MedChemComm

Accepted Manuscript

This is an *Accepted Manuscript*, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about *Accepted Manuscripts* in the **Information for Authors**.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard <u>Terms & Conditions</u> and the <u>Ethical guidelines</u> still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this *Accepted Manuscript* or any consequences arising from the use of any information it contains.

Cite this: DOI: 10.1039/c0xx00000x

www.rsc.org/medchemcomm

CONCISE ARTICLE

More than just GPCR Ligand: Structure-based Discovery of Thioridazine Derivatives as Pim-1 Kinase Inhibitors †‡

Wei Li, Ab Xiaobo Wan, Fanqi Zeng, Yuting Xie, Yanli Wang, Wei Zhang, Li Li, and Niu Huang

Received (in XXX, XXX) Xth XXXXXXXXX 20XX, Accepted Xth XXXXXXXX 20XX\]

DOI: 10.1039/b000000x

Pim-1 kinase is a serine/threonine kinase which plays an important role in cell proliferation and differentiation. The Pim-1 kinase expression is elevated in leukemia and prostate cancer. Accordingly, we employed structure-based hierarchical virtual screening approach to identify potential unknown Pim-1 kinase activity for existing drugs. Among the LOPAC library of pharmacologically active compounds, one top-ranked drug molecule thioridazine, a well-known antipsychotic agent which exerted its biological function as a dopamine receptor antagonist, showed low micromolar activity in the Pim-1 enzymatic assay. We determined the co-crystal structure of thioridazine bound with Pim-1 kinase, and defined the key elements of the pharmacophore by analyzing the structure-activity relationship of thioridazine analogues. In addition, we also assessed our pharmacophore by successfully predicting the Pim-1 activity for the selective Akt inhibitor 10-DEBC. Our discovery of the unknown Pim-1 inhibitory activity of thioridazine and 10-DEBC might provide novel insights in understanding their molecular mechanism of action, and inspire the computation-driven multiple-target drug discovery.

The target binding profile of a drug molecule is essential for understanding its mechanism of action (MOA), as its off-target binding propensities may lead to better clinical efficacy in some circumstances, while causing side effects in other cases. Many marketed drugs today were discovered serendipitously, and the 25 elucidation of their MOA has been usually retrospective. Notably, their therapeutic efficacies were often attributed to their multiple target actions. One example is clozapine. One of the most successful atypical antipsychotic drugs, it was discovered half a century ago, and its clinical efficacy was reported to be associated with its promiscuous binding to dozens of G protein-coupled receptors (GPCRs). Many compounds even designated as single-target drugs are in fact not as specific as originally expected, and

Experimentally testing all drugs on all potential biomolecular targets is practically impossible; therefore, computationally predicting the novel polypharmacology of drug molecules has recently attracted great interest in the field of drug discovery. The one notable method was the development of a statistics-based chemoinformatics approach, similarity ensemble approach (SEA), which had been applied in systematically relating the ligand chemical similarity to biological targets. Complementary to such ligand-based approaches, protein structure-based methods require the structures of known targets to predict protein-ligand binding complexes, and to estimate the binding affinities, like the inverse docking protocol INVDOCK. 10, 11

GPCRs and kinases are two most important drug target families, and many of their ligands are promiscuous within their own protein families. However, the ligand cross-reactivity between kinase inhibitors and GPCR ligands has rarely been reported. Interestingly, a well-known kinase drug, sorafenib, was identified to bind to 5-hydroxytryptamine receptors (5-HTRs) by computationally screening the FDA approved drug molecules against the modelled structure of the 5-HT2A receptor. Therefore, we were wondering whether we could discover known

have been discovered to bind to other targets. For example, Gleevec was initially designed to inhibit the abnormal tyrosine sin kinase BCR-ABL. Subsequently, it was shown to target several other kinases, including c-KIT and PDGFR kinases, which led to its expanded clinical applications in advanced or metastatic gastrointestinal stromal tumor (GIST).^{2, 3}

^a Graduate Program in Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China

^b National Institute of Biological Sciences, Beijing No. 7 Science Park Road, Zhongguancun Life Science Park, Changping District Beijing 102206, China. Fax: 86-10-80720813; Tel: 86-10-80720645; E-mail: huangniu@nibs.ac.cn

[†] Electronic Supplementary Information (ESI) available: Pim-1 and thioridazine, Pim-1 and 10-DEBC complex crystallization, data collection, and structure determination. Modelled complex structures of chlorprothixene analogue, thioridazine, propionylpromazine and amitriptyline. Structural similarity analysis. See DOI: 10.1039/b000000x/ ‡ The authors have declared no conflict of interest.

GPCR ligands with unexpected kinase activities by virtual screening GPCR ligands against therapeutically relevant kinases.

The proviral integration site in Moloney murine leukemia virus (Pim) kinases are a family of proto-oncogenic serine/threonine 5 kinases regulating several signalling pathways that are fundamental to cancer development and progression. 13 As the most studied member of Pim kinases, Pim-1 kinase is highly expressed in a wide range of haematopoietic malignancies and solid cancers, especially in leukemia and prostate cancer. 13, 14 10 Pim-1 kinase adopts a typical kinase fold consisting of Nterminal and C-terminal domains linked by a hinge region. However, the presence of residue P123 at the hinge region disrupts the canonical hydrogen bonding pattern with the adenine moiety of ATP or bound inhibitors due to the lack of the 15 hydrogen bond donor. 15, 16 This unique hinge region architecture suggests that Pim-1 kinase inhibitors might be structurally distinguishable from many classical kinase inhibitors. Therefore, we further asked whether we could discover the unexpected Pim-1 kinase activity of GPCR ligands.

In our continuous endeavor to computationally find novel ligand cross-reactivity, 12, 17 we employed a structure-based hierarchical virtual screening strategy 18, 19 in combination with experimental evaluation to explore the unknown Pim-1 kinase activity of existing drugs and chemical probes with known 25 biological activity (Fig. 1). Briefly, we docked 1,280 LOPAC library compounds (Sigma-Aldrich Corp.) against the ATP binding site of Pim-1 kinase (PDB ID: 2J2I²⁰) using the fastcompute docking program DOCK 3.5.54.21 The automated docking pipeline as described previously, 22, 23 includes the sphere 30 generation, scoring grid and docking calculations. All generated docking poses were subjected to the MM-GB/SA refinement and rescoring procedure. 18, 24 The energy minimizations were performed using Protein Local Optimization Program (PLOP) with all-atom molecular-mechanics (MM) force field and a 35 generalized born surface area (GB/SA) implicit solvent model with variable internal dielectric constant.²⁵ The ligand binding energy was computed by subtracting the energies of the optimized free ligand in solution and the free protein in solution from the optimized ligand-protein complex's energy in solution, 40 accounting for protein-ligand interaction energy, desolvation energies of ligand and protein, and ligand strain energy. Finally, we visually examined the top 1% ranked poses, and chose the compounds of interest for experimental testing.

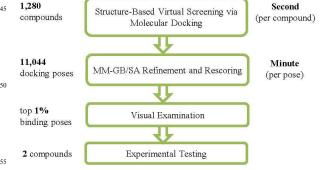


Fig. 1. Flowchart of our structure-based virtual screening strategy.

Interestingly, two well-known GPCR ligands, thioridazine and chlorprothixene analogue, were identified in the top 1% of 60 docking hits (ESI, Fig. S1†). Therefore, we measured the enzymatic inhibition activities of these two compounds using Homogeneous Time Resolved Fluorescence (HTRF) kinase assay as described previously.¹⁷ Thioridazine inhibited Pim-1 kinase with an IC₅₀ value of 6.89 μM (Fig. 2a) while the chlorprothixene 65 analogue showed no inhibitory activity. Since the commercially available thioridazine is a mixture of racemic enantiomers, we tested the purified forms of both enantiomers obtained from Dr. Jørn B. Christensen. 26 The racemic mixture (-/+), the dextrorotatory form (+) and the levorotatory form (-) did not 70 show difference in Pim-1 inhibition activity (Table 1, and ESI, Fig. S2†). We also tested two additional dopamine receptor antagonists, amitriptyline and propionylpromazine. Both compounds adopted similar docking poses as thioridazine (ESI, Fig. S1†); however, the rank of their MM-GB/SA energy scores 75 were below the top 1%. None of the compounds showed activity.



Fig. 2. (a) Dose response inhibition of Pim-1 by thioridazine. The IC₅₀ value was determined from three independent tests. (b) Fitting dextrorotatory form 80 (+) of thioridazine (gray) into an electron density map in the ATP binding-site of Pim-1. The sigma-A weighted 2Fo-Fc electron density map contoured at a level of 1.0σ. Coordinates and detailed methods for the solved crystal structure was deposited to the PDB with the accession ID 4IAA. Molecular images were generated with PvMOL.2

Thioridazine represents a novel class of Pim-1 inhibitors. We submitted thioridazine to the SEA server (http://sea.bkslab.org), but none of kinases were predicted to be thioridazine's potential target based on ligand structural similarity. We also performed pair-wise similarity comparison of thioridazine against the co-90 crystal inhibitors of Pim-1 using ChemMine Web Tools.²⁸ None of the calculated Tanimoto Coefficients are greater than 0.35 (ESI, Table S1†). In addition, the structural similarity analysis against all reported 669 Pim-1 inhibitors in ChEMBL database didn't identify any structural analogues of thioridazine. 95 Therefore, thioridazine could not be predicted as a Pim-1 inhibitor using these ligand-based approaches.

Next, we determined the X-ray crystal complex structure of Pim-1 kinase bound with thioridazine at 2.85 Å resolution (Fig. 2b). Note that we used the racemic mixture in the crystallization 100 study due to the inadequate availability of pure enantiomers, and we fitted the dextrorotatory form (+) of thioridazine into the electron density map in the ATP-site. The detailed experimental procedure is included in Supporting Information (ESI, Table S2†). The overall structure of the Pim-1 kinase resembles published 105 crystal structures. The crystal binding pose of thioridazine is consistent with our docking prediction with an RMSD value of 3 Å using dextrorotatory form for comparision. The electron density of phenothiazine group in thioridazine is very clear, it interacts favorably with hydrophobic residues V52, L174 and

I185 in the ATP binding-site, while no hydrogen bond is formed between thioridazine and the kinase hinge region. Nevertheless, the week electron density map features at aliphatic chain and piperidine ring of thioridazine suggest the conformational 5 diversity and/or the ambiguous configurations of the piperidine ring in the racemic mixture.

To explore the key elements of the binding pharmacophore of thioridazine, we obtained three thioridazine analogues from the National Cancer Institute (NCI) compound library. Compounds 10 NCI186055 and NCI186058, with a chloro or bromo group replacing the methylsulfanyl group on the phenothiazine ring of thioridazine, exhibited similar inhibitory activity to thioridazine (Fig. 3a, Table 1). This result was consistent with the crystallographic position of methylsulfanyl group, which did not 15 form direct contacts with binding-site residues by extending into the solvent (Fig. 2b). On the contrary, compound NCI64076 was nearly inactive (Fig. 3a, Table 1). The major difference between NCI64076 and thioridazine was the length of the aliphatic chain bridging the piperidine ring and the phenothiazine scaffold, 20 which may largely reduce the favorable electrostatic interaction between the positively charged nitrogen atom on the piperidine group and negatively charged residue D128. To further assess the contribution of the aliphatic amines, we synthesized and tested compound b4 along with three intermediates (Fig. 3b, Table 1). 25 All three intermediate compounds were inactive while only compound b4 was as active as thioridazine, which could support the basic components of the pharmacophore: a tricyclic ring scaffold occupying the hydrophobic ATP binding-site, a bridging aliphatic chain with proper length and an aliphatic amine group 30 interacting with negatively charged residue D128.

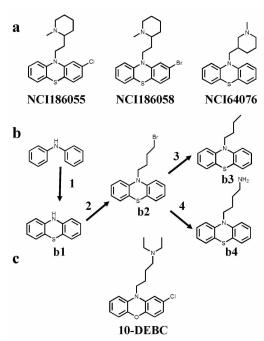


Fig. 3. (a) The chemical structures of three thioridazine derivatives obtained from the National Cancer Institute. (b) Synthesis of phenothiazine derivatives. 35 General synthetic approaches. Reagents: 1. sulfur, I2, 170 °C, 2 h, 60%; 2. 1,4dibromobutane, NaH, 25°C, DMF, overnight, 78%; 3. NaN₃, DMSO/H₂O (5:1), 25°C, 48h, 55%; H₂, Pd/C, MeOH, 50°C overnight, 50%; 4. NaI, NH₃:H₂O, CsCO₃, DMF, 80°C, 2h, 80%. (c) Chemical structure of 10-DEBC.

Additionally, we noticed that one widely used selective Akt inhibitor, 10-DEBC²⁹ (Fig. 3c), satisfied our designated Pim-1 pharmacophore. As expected, 10-DEBC showed strong inhibitory activity with an IC₅₀ value of 1.28 µM. We also determined the X-ray crystal complex structure of 10-DEBC bound with Pim-1 45 (Fig. 4, Table S2†). Comparing two co-crystal structures, the tricyclic scaffolds in both compounds overlap to a great extent while the methylsulfanyl group in thioridazine and the chloro group in 10-DEBC point in opposite directions. At the same crystallographic resolution of 2.85 Å, the electron density map in 50 the 10-DEBC bound structure is sufficiently resolved to place the aliphatic chain and diethylamino group. The charged tertiary amine group in 10-DEBC forms a more favorable electrostatic interaction with residue D128 than the thioridazine (3.5 Å in 10-DEBC vs. 4.5 Å in thioridazine), which may indicate the 55 structural basis of strong inhibitory activity of 10-DEBC.

Table 1. Inhibition of Pim-1 by thioridazine derivatives.

$IC_{50} \left(\mu M\right)^a$	
6.89 ± 1.51	60
7.39 ± 2.59	
7.03 ± 2.52	
8.16 ± 2.47	
6.73 ± 0.45	65
$34.0 \pm 7.2\% \ (100 \ \mu M \)$	
$9.7 \pm 2.1\% (100 \; \mu M)$	
$22.6 \pm 2.9\% \ (100 \ \mu M)$	
$17.6 \pm 8.7\%~(100~\mu\text{M})$	
8.70 ± 3.39	70
1.28 ± 0.28	
	6.89 ± 1.51 7.39 ± 2.59 7.03 ± 2.52 8.16 ± 2.47 6.73 ± 0.45 $34.0 \pm 7.2\% (100 \mu M)$ $9.7 \pm 2.1\% (100 \mu M)$ $22.6 \pm 2.9\% (100 \mu M)$ $17.6 \pm 8.7\% (100 \mu M)$ 8.70 ± 3.39

^a Data are shown as (mean values \pm SD) from three independent determinations.

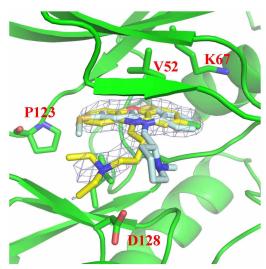


Fig. 4. The detail view of Pim-1 kinase domain with the 10-DEBC (PDB code: 4MED) compared with the thioridazine (PDB code: 4IAA). The protein was shown in a green cartoon representation. The compound 10-DEBC was represented in orange stick and thioridazine was in cyan stick. Several 80 important binding site residues were highlighted. The sigma-A weighted 2Fo-Fc electron density map contoured at a level of 1.0σ.

Thioridazine is an antipsychotic drug known to exert its biological function as a dopamine receptor antagonist. Interestingly, thioridazine has recently been found to selectively target the neoplastic cells, and impair human somatic cancer stem 5 cells capable of in vivo leukemic disease initiation without showing effects on normal blood stem cells.³⁰ The authors proposed that dopamine receptors might serve as a biomarker involved in diverse malignancies. However, it is not clear whether thioridazine's Pim-1 kinase inhibition activity might also 10 contribute to its effect of eradiating cancer stem cells. Several pieces of experimental evidence are available to support our hypothesis. Firstly, Pim-1 kinase has been shown to express in haematopoietic stem cells and embryonic stem cells. 13 Pim-1 mediates the homing and migration of hematopoietic cells 15 through phosphorylation of chemokine receptor 4 (CXCR4).³¹ Pim-1 kinase is also involved in mouse embryonic stem cell selfrenewal.³² Secondly, Pim-1 plays an important physiological role in c-Myc driven tumorigenesis via effective oncogene collaboration, where elevated expression level of Pim-1 is often 20 observed in the context of increased c-Myc levels. 13 Pim-1 phosphorylates c-Myc to stabilize c-Myc in vivo and to enhance c-Myc transforming activity, 33 where c-Myc exerts critical function in both self-renewal and differentiation of stem cells and early progenitor cells.³⁴ Thirdly, elevated levels of Pim-1 kinase 25 have been observed in leukemia cancer cells. 35 Nevertheless, the mechanism of Pim-1 inhibition by thioridazine in cancer stem cell differentiation requires further elucidation.

In addition, thioridazine was reported to induce apoptosis in ovarian, cervical and endometrial cancer cells by targeting 30 Akt/mTOR signalling pathway, where the phosphorylation levels of Akt and 4E-BP1 were decreased by thioridazine treatment. 36, 37 Notably, both Akt and Pim-1 kinases share several common substrates that are involved in apoptosis.³⁸ Pim-1 inhibitor has recently been reported to reduce the phosphorylation of Akt.³⁹ 35 4E-BP1, one of the best characterized targets of the mTOR complex, was identified as a substrate of Pim-1 kinase.⁴⁰ Therefore, it is likely that thioridazine induces apoptosis by modulating Akt/mTOR signalling pathway through Pim-1 inhibition.

In the present study, we also predicted the Pim-1 activity of a selective Akt inhibitor 10-DEBC based on our derived pharmacophore from thioridazine derivatives. Our biochemical and structural analysis validated its Pim-1 inhibitory activity. 10-DEBC was reported to be a micromolar inhibitor of Akt (5 µM).²⁹ 45 However, it was also reported to induce autophagy through an

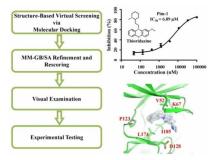
Akt-independent mechanism in neurons.⁴¹ Our result suggests that the cellular functions of 10-DEBC might relate to its Pim-1 inhibitory activity.

In summary, a selective dopamine receptor antagonist, 50 thioridazine, was identified to be a low micromolar inhibitor of Pim-1 kinase by a structure-based hierarchical virtual screening approach. The cocrystal structure, SAR study and pharmacophore evaluation indicated that a tricyclic scaffold with a proper aliphatic side chain bridged tertiary amine might present a novel 55 class of Pim-1 inhibitor. Moreover, a selective Akt inhibitor 10-DEBC possessing the key pharmacophore elements was shown to exhibit strong in vitro Pim-1 activity. Therefore, it is intriguing whether the Pim-1 inhibitory activity of thioridazine and 10-

DEBC contributes to their mode of action. We hope that our 60 present results will not only provide a novel scaffold for Pim-1 inhibitor design, but also inspire the computation-driven multipletarget drug discovery.

Acknowledgements

We thank the National Cancer Institute (NCI) for providing the compounds. We thank Dr. Jørn B. Christensen (University of Copenhagen, Denmark) for generously providing us the pure enantiomers of thioridazine. We also thank Dr. Andrew Christofferson for proofreading. Computational resource was 70 supported by the Supercomputing Center of Chinese Academy of Sciences (SCCAS). Financial support from the Chinese Ministry of Science and Technology "973" Grant 2011CB812402 (to NH).


References

- 75 1. B. L. Roth, D. J. Sheffler and W. K. Kroeze, Nat. Rev. Drug Discov., 2004, 3, 353-359.
 - R. Capdeville, E. Buchdunger, J. Zimmermann and A. Matter, 2. Nat. Rev. Drug Discov., 2002, 1, 493-502.
- 3. M. A. Fabian, W. H. Biggs, 3rd, D. K. Treiber, C. E. Atteridge, M. D. Azimioara, M. G. Benedetti, T. A. Carter, P. Ciceri, P. T. Edeen, M. Floyd, J. M. Ford, M. Galvin, J. L. Gerlach, R. M. Grotzfeld, S. Herrgard, D. E. Insko, M. A. Insko, A. G. Lai, J. M. Lelias, S. A. Mehta, Z. V. Milanov, A. M. Velasco, L. M. Wodicka, H. K. Patel, P. P. Zarrinkar and D. J. Lockhart, Nat. Biotechnol., 2005, 23, 329-336.
- 4. S. Peng, X. Lin, Z. Guo and N. Huang, Curr. Top. Med. Chem., 2012, 12, 1363-1375.
- J. B. Brown and Y. Okuno, Chem. Biol., 2012, 19, 23-28. 5.
- 6. A. L. Hopkins, Nat. Chem. Biol., 2008, 4, 682-690.
- M. J. Keiser, B. L. Roth, B. N. Armbruster, P. Ernsberger, J. J. 90 7. Irwin and B. K. Shoichet, Nat. Biotechnol., 2007, 25, 197-206.
- 8. M. J. Keiser, V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas, S. J. Hufeisen, N. H. Jensen, M. B. Kuijer, R. C. Matos, T. B. Tran, R. Whaley, R. A. Glennon, J. Hert, K. L. Thomas, D. D. Edwards, B. K. Shoichet and B. L. Roth, Nature, 2009, 462, 175-181
- 9. E. Lounkine, M. J. Keiser, S. Whitebread, D. Mikhailov, J. Hamon, J. L. Jenkins, P. Lavan, E. Weber, A. K. Doak, S. Cote, B. K. Shoichet and L. Urban, Nature, 2012, 486, 361-
- 10. Y. Z. Chen and C. Y. Ung, J. Mol. Graph. Model., 2001, 20, 199-218
- Y. Z. Chen and D. G. Zhi. Proteins, 2001, 43, 217-226. 11
- 12. X. Lin, X. P. Huang, G. Chen, R. Whaley, S. Peng, Y. Wang, G. Zhang, S. X. Wang, S. Wang, B. L. Roth and N. Huang, J. Med. Chem., 2012, 55, 5749-5759.
- 13. M. C. Nawijn, A. Alendar and A. Berns, Nat. Rev. Cancer., 2011. 11. 23-34.
- 14. N. Ogawa, H. Yuki and A. Tanaka, Expert. Opin. Drug Discov., 2012, 7, 1177-1192.
- 15. A. Kumar, V. Mandiyan, Y. Suzuki, C. Zhang, J. Rice, J. Tsai, D. R. Artis, P. Ibrahim and R. Bremer, J. Mol. Biol., 2005, **348**, 183-193.
- S. Schenone, C. Tintori and M. Botta, Curr. Pharm. Des., 16. 2010, 16, 3964-3978.
- X. Wan, W. Zhang, L. Li, Y. Xie, W. Li and N. Huang, J. 17. Med. Chem., 2013, 56, 2619-2629.
- N. Huang, C. Kalyanaraman, J. J. Irwin and M. P. Jacobson, J. 18. Chem. Inf. Model., 2006, 46, 243-253.
- 120 19 R. Cao, M. Liu, M. Yin, Q. Liu, Y. Wang and N. Huang, J. Chem. Inf. Model., 2012, 52, 2730-2740.

- 20. O. Fedorov, B. Marsden, V. Pogacic, P. Rellos, S. Muller, A. N. Bullock, J. Schwaller, M. Sundstrom and S. Knapp, Proc. Natl. Acad. Sci. USA, 2007, 104, 20523-20528.
- 21. D. M. Lorber and B. K. Shoichet, Curr. Top. Med. Chem., 2005, 5, 739-749.
- N. Huang, B. K. Shoichet and J. J. Irwin, J. Med. Chem., 2006, 22. **49**, 6789-6801.
- J. J. Irwin, B. K. Shoichet, M. M. Mysinger, N. Huang, F. 23. Colizzi, P. Wassam and Y. Cao, J. Med. Chem., 2009, 52, 5712-5720.
- N. Huang, C. Kalyanaraman, K. Bernacki and M. P. Jacobson, 24. Phys. Chem. Chem. Phys., 2006, 8, 5166-5177.
- 25. K. Zhu, M. R. Shirts and R. A. Friesner, J. Chem. Theory. Comput., 2007, 3, 2108-2119.
- 15 26. J. B. Christensen, O. Hendricks, S. Chaki, S. Mukherjee, A. Das, T. K. Pal, S. G. Dastidar and J. E. Kristiansen, PLoS One, 8, e57493.
- DeLano, W. L. The PyMOL Molecular Graphics System; 27. DeLano Scientific: San Carlos, CA, USA, 2002; computer program
- 28. T. W. Backman, Y. Cao and T. Girke, Nucleic Acids Res., 2011, 39, W486-491.
- 29. K. N. Thimmaiah, J. B. Easton, G. S. Germain, C. L. Morton, S. Kamath, J. K. Buolamwini and P. J. Houghton, J. Biol. Chem., 2005, 280, 31924-31935.
- 30. E. Sachlos, R. M. Risueno, S. Laronde, Z. Shapovalova, J. H. Lee, J. Russell, M. Malig, J. D. McNicol, A. Fiebig-Comyn, M. Graham, M. Levadoux-Martin, J. B. Lee, A. O. Giacomelli, J. A. Hassell, D. Fischer-Russell, M. R. Trus, R. Foley, B. Leber, A. Xenocostas, E. D. Brown, T. J. Collins and M. 30 Bhatia, Cell, 2012, 149, 1284-1297.
 - 31. R. Grundler, L. Brault, C. Gasser, A. N. Bullock, T. Dechow, S. Woetzel, V. Pogacic, A. Villa, S. Ehret, G. Berridge, A. Spoo, C. Dierks, A. Biondi, S. Knapp, J. Duyster and J. Schwaller, J. Exp. Med., 2009, 206, 1957-1970.
- 32. I. Aksoy, C. Sakabedoyan, P. Y. Bourillot, A. B. Malashicheva, J. Mancip, K. Knoblauch, M. Afanassieff and P. Savatier, Stem Cells, 2007, 25, 2996-3004.
- 33. Y. Zhang, Z. Wang, X. Li and N. S. Magnuson, Oncogene, 2008, 27, 4809-4819.
- 34. M. J. Murphy, A. Wilson and A. Trumpp, Trends Cell Biol., 2005, 15, 128-137.
- R. Amson, F. Sigaux, S. Przedborski, G. Flandrin, D. Givol 35. and A. Telerman, Proc. Natl. Acad. Sci. USA, 1989, 86,
- 36. S. Kang, S. M. Dong, B. R. Kim, M. S. Park, B. Trink, H. J. Byun and S. B. Rho, Apoptosis, 2012, 17, 989-997.
- 37. S. B. Rho, B. R. Kim and S. Kang, Gynecol. Oncol., 2011, **120**, 121-127.
- 50 38. M. A. Sussman, Expert Rev. Cardiovasc. Ther., 2009, 7, 929-938
- 39. A. T. Fathi, O. Arowojolu, I. Swinnen, T. Sato, T. Rajkhowa, D. Small, F. Marmsater, J. E. Robinson, S. D. Gross, M. Martinson, S. Allen, N. C. Kallan and M. Levis, Leuk. Res., 2012, 36, 224-231.
- 40. W. W. Chen, D. C. Chan, C. Donald, M. B. Lilly and A. S. Kraft, Mol. Cancer Res., 2005, 3, 443-451.
- 41. A. S. Tsvetkov, J. Miller, M. Arrasate, J. S. Wong, M. A. Pleiss and S. Finkbeiner, Proc. Natl. Acad. Sci. USA, 2010, 107, 16982-16987.

TOC

A structure-based hierarchical virtual screening method was employed to identify a GPCR ligand, thioridazine as a Pim-1 5 kinase inhibitor.

