Surinam: http://www.tropilab.com/medsupp.html 

Y 43 Y Y Y Y Y N N Y N N 

MMPD10 Myanmar Medicinal Plant Database: http://www.tuninst.net/MMPD/MMPD-

indx.htm 

Y 100 Y Y Y Y N N N Y N N 

MPBD10 Medicinal Plants of Bangladesh: http://www.mpbd.info/ Y 900 Y Y Y Y Y N N Y N N 

NAPRALERT10 Database of natural products, extracts of organisms, case reports, non-

clinical and clinical studies: http://napralert.org/ 

N ND Y N Y Y Y N N Y N N 

Native American 

Ethnobotany 

Database10 

Plants used as drugs, foods, dyes, and more, by native Peoples of North 

America with links to PLANTS Database: http://herb.umd.umich.edu/ 

Y 4029 Y N Y Y N N N N Y N 

Natural Standard10 Systematic reviews of foods, herbs & supplements including drug 

interactions, dosages and clinical trials: http://www.naturalstandard.com 

N ND Y Y Y Y Y N N Y Y N 
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NCCAM Herbs at a 

Glance10 

A series of brief fact sheets that provides basic information about specific 

herbs or botanicals http://nccam.nih.gov/health/herbsataglance.htm 

Y 48 Y Y Y Y N N N Y Y N 

PLANTS Database10 Standardised information about the vascular plants, mosses, liverworts, 

hornworts, and lichens of the U.S.: http://plants.usda.gov/java/ 

Y 1049 Y Y N N N N N N Y N 

Plants for A Future 

(PFAF)10 

A resource and information centre for edible and otherwise useful plants: 

http://www.pfaf.org/user/default.aspx 

Y 7000 Y Y N N N N N Y Y N 

PRELUDE Medicinal 

Plants Database10 

The use of plants in different traditional veterinary and human medicines in 

Africa: http://www.africamuseum.be/collections/external/prelude 

Y 2357 Y Y Y Y N N N Y ND N 

Prosea10 Plants of South-East Asia: http://proseanet.org/prosea/eprosea.php Y 6697 Y N Y Y Y N N Y Y N 

PROTA10 Plant Resources of Tropical Africa: http://www.prota.org Y 7400 Y Y Y Y Y N N N N N 

Provisional Global 

Plant Checklist 

Taxonomic records from 6 major floristic datasets and 7 specialised plant 

family datasets: http://bgbm3.bgbm.fu-berlin.de/IOPI/GPC/query.asp 

Y 201397 Y N N N N N N N N N 

PubChem Substance 

Database15 

Samples from a variety of sources including medicinal plants, and links to 

biological screening results: http://www.ncbi.nlm.nih.gov/pcsubstance 

Y ND N N N N Y Y Y Y Y Y 

Raintree10 Phytochemical information, taxonomic, ethnobotanical and clinical data for 

plants of the Amazon Rainforest: http://www.rain-tree.com/ 

Y 251 Y Y Y N Y N N Y N N 

Richters catalog Description of plants and their parts, which are sold: 

http://www.richters.com/Web_store/web_store.cgi 

Y 1062 Y Y Y Y N N N Y Y N 

RxList Supplements16 Descriptions of Herbs, and Dietary Supplements, their mode of action and 

drug-interactions: http://www.rxlist.com/supplements/article.htm 

Y ND Y N Y Y Y N N Y Y N 

SuperNatural II 

database17 

A database of purchasable natural products: http://bioinf-

applied.charite.de/supernatural_new/index.php 

Y ND N N N N 355076 Y Y N N Y 

TCMID10 Traditional Chinese Medicine Information Database: 

http://tcm.cz3.nus.edu.sg/group/tcm-id/tcmid.asp 

Y 1098 Y N Y Y 9852 3D Y Y Y Y 

The Plant List10 The accepted Latin names with links to all synonyms by which that species 

has been known in other databases: http://www.theplantlist.org/ 

Y 1244871 Y N N N N N N N N N 

TIPdb18 Database of anti-cancer, anti-platelet, and anti-tuberculosis phytochemicals 

from indigenous plants in Taiwan: http://cwtung.kmu.edu.tw/tipdb/ 

Y ND Y N N Y 8856 3D Y Y Y Y 

TradiMed10 Commercial database of plants with symptom(s), efficacy, target organ(s), 

property, safety measures: http://www.tradimed.com/ 

N 502 Y Y Y Y 20012 3D Y Y Y Y 

TRAMEDIII10 South African Traditional Medicines Database 

http://www.mrc.ac.za/Tramed3 

Y ND Y N Y Y N N N N N N 

TRAMIL10 Traditional Medicines in the Islands (Carrabean): http://www.tramil.net/ Y 365 Y Y Y Y Y N N Y Y N 

Tropicos19 The nomenclatural, bibliographic, and specimen data collected for the past 

25 years. http://www.tropicos.org/Home.aspx 

Y 1200000 Y Y N N N N N N N N 

Y - Yes; N - Not; ND - Not Defined; * - part of information is available for a fee. 
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 Docking is a method which predicts the preferred orientation 

of one molecule to another molecule when bound to each other to 

form a stable complex.22 It is frequently used for prediction of the 

binding orientation of small drug-like molecules to their protein 

targets in order to estimate the affinity and predict activity of the 5 

molecule. 3D structures of targets are necessary for docking 

procedure. They may be extracted from PDB database 

(www.pdb.org) or calculated by molecular modelling methods. 

 Both ligand-based (when experimental data on the biological 

activity and structures of ligands are available) and target-based 10 

(if 3D structure of a target is available) strategies may be applied. 

Table 2 shows commercially and freely available software that 

may be used in these studies. They include completely ready 

tools for prediction of biological activities (e.g., INVDOCK, 

Selnergy, PASS, PredictFX, GUSAR); tools for docking (e.g., 15 

AutoDock, FlexX, Glide) and pharmacophore generation (e.g., 

Accelrys’ Discovery-studio, Schrödinger’s small-molecule drug 

discovery suite, SYBYL-X), calculation of molecular descriptors 

(e.g., DRAGON, ISIDA, Mol2D, PaDEL) and fingerprints (e.g., 

OpenBabel, PaDEL); (Q)SAR modelling (e.g., Accelrys’ 20 

Discovery studio, SYBYL-X, ChemBench, KNIME, StarDrop, 

GUSAR). 

 If investigators would like to estimate the potential targets of a 

new phytochemical, the tools mentioned in Table 2 can be used 

for exploring its biological activity: (1) pair similarity with 25 

known compounds (e.g., Tanimoto coefficient calculation based 

on fingerprints – implemented in ChEMBLdb)23; (2) docking 

with the set of proteins (e.g., INVDOCK24); (3) pharmacophore-

based virtual screening23; (4) classification prediction of 

biological activity spectra based on Bayesian statistics and 30 

substructural descriptors (e.g., PASS26,27) or fingerprints.28 

Despite the ease of use and fast calculation of pair similarity 

assessment by fingerprints29, it has a limitation in fingerprint-

level description of molecules (different types of fingerprints may 

better describe particular classes of targets30) and an “activity 35 

cliff” problem (when structurally similar compounds have 

different activities or values of activity31).  

 The advantages of docking are the use of data only for targets 

and that it does not require knowledge about active compounds. 

Docking has limitations in the number of available 3D structures 40 

of targets and in the estimation of docking results, which is a 

nontrivial task for selection of scoring function. Targeted scoring 

functions for virtual screening were reviewed by Seifert.32 

Pharmacophore generation is a quick method for virtual screening 

of a large database with 3D structures of chemicals, but it is also 45 

limited to known active compounds, requires conformational 

sampling (which does not guarantee the sampling of biologically 

relevant conformers) and has rigid frames of the search which is 

sensitive to the initial suppositions of conformers.33,34 The use of 

docking and pharmacophore approaches for virtual screening of 50 

multi-targeted ligands was discussed by Ma and co-authors.35 

Classification methods have also limitations in the number of 

known active compounds for the appropriate targets and in the 

interpretation of probabilistic assessments of interaction with a 

target. 55 

 Although it is considered that natural products have more 

preferable ADME/T (absorption, distribution, metabolism, 

excretion and toxicity) properties in comparison with synthetic 

chemicals,36 the study of ADME/T properties for phytochemicals 

is also very important in drug development. The tools listed in 60 

Table 2 for creation of QSAR models to predict ADME/T 

properties may be used for this purpose. At the same time, there 

are software packages with appropriate QSAR models for the 

prediction of ADME/T properties for chemicals (including 

phytochemicals) based on their structures. Adsorption, 65 

distribution and excretion depend on physical-chemical properties 

and on interactions with transporter proteins and blood proteins. 

QSAR models for estimation of such properties are provided by 

Discovery Studio (Accelrys), ACD/Percepta (ACD/Labs), 

ADME QSAR module for StarDrop (Optibrium), PASS 70 

(interaction with protein-transporters), PreADMET, QikProp 

(Schrödingerand), ADMET Predictor (Simulation Plus Inc.). 

Metabolism of phytochemicals depends on interactions with 

drug-metabolising enzymes (e.g., P450 cytochromes). Software 

for prediction of interactions with drug-metabolising enzymes 75 

and possible metabolites is provided by Discovery Studio 

(Accelrys), ACD/Percepta (ACD/Labs), Meteor Nexus (Lhasa 

Ltd.), METAPC (Multicase Inc.), ADME QSAR module for 

StarDrop (Optibrium), PASS (interaction with drug-metabolising 

enzymes) and ADMET Predictor (Simulation Plus Inc.). Apart 80 

from the above-mentioned commercial products, there are at least 

two freely available web services for the prediction of possible 

metabolic sites for different isoforms of cytochrome P450 – 

SMARTCyp and RS-Web Predictor. Kirchmair and co-authors 

recently published a review of software and in silico methods for 85 

the estimation of chemical interactions with drug-metabolising 

enzymes and the prediction of possible metabolites.37 For 

prediction of different toxicity types, such as cardio-, hepato-, and 

renal toxicity, as well as teratogenicity and carcinogenicity, one 

can use DEREK (Lhasa Ltd.), TOPKAT (Accelrys), MCASE 90 

(Multicase) or PASS. In addition to the above-mentioned 

software, there are publications on the prediction of side effects 

of drugs through estimation of their interactions with antitargets 

(proteins related with manifestation of side effects) using the 

methods of molecular docking,38,39 pair similarity assessment,40 95 

Bayesian-like statistics41 and QSAR models.42 Prediction of LD50 

values for phytochemicals tested on rodents is also important for 

the estimation of their safety. Despite the absence of QSAR 

models that have been specially created for the prediction of LD50 

values for phytochemicals, there are several tools with general 100 

QSAR models that may be used for this purpose (ACD/Labs, 

Accelrys, GUSAR). A web service for the prediction of LD50 

values for rats via four routes of administration43 and interaction 

with a set of antitargets42 based on GUSAR software is freely 

available at http://www.way2drug.com/GUSAR.  105 
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Table 2. Commercial and freely available software for prediction of biological activity, docking, generation of descriptors and QSAR 

modelling.  

NameReference FA Description and URL 

Software package with descriptor and pharmacophore generation, (Q)SAR modelling tools, docking and (Q)SAR models 

ACD/Percepta44 N Prediction of ADME/T and physico-chemical properties: http://www.acdlabs.com/products/percepta 

ADMET Predictor45 N Prediction of ADME/T and physico-chemical properties: http://www.simulations-plus.com 

CDK46 Y The Chemistry Development Kit (CDK) is a Java library for structural chemo- and bioinformatics 

applications. It includes generation of 260 types of descriptors: http://cdk.sourceforge.net 

ChemBench47 Y Chemoinformatics research support by integrating robust model builders, generators of descriptors, 

property and activity predictors, virtual libraries of available chemicals with predicted biological and 

drug-like properties, and special tools for chemical library design: http://chembench.mml.unc.edu 

Discovery studio48 N QSAR modelling and pharmacophore generation, for data analysis and structures optimisation: 

http://accelrys.com/products/discovery-studio 

GUSAR42,43 N QSAR modelling, antitarget interactions and LD50 values prediction based on atom-centric QNA and 

MNA descriptors: http://www.way2drug.com/GUSAR 

KNIME49 Y Graphical workbench for the entire analysis process, including plug-ins for descriptor generation, 

creation of QSAR models, and work with SD files: http://www.knime.org 

MOE50 N Calculates over 600 molecular descriptors including topological indices, structural keys, E-state 

indices, physical properties, topological polar surface area (TPSA) and CCG's VSA descriptors. MOE 

includes tools for creation of QSAR/QSPR models using probabilistic methods and decision trees, 

PCR and PLS methods: http://www.chemcomp.com/software-chem.htm 

Molinspiration51 Y Cheminformatics software with tools supporting molecule manipulation and processing, including 

SMILES and SDfile conversion, normalisation of molecules, generation of tautomers, molecule 

fragmentation, and calculation of various molecular properties needed in QSAR, molecular modelling 

and drug design: http://www.molinspiration.com 

OpenTox52 Y Interoperable, standards-based framework for the support of predictive toxicology including APIs and 

services for compounds, datasets, features, algorithms, models, ontologies, tasks, validation, and 

reporting which may be combined into multiple applications satisfying a variety of different user 

needs: http://www.opentox.org 

PASS26,27 N Prediction of Activity Spectra for Substances (PASS) – software for creation of SAR models based on 

Multilevel Neighbourhoods of Atoms (MNA)descriptors and modified Bayesian algorithm. It predicts 

several thousand types of biological activity, including pharmacological effects, mechanisms of action, 

toxic and adverse effects, interaction with metabolic enzymes and transporters, influence on gene 

expression: http://www.way2drug.com 

PreADMET53 N Calculates more than 2,000 2D and 3D descriptors, ADME/T and drug-likeness properties prediction: 

http://preadmet.bmdrc.org 

PredictFX54 N QSAR modelling and simulation suite that provides prediction of off-target pharmacology, associated 

side effect profile and affinity profiles on 4,790 targets for drug lead compounds: 

http://www.certara.com/products/molmod/predictfx 

QSARpro55 N QSAR modelling including calculation of over 1,000 molecular descriptors of various classes: 

http://www.vlifesciences.com/products/QSARPro/Product_QSARpro.php 

Scigress Explorer, 

SCIGRESS56 

N Molecular and QSAR modelling including generation of physico-chemical descriptors for small 

organic molecules, inorganics, polymers, materials systems and whole proteins. 

http://www.fqs.pl/chemistry_materials_life_science/products/scigress_explorer 

Selnergy57 N Combination of docking software to predict interaction energies of a ligand with a protein, database of 

7000 protein structures with annotated biological properties and Greenpharma Core Database: 

http://www.greenpharma.com/services/selnergy-tm 

Small-molecule drug 

discovery suite58 

N 2D/3D QSAR with a large selection of fingerprint options, Shape-based screening, with or without 

atom properties, Ligand-based pharmacophore modelling, docking, R-group analysis: 

http://www.schrodinger.com/productsuite/1 

StarDrop59 N QSAR modelling, data analysis and structures optimisation, R-group analysis and ADME/T 
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prediction: http://www.optibrium.com 

SYBYL-X60 N QSAR modelling, pharmacophore hypothesis generation, molecular alignment, conformational 

searching, ADME prediction, docking and virtual screening: http://www.tripos.com 

T.E.S.T.61 Y Estimation of toxicity values and physical properties of organic chemicals based on the molecular 

structure of the organic chemical entered by the user: http://www.epa.gov/nrmrl/std/qsar/qsar.html 

On-line services for prediction of biological activities, sites of biotransformation and docking to drug-targets 

1-CLICK DOCKING Y* Docking to 9,871 targets or user targets: https://mcule.com/apps/1-click-docking 

DIGEP-Pred62 Y Prediction of drug-induced changes in the gene expression profile based on structural formulae of 

drug-like compounds: http://www.way2drug.com/GE 

GUSAR (web-

service)42,43 

Y Prediction of acute rodent toxicity (LD50 values), interaction with antitargets and ecotoxicity 

endpoints: http://www.way2drug.com/GUSAR 

INVDOCK24 Y Automatically searches a protein and nucleic acid 3-D structure database (this database currently 

covers 9000 protein and nucleic acid entries) to identify the protein, RNA or DNA molecule that the 

small molecule can bind to: http://bidd.nus.edu.sg/group/softwares/invdock.htm 

Osiris63 Y Guides performance of Risk Assessment and integrated testing strategies on skin sensitisation, 

repeated dose toxicity, mutagenicity, carcinogenicity, bioconcentration factor, and aquatic toxicity: 

http://osiris.simpple.com/OSIRIS-ITS/itstool.do 

PASS Online64-66 Y Prediction of several thousand types of biological activity, including pharmacological effects, 

mechanisms of action, toxic and adverse effects, interaction with metabolic enzymes and transporters, 

influence on gene expression based on structural formula of chemical 

http://www.way2drug.com/PASSOnline 

RS-WebPredictor67 Y Prediction of cytochrome P450-mediated sites of metabolism on drug-like molecules: 

http://reccr.chem.rpi.edu/Software/RS-WebPredictor 

SMARTCyp68 Y Prediction of the sites in molecules that are most liable to cytochrome P450 mediated metabolism: 

http://www.farma.ku.dk/smartcyp 

TarFisDock69 Y Identification of drug targets from Potential Drug Target Database with docking approach: 

http://www.dddc.ac.cn/tarfisdock 

Docking and pharmacophore software 

AutoDock70 Y Molecular modelling simulation software including protein-ligand docking: 

http://autodock.scripps.edu/ 

FlexX71 N Prediction of protein-ligand interactions (docking): http://www.biosolveit.de/FlexX 

Glide72 N Schrodinger’s ligand-protein docking software: http://www.schrodinger.com/productpage/14/5/21 

GOLD73 N Prediction of protein-ligand interactions (docking), virtual screening, lead optimisation, and 

identifying the correct binding mode of active molecules: 

http://www.ccdc.cam.ac.uk/Solutions/GoldSuite/Pages/GOLD.aspx 

LigandScout74 N Virtual screening based on 3D chemical feature pharmacophore models: http://www.inteligand.com/ 

Molegro Virtual 

Docker75 

N Prediction of protein-ligand interactions: http://www.molegro.com/mvd-product.php 

OEDocking76 N Molecular docking tools and their associated workflows: http://www.eyesopen.com/oedocking  

Descriptor generators 

AFGen77 Y A fragment-based descriptors generator with three different types of topologies: paths, acyclic 

subgraphs, and arbitrary topology sub-graphs: http://glaros.dtc.umn.edu/gkhome/afgen/overview 

CODESSA78 N Calculation over 500 types of constitutional, topological, geometrical, electrostatic, thermodynamic 

and quantum-chemical descriptors: http://www.codessa-pro.com 

DRAGON79 N Calculation almost all types of descriptors (4885 types of descriptors in total): http://www.talete.mi.it 

E-DRAGON80 N A remote version of DRAGON: http://www.vcclab.org 

ISIDA81 Y Calculation of Substructural Molecular Fragments (SMF) and ISIDA Property-Labelled Fragments 

(IPLF) descriptors: http://infochim.u-strasbg.fr/spip.php?rubrique49 

MODEL82 Y Web service for calculating approximately 4000 molecular descriptors based on 3D structure of a 

molecule: http://jing.cz3.nus.edu.sg/cgi-bin/model/model.cgi 

Mol2D83 Y Calculation more 700 descriptors: http://www.fda.gov/ScienceResearch/BioinformaticsTools/Mold2 

MOLGEN84 Y Web service for calculating 708 arithmetical, topological and geometrical descriptors: http://molgen.de 

OpenBabel85 Y Molecular fingerprint generation and similarity searching: http://openbabel.org 

PaDEL86 Y Calculates 729 1D, 2D descriptors and 134 3D descriptors, and 10 types of fingerprints: 

http://padel.nus.edu.sg/software/padeldescriptor 
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Statistics and Machine learning software 

MATLAB87 N Interactive environment, using their own language, and includes almost all of the most commonly used 

mathematical methods in QSAR: http://www.mathworks.com 

R88 Y Statistical calculation and graphics creation with own language of programming. R provides a wide 

range of tools used for QSAR modeling (linear and nonlinear modelling, classical statistical tests, 

consistent analysis, classification, clustering): http://www.r-project.org 

PSPP Y Free available alternative of SPSS with similar possibilities: https://www.gnu.org/software/pspp 

SAS/STAT N Different regression methods, Bayesian and multivariate analyses: http://www.sas.com 

SIMCA89 N Machine learning methods for QSAR: http://www.umetrics.com/products/simca  

SPSS Statistics N Linear and non-linear methods for QSAR modeling: http://www-01.ibm.com/software/analytics/spss 

Statistica89 N Data processing environment includes almost all of the most frequently used machine learning 

methods in QSAR: http://www.statsoft.com/ 

WEKA90 Y A collection of machine learning algorithms for data analysis. Contains tools for data pre-processing, 

classification, regression, clustering and visualisation: http://www.cs.waikato.ac.nz/ml/weka 

* - part of services is available for a fee; FA – freely available. 

4 Applications of QSAR modelling and docking in 
studies of phytochemicals 

A review on QSAR modelling and docking applications in 

studies of Chinese herbal medicines was recently published by 5 

Barlow with co-authors.91 Here, we pay more attention to in silico 

studies of phytochemicals from plants used in traditional Indian 

medicine. Several papers were published in which QSAR 

modelling was used for studying the properties of Indian herbal 

medicines. Most of these studies combine QSAR modelling of 10 

the appropriate therapeutic activity with docking for revealing 

possible targets or mechanisms of action of the studied 

phytochemicals (Table 3). 

 QSAR and molecular docking studies were performed to 

explore the immunomodulatory activity of derivatives of natural 15 

coumarinolignoids isolated from the seeds of Cleome viscose. 

Immunostimulatory activity was predicted using a QSAR model, 

developed by forward stepwise multiple linear regression and 52 

physico-chemical descriptors from Scigress Explorer. The final 

QSAR model included dipole moment, steric energy, amide 20 

group count, lambda max (UV-visible) and molar refractivity as 

descriptors. Docking studies revealed the possible binding 

affinity of coumarinolignoids to different immunomodulatory 

receptors: TLR-4, iNOS, COX-2, CD14, IKK β, CD86 and COX-

1.92,93 Similar tools and approaches were used for prediction of 25 

the anticancer activity of glycyrrhetinic acid analogues against 

the human lung cancer cell line A-54994 and of the 

immunomodulatory/anti-inflammatory activity of gallic acid 

derivatives.95 Glycyrrhetinic acid is a pentacyclic triterpenoid 

derivative of beta-amyrin obtained by hydrolysis of glycyrrhizic 30 

acid, found mainly in the root of Glycyrrhiza glabra (liquorice). 

The docking studies showed high binding affinity of the predicted 

active compounds with the lung cancer target EGFR.94 A 

molecular docking of gallic acid derivatives showed that the 

compounds had high binding affinities for INFα-2, IL-6, and IL-4 35 

receptors.95  

 

Table 3. QSAR and docking studies of phytocomponents. 

No Compounds/ Source 
Reference 

Effects Descriptors Method Docking 

software 

Ndt Nsdt 

1 Ursolic acid analogues / 

Eucalyptus hybrid leaves96 

Cytotoxic activity against 

human lung (A-549) and CNS 

(SF-295) cancer cell lines 

50 physico-chemical 

descriptors (SYBYL-

X 1.3) 

Forward Stepwise 

Multiple Linear 

Regressions 

- - - 

2 Coumarinolignoids / 

Cleome viscose seeds92,93 

Immunomodulatory and anti-

inflammatory activity 

52 physico-chemical 

descriptors (Scigress 

Explorer) 

Scigress 

Explorer 

22 7 

3 24 7 

4 Triterpenoids / Eucalyptus 

tereticornis and Gentiana 

kurroo97 

Immunomodulatory and anti-

inflammatory activity 

11 5 

5 Polyhalogenated and ester 

derivative of cleomiscosin 

A / Cleome viscosa98 

Anti-inflammatory 3 3 

6 Gallic acid derivatives95 Immunomodulatory and anti-

inflammatory activity 

3 3 

7 Artemisinin Derivatives / 

Artemisia annua99 

Antimalarial 1 1 

8 Withanolides / W. 

Somnifera100 

Cytotoxicity against human 

breast cancer cell line (MCF7) 

404 descriptors 

(PaDEL) 

ANN based QSAR-

map-model 

AutoDock 

4.2 

1 1 

ANN - Artificial Neural Network; Ndt – number of studied drug targets; Nsdt – number of selected drug targets which were interacted 

with phytocomponents by docking studies. 40 

Page 9 of 21 Natural Product Reports



 

10  |  Journal Name, [year], [vol], 00–00 This journal is © The Royal Society of Chemistry [year] 

 

 QSAR modelling based on a forward stepwise multiple linear 

regression and 50 physical-chemical descriptors from SYBYL-X 

1.3 were used for the creation of QSAR models for the prediction 

of cytotoxic activity of ursolic acid analogues against human lung 5 

(A-549) and CNS (SF-295) cancer cell lines.96 The QSAR study 

indicated that the LUMO energy, ring count, and solvent-

accessible surface area were strongly correlated with cytotoxic 

activity against human lung cancer cells (A-549). Similarly, the 

QSAR model for cytotoxic activity against the human CNS 10 

cancer cell line (SF-295) indicated that dipole vector and solvent-

accessible surface area were strongly correlated with the activity. 

 QSAR modelling and docking studies were performed using 

Scigress Explorer for study of immunomodulatory and anti-

inflammatory activity for the triterpenoids ursolic acid and lupeol 15 

isolated from Eucalyptus tereticornis and Gentiana kurroo.97 

Docking results suggested that the studied triterpenoids showed 

immunomodulatory and anti-inflammatory activity due to high 

binding affinity to human receptors and enzymes: NF-kappaB 

p52, tumour necrosis factor (TNF-alpha), nuclear factor NF-20 

Kappa-B p50 and cyclooxygenase-2. Previously, 

hepatoprotective, antigestagenic and other biological activities 

were also predicted for the triterpenoids of the lupane group using 

PASS software.101 

 Five novel polyhalogenated derivatives and an ester derivative 25 

were synthesised from cleomiscosin A methyl ether and studied 

by QSAR modelling and docking with Scigress Explorer.98 

QSAR modelling results showed that two compounds possessed 

anti-inflammatory activity comparable to or even higher than 

diclofenac sodium. Docking results predicted that these 30 

compounds had high binding affinity to IL6, TNF-α and IL1β. 

 QSAR modelling of antimalarial activity and docking to 

Plasmepsins (Plm-II) using Scigress Explorer was performed in a 

study of artemisinin derivatives from Artemisia annua.99 One of 

the predicted active compounds was chemically synthesised and 35 

tested in vivo in mice infected with a multidrug-resistant strain of 

Plasmodium yoelii nigeriensis. The experiment showed 

antimalarial activity of the selected compound. 

 Cytotoxic activity against a human breast cancer cell line 

(MCF7) was studied for withanolides from W. somnifera using an 40 

artificial neural network (ANN)-based QSAR model created from 

37 previously tested compounds containing androstenedione-like 

skeletons.100 PaDEL descriptors (404 in total) and MATLAB 

were used for QSAR modelling. AutoDock 4.2 was used for 

docking of withanolides to aromatase (PDBID: 3EQM). The 45 

study showed that four selected compounds had promising 

binding affinity values with aromatase in comparison to the 

reference, the co-crystallised control compound androstenedione. 

 Lipinski’s rule of five and ADME properties of the studied 

phytocomponents were calculated with Schrödinger (QikProp 50 

from Small-molecule drug discovery suite) software or 

Molinspiration & T.E.S.T software100 in almost all of the above-

mentioned publications. In some publications, the calculation of 

toxicity risks parameters such as mutagenicity, carcinogenicity, 

irritation and reproductive risk of compounds was performed by 55 

Osiris software.93, 95,98 

 Most of the authors provided the estimation of the applicability 

domain of the created QSAR models that simplified the 

evaluation of the adequacy of QSAR model applications to the 

tested compounds. Nevertheless, it should be noted that despite 60 

the high value of calculated internal accuracy of the models (R2 > 

0.9 and R2
cv >0.8), almost all of the authors did not provide the 

experimental values for the tested compounds, so external 

validation of the actual accuracy and benefit of the models is 

impossible. The experimental results for the part of tested 65 

compounds were given only in the paper by Kalani and co-

authors.96 This paper allowed us to calculate R2 and RMSE for 

the prediction results of the experimentally tested compounds. It 

appeared that R2 and RMSE were 0.05 and 0.809, respectively 

(although the internal validation of QSAR model showed a high 70 

accuracy of prediction: R2 = 0.99, R2
cv >0.96 and RMSEcv = 

0.565). These results correlate with the opinion of Golbraikh and 

Tropsha about the imperfection of estimation of accuracy of 

QSAR models based on Q2 (or R2
cv) calculated for the training 

sets.102 The requirement of external validation is also stated in the 75 

OECD principles for QSAR modelling 

(http://www.oecd.org/env/ehs/risk-assessment/37849783.pdf).  

 Another disadvantage of many of these publications is the 

practice of modelling the values in mg/kg, whereas it is known 

that the use of molar units (mol/kg, mmol/kg, nmol/kg, etc.) 80 

better reflects the relationships between structures of compounds 

and the values of their biological activity.103 

 In all of the above-mentioned publications, the authors used 

docking to identify the possible targets of the studied compounds. 

This approach is called inverse docking or target fishing. 85 

Unfortunately, none of the authors provided direct experimental 

evidence to confirm the interaction of the studied compounds 

with the predicted targets. Further, it should be remembered that, 

according to Leach, the best docking programs have 

approximately 70% accuracy.104  90 

 Several studies were published in which authors used docking 

methods to clarify the mechanisms of action for 

phytocomponents with known therapeutic activity (Table 4).  

 Let us consider in more detail two of the studies described in 

Table 4. Puppala and co-authors presented the bioassay-guided 95 

isolation and structure elucidation of 1-O-galloyl-b-D-glucose (b-

glucogallin), a major component from the fruit of the gooseberry 

(Emblica officinalis) that displays selective and relatively potent 

inhibition (IC50=17 µM) of human aldehyde reductase (AKR1A1) 

in vitro.105 Molecular modelling demonstrated that b-glucogallin 100 

was able to bind favourably in the active site. 

 Anti-venom activity of a polyherbal formulation from aqueous 

extracts of leaves and roots of Aristolochia bracteolata Lam., 

Tylophora indica (Burm.f.) Merrill, and Leucas aspera S. was 

evaluated in vivo on mice against venoms from Russell’s viper 105 

and Indian cobra. It was shown that these extracts provided 

protection against venoms in a dose of 200 mg/kg. Docking 

studies confirmed the interaction of leucasin (a component of 

Leucas aspera S.) and aristolochic acid (a component of 

Aristolochia bracteolata Lam.) with phospholipase A2 type I, 110 

which is considered a target in anti-venom activity.106  
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Table 4. Docking studies of mechanisms of action for phytoconstituents.  

No Compounds/Source Reference Effects Targets Docking software 

1 b-Glucogallin / Emblica officinalis 105 Anticataract, antidiabetic Aldose Reductase Discovery Studio, Ligand Scout 

2 Leucasin and aristolochic acid / 

Aristolochia bracteolata Lam., 

Tylophora indica, Leucas aspera S 106 

Antivenom against 

Russell’s viper and cobra 

venom 

Type I phospholipase 

A2 

Discovery studio and Glide 

3 Capsaicin / hot chilli 107 Antibiotic NorA efflux pump SiteMap module of 

Schrodinger, Extra Precision 

scoring function of Glide 

4 Catechol alkenyls / Semecarpus 

anacardium 108 

Alzheimer’s disease 

treatment 

Acetylcholinesterase GOLD 3.1 

5 Withanolides / Withania somnifera 109 Cancer treatment Mortalin, p53, p21, 

Nrf2 

AutoDock 4.2 

6 Phytoconstituents from aqueous root 

extracts / Gentiana lutea 110 

Inhibition of Vascular 

Smooth Muscle Cell 

Proliferation 

MEK1 AutoDock4 

7 Withanolide derivatives / Withania 

somnifera 111 

Antimycobacterial Protein kinase G Glide 

8 4b-[(4-alkyl)-1,2,3-triazol-1-yl] 

podophyllotoxin derivatives / 

Podophyllum peltatum, Podophyllum 

hexandrum 112 

Antineoplastic ATPase domain of 

Topoisomerase-II 

Glide 

9 Saponins / Parthenium hysterophorus 113 Anti-inflammatory TNF-a  Cerius2, LigandFit, Glide 

 

 In addition to the above-mentioned individual studies, a 

comparison of different inverse docking strategies including 

GOLD, FlexX, Tarfisdock, TarSearch-X and TarSearch-M with 5 

the appropriate scoring functions was made by Hui-fang and co-

authors on the data from 1,594 known drug targets covering 18 

biochemical functions and eight ligands as a test set.114 Several 

publications have demonstrated how the pharmacophore models 

and docking can be used in target fishing for compounds 10 

extracted from medicinal plants (Table 5).  

 In these studies, the sets of phytoconstituents from appropriate 

plants were evaluated for interactions with possible targets by 

pharmacophore models or docking. The obtained results were 

compared with those for known reference compounds for which 15 

interaction with a target was experimentally confirmed. If the 

calculated values of interaction with a target for a studied 

phytoconstituent exceeded those for the reference compounds, 

that target was considered as a target for the studied 

phytoconstituent. 20 

 A virtual screening through a database with structures of 

natural products could be realised for some drug-targets if they 

have been a priori selected as a reason of a certain therapeutic 

activity. Suhitha and co-authors chose alpha glucosidase, aldose 

reductase and PTP1B enzymes as anti-diabetic targets and PLA2 25 

as an anti-inflammatory target and performed virtual screening of 

natural ligands for these targets.117  

5 Bioinformatics and systems biology tools for 
analysis of OMICs data for plant extracts 

A large amount of accumulated biomedical knowledge has led to 30 

the use of bioinformatics approaches for genomics, proteomics 

and metabolomics data analysis. With the help of computer 

analysis techniques and special software, it has become possible 

to analyse the existing OMICs data. Existing databases allow data 

mining, modelling of biochemical pathways and protein-protein 35 

interactions, and they are used for research into Traditional 

Medicines. Genome-wide functional screening for promising 

pharmacological targets is the most advanced and successful 

approach in the post-genomic era. The combination of OMICs 

technologies with robust ethnobotanical and ethnomedical studies 40 

of traditional medicines leads to synergistic and reciprocal 

benefits for development of new inexpensive, accessible, safe and 

reliable medicines and treatments.118,119 

 The fast growth of network analysis methods for finding drug 

targets is based on the observation that over 80% of the new 45 

drugs tend to bind targets that are connected to the network of 

previous drug targets.120 Network pharmacology as the next 

paradigm in drug discovery was proposed by Hopkins in 

2007.121,122 It uses network analysis methods to explore the 

pharmaceutical action of molecules in the context of biological 50 

networks to understand the mechanisms of action and to evaluate 

the drug efficacy.123  

Table 5. Examples of studies on target fishing. 

No Compounds/Source Reference Selected Targets Targets Software 

1 16 secondary metabolites isolated 

from the aerial parts / Ruta 

graveolens L. 115 

Acetylcholinesterase, human 

rhinovirus coat protein, 

cannabinoid receptor type-2 

2208 pharmacophore 

models 

Discovery Studio 

2 Epsilon viniferins / Vitis vinifera 57 9 proteins including PDE4 700 proteins Selnergy (Sybyl 6.9, FlexX) 

3 Meranzin / Limnocitrus littoralis 116 COX1, COX2, PPAR gamma 400 proteins Selnergy 
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 The work of Gu and co-authors124 is an example of such study 

for natural compounds. They docked structures of 197,000 

natural products to 332 target proteins of FDA-approved drugs 

and then explored the properties of the natural product-target 

networks. It has been found that polypharmacology was greatly 5 

enriched for those compounds with large numbers of network 

neighbours and that they play a critical role (e.g., bottleneck) in 

the network.124  

 The most important bioinformatics and systems biology 

resources and tools needed for such studies are represented in 10 

Table 6.  

 An exhaustive review of contemporary methods of network 

and pathway analysis was presented by Csermely and co-

authors.120 A review of these tools for the study of Traditional 

Chinese Medicine pharmacology was published by Zhao and co-15 

authors.137 

 Deocaris and co-authors studied the functions of drug-

responsive genes using systems biology approaches and 

compared gene regulatory circuits in response to a herbal 

preparation against the responses to some of its bioactive 20 

components.133 This approach allows the explanation of the 

phenotypic response in the target cells, such as tumour cells, as 

well as how the activities of individual components influence 

each other. For the Withania somnifera, an anti-cancer 

therapeutic plant of Ayurveda, bioinformatics analysis was 25 

performed with Ingenuity Pathway Analysis to explore how the 

identified gene targets functionally interact with each other and to 

gain insights from the differences in the networks that may 

correlate with the bioactivities of natural products.133 This study 

identified the critical signal transduction pathways involved in the 30 

biological response and also suggested that the minor changes in 

gene expression were sufficient to evoke major responses. 

 

Table 6. Bioinformatics and systems biology resources useful for analysis of OMICs data. 

NameReference FA Description and URL 

BiologicalNetworks125 Y Software platform for the creation, visualisation and analysis of biological networks. Allows the use of 

microarray gene expression data for pathway analysis: http://biologicalnetworks.org 

CellDesigner126 Y Software for visualisation, editing and simulation of gene-regulatory and biochemical networks: 

http://www.celldesigner.org 

Cell Illustrator127 Y* Software for creation, visualisation and simulation of biological pathway models based on hybrid Petri-net 

with extensions theory. It permits executing simulations with discrete or/and continuous elements: 

http://www.cellillustrator.com 

Cytoscape128 Y Open-source software platform for visualisation of biological networks and their integration with various 

attribute data. It has many plugins for various kinds of bioinformatics analysis: http://www.cytoscape.org 

ConsensusPathDB129 Y Database integrating protein-protein, genetic, signalling, metabolic, gene regulatory, and drug-target 

interactions from various sources. Provides search of interactions and network visualisation based on user-

defined genes and allows the performance of some types of gene/metabolite set analysis: 

http://cpdb.molgen.mpg.de 

DAVID130 Y A set of tools for functional interpretation of large lists of genes derived from genomic and proteomic 

studies: http://david.abcc.ncifcrf.gov 

GSEA131 Y Software based on Gene Set Enrichment analysis allowing the determination of whether a defined set of 

genes from a microarray experiment shows statistically significant differences between two biological 

states: http://www.broadinstitute.org/gsea 

GeneXplain132 N Platform supporting all types of gene expression analyses including normalisation and statistical analysis of 

microarray data, functional and pathway analysis, identification of master network regulators and possible 

drug targets, and analysis of regulatory gene regions: http://genexplain.com 

Ingenuity Pathway 

Analysis133 

N Provides various kinds of pathway and network analysis of complex OMICs data: http://www.ingenuity.com 

MetaCore134 N Integrated software for functional analysis of OMICs data. Provides pathway analysis of OMICs data, 

knowledge mining of the database, target and biomarker assessment, model disease pathways and 

investigation of causal mechanisms: http://thomsonreuters.com/metacore 

Pathway Studio135 N A biological decision support tool helping to understand disease mechanisms and predict putative 

functionality and target-drug interactions by analysing and visualising them in a biological context: 

http://www.elsevier.com/online-tools/pathway-studio 

VANESA136 Y Software for the creation, modelling, visualisation, analysis and Petri net simulation of biological networks: 

http://vanesa.sf.net 

* - freely available with some restrictions; FA – freely available. 35 
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 Klein and co-authors used transcriptome analysis in 

combination with pathway-focused bioassays as a helpful 

approach for gaining deeper insights into the complex 

mechanisms of the actions of multicomponent herbal preparations 

in living cells.138 These authors also used Ingenuity Pathway 5 

Analysis to identify molecular targets and pathways. They 

suggested several mechanisms that underlie the biological 

activity of the preparation Padma 28. 

 Lamb and co-authors introduced Connectivity Map (CMap) as 

a phenotypic-based drug discovery approach based on the 10 

comparison of the disease gene signature and drug-induced 

changes in gene expression profiles in 2006.139 The analysis of 

mapping disease-specific and drug-specific gene signatures can 

be used for drug repositioning. It is considered that if the 

expression of genes that are included in a specific signature of a 15 

particular disease is inversely correlated with the expression of 

the appropriate genes in drug gene signatures, this drug can be 

used for the treatment of the disease.140-142 The use of human 

disease-drug networks created by the gene expression profile 

similarities between the pairs of drug-drug, drug-disease and 20 

disease-disease relationships provides the possibility to identify 

new drug indications, potential side effects, molecular targets and 

biological pathways that are affected by a drug.142,143 Disease-

drug connectivity mapping has been used to reveal common 

mechanisms underlying both diseases and drug side effects.144  25 

 A CMap approach was used in several studies of natural 

products.145-147 For example, Wen and co-authors used it to 

discover the molecular mechanisms of the traditional Chinese 

medicinal formula Si-Wu-Tang (SWT).148 Human breast cancer 

cells (MCF-7) treated with 0.1-µM estradiol or 2.56 mg/ml of 30 

SWT showed dramatic gene expression changes, but no 

significant change was detected for ferulic acid, a known 

bioactive compound of SWT. Pathway analysis using 

differentially expressed genes related to the treatment effect 

showed that expression of genes in the nuclear factor erythroid 2-35 

related factor 2 (Nrf2) cytoprotective pathway was most 

significantly affected by SWT and was not affected by estradiol 

or ferulic acid. The gene expression profile of differentially 

expressed genes related to SWT treatment was compared with 

those of 1,309 compounds in Connectivity Map (CMAP) 40 

database. The CMAP profiles of estradiol-, withaferin A- and 

resveratrol-treated MCF-7 cells showed high similarity to the 

SWT profiles. This study identified SWT as an Nrf2 activator and 

phytoestrogen, suggesting its use as a nontoxic chemopreventive 

agent.  45 

 There are at least three freely available databases with 

microarray data related to drugs and diseases that may be used for 

the creation of disease gene signatures: NCBI Gene Expression 

Omnibus,149 CMAP 139 and Comparative Toxicogenomics 

Database (CTD).150 The CMap approach is limited due to its 50 

applicability only to drugs with experimentally determined drug-

induced changes of gene expression, and it cannot be used for 

virtual screening of new drugs or new drug candidates. This 

limitation may be partly overcome by the prediction of possible 

drug-induced changes of gene expression for new natural 55 

compounds based on existing experimental microarray data. Such 

a possibility was recently realized on a freely available DIGEP-

Pred web service62 (http://www.way2drug.com/GE). This web 

service also provides the links between gene names in the 

predicted drug-induced changes of gene expression and the 60 

Comparative Toxicogenomics Database,150 which simplifies the 

interpretation of predicted results through access to relationships 

of genes with diseases, side effects and biological pathways.62 

 The above-mentioned studies show that the therapeutic 

efficacy of medicinal plants is based on multi-target effects and 65 

that bioinformatics tools should therefore provide a system of 

representation to contribute to the development and enrichment of 

traditional herbal medicine. 

6 Example of a study with combined chemo- and 
bioinformatics methods in drug discovery from 70 

plant natural products 

The estimation of the biological action of medicinal plant extracts 

is a complex task requiring the involvement of chemoinformatics 

methods for the prediction of interactions between the 

phytoconstituents and drug targets, as well as knowledge about 75 

the effects associated with such interactions. These multiple 

interactions may lead to pleiotropic action as well as synergism 

for certain effects. Apart from the direct “cause-effect” 

relationships known from the literature (e.g., inhibition of 

angiotensin-converting enzyme leads to antihypertensive effect), 80 

it is possible to find indirect (hidden) relationships between the 

actions of drug-like compounds on drug targets and therapeutic or 

adverse effects through biological pathways. 

 Let us introduce some types of relationships between targets, 

pathways and effects which are used for computer formalisation 85 

and further discussion (Fig. 1): 

• “Target-effect” relationships describe relations between 

action on a target and biological effect. For example, 

inhibition of cyclooxygenase 1 (COX-1) causes anti-

inflammatory effect (Fig. 1). 90 

• “Target-pathway” relationships describe relations 

between a target and a pathway when the target is 

included in the appropriate pathway. For example, 

COX-1 is included in “arachidonic acid metabolism” 

pathway of KEGG, so action on COX-1 leads to 95 

changing “arachidonic acid metabolism” (Fig. 1). 

•  “Pathway-effect” relationship means that there is a 

relation between action on a pathway and a biological 

effect (for example, action on “arachidonic acid 

metabolism” pathway related with anti-inflammatory 100 

effect (Fig. 1).  

• “Target-pathway-effect” relationships describe 

relations between action on a target, a pathway and a 

biological effect (Fig. 1). 
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Fig. 1. Example of “target-effect”, “target-pathway”, “pathway-effect” and “target-pathway-effect” relationships. 

 5 

 The study of “cause-effect” relationships leads to better drug 

discovery. For example, if we know that an appropriate effect is 

caused by the action of a drug on an appropriate target (e.g., 

Target 1 at Fig. 2) and that this target belongs to a certain 

pathway, we may suggest that influence on this pathway is 10 

related to the observed effect. In this case, we may expect that if a 

new drug acts on any of the other targets (e.g., Target 2 at Fig. 2) 

of this pathway, it may also cause the same effect. This is quite 

possible when we use plant extracts because of the presence of 

many phytocomponents. For example, if we analyse “arachidonic 15 

acid metabolism” pathway of KEGG which contains 80 enzymes 

we can see that there are experimental data for compounds 

interacting with 42 enzymes of this pathway in ChEMBLdb 14. 

Some active compounds interacting with these proteins lead also 

to anti-inflammatory effect. So, we may expect that interaction 20 

with some other proteins may also lead to anti-inflammatory 

effect. 

 

 

 25 

 
 

Fig. 2. General scheme of “target-pathway-effect” relationships analysis. 
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 Because there are several pathway databases, first we need to 

select those resources with the highest number of “target-

pathway” relationships, keeping in mind the available data about 

the known compounds studied on interaction with the analysed 

targets. For this analysis, we calculated the number of “target-5 

pathway” relationships for human proteins in twelve well-known, 

freely available pathway databases (Table 7). The human targets 

with known active compounds were extracted from the 

ChEMBLdb 14 database. Data from the studied pathway 

databases were downloaded at the beginning of 2013. 10 

 

Table 7. The studied pathway databases. 

Name of 

database 

Description and URL Number of 

all 

pathways 

pathways with 

human targets 

from 

ChEMBLdb 

human 

targets from 

ChEMBLdb 

“target – 

pathway” 

relationships 

BioCarta  Signalling and metabolic pathways as dynamic graphic 

models: http://www.biocarta.com/ 

254 246 643 2915 

EHMN  Human-specific metabolic pathways with data on locations 

of subcellular reactions: 

http://www.ehmn.bioinformatics.ed.ac.uk 

70 60 429 932 

HumanCyc  Human-specific metabolic pathways: http://humancyc.org/ 297 224 402 808 

INOH  Signal transduction and metabolic pathways. Uses 

hierarchical, event-centric data modelling with a compound 

graph and has its own set of literature-based ontologies for 

pathway annotation: http://www.inoh.org/ 

93 92 732 2848 

KEGG  Signal transduction, regulatory, metabolic, disease-specific 

pathways and drug development pathways: 

http://www.genome.jp/kegg/pathway.html 

275 248 1877 8952 

NCI 

pathways 

Human signalling and regulatory pathways: 

http://pid.nci.nih.gov/ 

227 220 921 4536 

NetPath  Human immune and cancer signalling pathways: 

http://www.netpath.org/ 

32 26 461 1154 

PharmGKB  Drug action pathways: http://www.pharmgkb.org/ 103 92 544 1191 

Reactome  Human signalling, regulatory and metabolic pathways. 

Human pathways are used to infer orthologous events in 20 

non-human species: http://www.reactome.org 

1442 1202 1727 17288 

Signalink  Signalling pathways with analysis of the regulation of 

pathways members by scaffold and endocytosis-related 

proteins, miRNA, transcriptional factors and regulatory 

enzymes: http://signalink.org/ 

15 15 248 307 

SMPDB  Small molecule pathways including human metabolic, 

metabolic disease, metabolite signalling and drug-action 

pathways with information about relevant organs, 

subcellular compartments, protein cofactors, protein and 

metabolite locations, chemical structures and protein 

quaternary structure: http://www.smpdb.ca/ 

411 340 470 1388 

Wikipathways Community resource of signalling, metabolic, and other 

pathways, in which any registered user can contribute 

additional pathways: http://www.wikipathways.org 

443 335 1664 6680 
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Table 8. Publications with experimental confirmation of PASS prediction results for natural products. 

No Natural productsReference Activity Experimental 

confirmation 

1 Natural products different sources157 Antimycobacterial in vitro 

2 Phytocomponents of Nelumbo, Polygonum, Aristolochia158 Disclosure of new activity literature 

3 Spirosolenol from roots of S. anguvi159  Antiinflammatory in vitro 

4 Violacein160 Antiprotozoal (Leishmania) 

Antiviral  

literature 

5 Phytocomponents of Vitex negundo161 Antioxidant, Antineoplastic in vitro 

6 Phytocomponents of Ficus religiosa L.(Moraceae)162 Anticonvulsant 

GABA aminotransferase inhibitor 

in vivo 

in vitro 

7 Quercetin163 Antiinflammatory, Antibacterial in vitro 

8 Taxol, vinblastine, vincristine, topotecan, irinotecan, etoposide, teniposide164 Antineoplastic literature 

9 Polyketides from marine-derived fungus Ascochyta salicorniae165 Protein phosphatase inhibitor in vitro 

 

 Based on the data represented in Table 7, we selected KEGG, 

Reactome and NCI human pathways for further study as the most 5 

known databases with the highest number of “target – pathway” 

pairs for which active compounds interacting with targets are 

known.  

 Previously, we have shown the capabilities of computational 

methods in the prediction of therapeutic effects and mechanisms 10 

of action along with the evaluation of multi-targeted actions, 

possible additive/synergistic and/or antagonistic effects of natural 

products with PASS151-156 and information about known direct 

“cause-effect” relationships generated by PharmaExpert 

software.27 There are several publications where authors used 15 

freely available web service PASSOnline for prediction of 

biological activity spectrum for natural products with 

experimental confirmation of prediction results (Table 8).  

 In this study, we collected data on structural formulae and 

known biological activities for approximately 2,100 20 

phytoconstituents along with therapeutic applications (122 

therapeutic effects) of extracts of 50 plants used in Traditional 

Indian Medicine. All data are represented in a specially created 

and freely available web-resource: 

http://ayurveda.pharmaexpert.ru. For these phytoconstituents, we 25 

used PASS software26,166,167 to predict probable molecular 

mechanisms of action (interaction with drug-targets) and 

biological effects based on their structural formulae. PASS 

(version 2012) predicted 6,400 types of biological activity 

including 380 therapeutic and 314 adverse effects, 3,634 30 

mechanisms of action and 1,604 activities related to drug-induced 

changes in gene expression. The average accuracy calculated by a 

leave-one-out cross-validation procedure during the training was 

approximately 95%. The lists of 122 known therapeutic effects 

for 50 analyzed medicinal plants and 3,634 mechanisms of action 35 

that were predicted by PASS and were used in this study with 

data on number of active compounds and accuracy of prediction 

for each type of biological activity are represented in Supplement 

material (Table S1, S2). The PASS predicted activity spectrum is 

presented as a list of activities with probabilities “to be active” - 40 

Pa and “to be inactive” - Pi. Pa and Pi values vary from 0 to 1. 

The list of predicted activities is arranged in descending order of 

Pa–Pi values. Thus, the more probable types of activity are at the 

top of the list. If the user chooses a very high value of Pa as a cut-

off for selection of probable activities, the chance to confirm the 45 

predicted activities by the experiment is also high, but many 

actual activities may be lost. The more detailed description of 

PASS approach is represented in the Supplement. 

 The activities from PASS related to action on drug targets 

were linked to the names of pathways from KEGG, Reactome 50 

and NCI human pathways databases in PharmaExpert software 

earlier developed for the analysis of PASS prediction results 

based on published knowledge on “activity-activity” 

relationships.167-169 PharmaExpert contained a database with 

information for more than 10,000 “mechanism – effect” 55 

relationships for 5,823 proteins and 1,704 effects. Based on these 

data, the names of pathways were related to the PASS predicted 

biological effects likewise as described in Fig. 1, 2. The 

parameters of initial and selected data with number of “target-

pathway”, “pathway-effect” and “target-pathway-effect” 60 

relationships for targets from different organisms (including 

human, mammalians, viruses, bacteria, parasites and others) 

given in PharmaExpert for the used pathway databases are shown 

in Table 9. 

 65 

Table 9. “Target-pathway”, “pathway-effect” and “target-pathway-effect” relationships for KEGG, Reactome and NCI human pathways 

databases in PharmaExpert. 

Database 

Number of 

All 

pathways 

All 

targets 

Targets with 

known ligands 

from ChEMBL 

Selected 

pathways 

“target-

pathway” 

relationships 

“pathway-

effect” 

relationships 

“target-pathway-

effect” 

relationships 

KEGG  259 14,022 3,137 250 15,460 9,563 8,410,688 

NCI pathways 227 2,541 921 220 4,536 5,210 1,100,999 

Reactome  3,660 12,479 2,982 1,202 30,030 12,720 20,455,249 
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 By comparing the columns “All targets” and “Targets with 

known ligands from ChEMBL” in Table 9, it is clear that only a 

small part of targets (on average approximately 27%) taking part 

in the pathways has known ligands. Nevertheless, these proteins 

belong to the majority of pathways KEGG, NCI pathways and 5 

Reactome databases. We generated “target-pathway”, “pathway-

effect” and “target-pathway-effect” relationships based on the 

idea shown on Fig. 1 and 2. One can see that with pathway data, 

the number of relationships between action on targets (protein) 

and possible effects is considerably increased from 10000 10 

“mechanism-effect” relationships to millions of “target-pathway-

effect” relationships. These relationships allow us, based on 

PASS prediction results, to estimate possible interactions of 

phytoconstituents with known regulatory pathways and hence to 

analyse possible causes for known and new pharmacological 15 

effects of medicinal plants.  

 To demonstrate this approach, we compared the known 

pharmacological effects of 50 TIM plants with PASS predicted 

results for their phytoconstituents. As an example, the results of 

the prediction of therapeutic effects of Aloe vera based on 20 

analysis of its phytocomponents are shown in Table 10. The 

analysis was made without (column Effects in Table 10) and with 

consideration of the information on “mechanism-effect” (column 

MOA in Table 10) and “target-pathway-effect” (columns KEGG, 

NCI pathways and Reactome in Tables 10) relationships by 25 

PharmaExpert.  

 

Table 10. Comparison of direct PASS prediction results of known effects for phytoconstituents of Aloe vera with prediction of known 

effects through “mechanism-effect” (column MOA) and “target-pathway-effect” (columns KEGG, NCI pathways and Reactome) 

relationships from PharmaExpert.  30 

N  Known effects  

PASS Prediction at cut-off Pa>0.5 

Effects MOA KEGG NCI pathways Reactome Any mode 

1  Antibacterial  + + + + + + 

2  Antifungal  + + + + + + 

3  Anti-inflammatory  + + + + + + 

4  Antimutagenic  + - - - - + 

5  Antioxidant  + + - - + + 

6  Antiprotozoal (Leishmania)  + - - - - + 

7  Antiulcerative  + + + - + + 

8  Cardioprotectant  + - + + + + 

9  Cytostatic  + - - - + + 

10  Cytotoxic  + - + + + + 

11  Hepatoprotectant  + + + + + + 

12  Hypoglycemic  - + + + + + 

13  Hypolipemic  - + + - + + 

14  Immunostimulant  - - + + + + 

15  Neurodegenerative diseases treatment  - - + + + + 

16  Wound-healing agent  - + + + + + 

True Positives (TP) 11 9 12 10 14 16 

True Negatives (TN) 67 63 54 67 49 28 

False positives (FP) 39 43 52 39 57 78 

False negatives (FN) 5 7 4 6 2 0 

Sensitivity, TP/(TP+FN) 0.69 0.56 0.75 0.63 0.88 1.00 

Specificity, TN/(TN+FP) 0.63 0.59 0.51 0.63 0.46 0.26 

Precision, TP/(TP+FP) 0.22 0.17 0.19 0.20 0.20 0.17 

Effects – known therapeutic effects predicted by PASS with Pa>0.5; MOA – known therapeutic effects for which some mechanism of 

their action was predicted with Pa>0.5; Any mode - known therapeutic effects, which were revealed by any modes. 
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 We collected information about the structures of 31 

phytocomponents of Aloe vera. PASS prediction was made for 

these structures with a threshold of Pa>0.5. The direct prediction 

of the known effect was considered as corresponding to known 

data if the effect was predicted for at least one structure. Thus, 11 5 

of 16 known therapeutic effects of Aloe vera (or 69%) were 

correctly revealed by direct PASS prediction of these effects. The 

prediction of the known effect through their known mechanisms 

of action (MOA), i.e., with the use of “mechanism-effect” 

relationships, was considered as corresponding to known data if 10 

any MOA related to the effect was predicted for at least one 

structure. Thus, 9 of 16 known therapeutic effects of Aloe vera 

(or 56%) were estimated correctly by PASS prediction of MOAs 

related with these effects. Despite the lower number of predicted 

known effects by prediction of MOA, some of the MOA-15 

predicted effects are different from the directly predicted effects 

(Hypoglycemic, Hypolipemic and Wound-healing agent). 

 Prediction of known effects by “target-pathway-effect” 

relationships analysis for the pathways databases along with the 

increased number of predicted known effects (e.g., 12 from 16 20 

(75%) for KEGG and 14 from 16 (87.5%) for Reactome) 

provided additional explanations for unpredicted known effects 

by direct PASS prediction or through PASS prediction of their 

MOAs (Immunostimulant and Neurodegenerative diseases 

treatment). At the same time, there were effects that were 25 

predicted only by direct PASS prediction (Antimutagenic and 

Antiprotozoal (Leishmania)). This may be explained by 

insufficient data on their MOAs and related pathways in 

PharmaExpert. Summarising the results presented in Table 10 

shows that all known effects were predicted by at least one 30 

method of analysis.  

 Similar analyses were performed for all 50 plants (Table S3 in 

Supplement material). The summary results of this analysis are 

represented in Fig. 3. They demonstrated that the number of 

revealed effects were higher in all modes using information about 35 

known “mechanism-effect” (MOA) or “target-pathway-effect” 

(KEGG, NCI pathways and Reactome) relationships. At that, 

precision values were also higher for these modes than for direct 

prediction of therapeutic effects. 

 Fifty TIM plants have different numbers of known 40 

phytocomponents that reflects the degree of their study. It should 

be noted that the predicted biological activity of a single molecule 

from plant extracts is not always correlate with biological activity 

of plant extract. The same situation is observed and for 

correlation between experimental determined biological activity 45 

of a single molecule and plant extract because of interactions 

between phytocomponents and insufficient concentration to 

reveal these effects. Nevertheless, despite the small number of 

known phytocomponents for some plants, in most cases, they are 

the main components that are considered to relate to the plants’ 50 

therapeutic effects. Therefore, we considered that the well-known 

therapeutic effects of plants might be revealed by the use of the 

proposed approach. This is confirmed by the data presented in 

Fig. 3, which shows the average percentage of predicted known 

therapeutic effects by their direct prediction of PASS or through 55 

predicted MOA or “target-pathway-effect” relationships based on 

data from the pathways databases.  

 

 
Fig. 3. Average percentages of known plants’ effects predicted by 60 

different modes for phytoconstituents from 50 TIM plants. 

 

 Thus, our study shows that the number of correctly predicted 

known therapeutic effects of medicinal plants is considerably 

increased by the use of ligand-based prediction of biological 65 

activity spectra of their phytoconstituents along with the data on 

related mechanisms of action and “target-pathway-effect” 

relationships. This study may be a starting point for further in 

silico network and pathway analysis by the methods discussed in 

the previous part of the review for improving the identification of 70 

the true reasons for the observed therapeutic effects and reducing 

the false positives in the search for new therapeutic applications 

of plant extracts. 

7 Conclusions 

The use of in silico methods for drug discovery in natural 75 

products has increased during the previous decade. The 

appearance of new chemo- and bioinformatics methods, along 

with a growing range of OMICS data and data on phytochemical 

structures opens vast perspectives in the study of pharmacological 

activity of plant preparations. Nevertheless, scientists should 80 

consider the quality of the data and computational models used. 

For example, Kalliokoski and co-authors showed that standard 

deviations for the fitted Gaussian distributions of ChEBLdb data 

were σpIC50 = 0.87 and σpKi = 0.69.170 (Q)SAR models created 

from these data cannot be more accurate than the experimental 85 

data. The quality of publicly available databases was also 

discussed by Williams and Ekins.171 The crystal structures of 

proteins used for docking and molecular modelling are also 

sometimes far removed from the native protein conformations.172 

Thus, the results of predictions given by both ligand- and target-90 

based drug design approaches must be experimentally tested. 

Simultaneous use of different computational methods (consensus 

models) for estimation of ligand-target interactions allows 

decreasing variance of separate methods.173 All individual models 

contain varying proportions of predictions with uncertainty, and 95 
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averaging them leads to more reliable predictions.174,175 

 The quality and reproducibility of microarray-based 

microRNA profiling,176 protein-protein interactions,177 

proteomics178 and metabolomics179 data are sometimes poor and 

should be further analysed and curated.180,181 Moreover, the 5 

number of known phytoconstituents and their structures is only a 

portion of the total diversity of plant phytocomponents, and many 

new phytoconstituents will be discovered in the future. Therefore, 

despite the increasing number of known phytoconstituents, not all 

pharmacological effects of medicinal plants may be modelled by 10 

their action on drug targets. However, even the application of 

currently available chemo- and bioinformatics resources and 

approaches provides valuable information for discovery of novel 

applications of medicinal plants beyond their traditional use.  
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