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Abstract 

The crystal structure of the versatile CYP109B1 enzyme from Bacillus subtilis has been solved at 1.8 

Å resolution. This is the first structure of an enzyme from this CYP family, whose members are 

prevalent across diverse species of bacteria. In the crystal structure the enzyme has an open 

conformation with an access channel leading from the heme to the surface. The substrate-free 

structure reveals the location of the key residues in the active site that are responsible for binding the 

substrate in the correct orientation for regioselective oxidation. Importantly, there are significant 

differences among these residues in members of the CYP109 and closely related CYP106 families 

and these likely account for the variations in substrate binding and oxidation profiles observed with 

these enzymes. A whole-cell oxidation biosystem was developed, which contains CYP109B1 and a 

phthalate family oxygenase reductase (PFOR), from Pseudomonas putida KT24440, as the electron 

transfer partner. This electron transfer system is able to support CYP109B1 activity resulting in the 

regioselective hydroxylation of both α- and β-ionone in vivo and in vitro. The PFOR is therefore a 

versatile electron transfer partner that is able to support the activity of CYP enzymes from other 

bacterium. The crystal structure of CYP109B1 has a positively charged proximal face and this 

explains why it can interact with the PFOR and adrenodoxin which are predominantly negatively 

charged around their [2Fe-2S] clusters.  
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Introduction 

The cytochromes P450 are a group of heme thiolate–ligated monooxygenase enzymes found in 

almost all forms of life. They catalyse reactions in important metabolic pathways, including a wide 

variety of oxidative reactions, the most common being the insertion an oxygen atom from dioxygen 

into chemically inert carbon-hydrogen bonds with high regio- and stereoselectivity.1, 2 As such they 

are involved in the synthesis of diverse organic molecules (such as the biosynthesis of lipids, steroid 

hormones) and complex antibiotics (such as vancomycin and erythromycin) as well as in the 

detoxification of xenobiotics including the metabolism of drugs.1-3 The ability of bacterial 

monooxygenase enzymes to catalyse regioselective and stereoselective hydroxylation reactions 

under mild conditions has resulted in extensive efforts to isolate and engineer robust CYP enzymes 

for chemical applications.4-8 

Dioxygen activation by CYP enzymes requires two electrons that are usually derived from 

NAD(P)H and delivered by electron transfer proteins.1, 9 Bacterial P450 enzymes use a variety of 

electron transfer partner systems including different types of NAD(P)H dependent ferredoxin 

reductases, ferredoxins, flavodoxin and fusion proteins.8-12 The identification of a suitable electron 

transfer partner is often critical for efficient turnover.13-15 

The CYP109 family enzyme, CYP109A1, was identified in Bacillus subtilis strain W2316, 17 and 

other members of this family are prevalent in many strains of Bacillus.15, 16 CYP109B1, from Bacillus 

subtilis strain 168, is the most extensively studied enzyme from this family and has been reported to 

hydroxylate compactin to pravastatin and valencene to nootkatol and nootkatone. The oxidation of 

fatty acids along with testosterone and other steroids has also been described.18-21 Additionally, the 

CYP109C1, CYP109C2, and CYP109D1 enzymes from Sorangium cellulosum So ce56 have been 

investigated:22 these enzymes have all been shown to bind and turnover fatty acids with oxidation 
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occurring at the ω−1 to ω−6 positions. The natural electron transfer systems of these CYP109 family 

enzymes are as yet unknown and mitochondrial adrenodoxin and adrenodoxin reductase have been 

used as surrogate electron transfer partners to support their activity.20, 23 

Both CYP109B1 and CYP109D1 have been tested for their potential to oxidise the 

norisoprenoids α- and β-ionone (Scheme 1). 20, 23, 24 Norisoprenoids are a family of natural products, 

related to terpenes, which serve a range of important physiological functions and are fragrance 

compounds with floral scents.25 The oxygenated products of ionones are desirable compounds and 

can be used as synthetic building blocks, for example 4-hydroxy-β-ionone is an important 

intermediate for the synthesis of carotenoids and deoxyabscisic acid.15, 26, 27  

Here we report the crystal structure of CYP109B1, the first to be reported for a member of this 

CYP family. This allows detailed comparison of different CYP109 enzymes and members of other 

related families such as CYP106A2 and CYP278A1. We also have developed a whole-cell oxidation 

system for CYP109B1 exploiting a phthalate family oxygenase reductase (PFOR) from 

Pseudomonas putida KT24440 as the electron transfer partner.10 Using this whole-cell system we 

were successfully able to regioselectively hydroxylate both α- and β-ionone, which together with the 

structure of CYP109B1 will enable further development of this system towards the production of 

high value compounds.
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Results 

Phylogenetic analysis of the CYP109 family 

In order to assess how common the CYP109 family is across the bacterial kingdom we utilised the 

Basic Local Alignment Search Tool (BLAST) to search for similar enzymes to CYP109B1 from B. 

subtilis st. 168. 27 Eleven P450s with > 90% sequence identity and a further nineteen with > 60% 

sequence identity were discovered in different strains of Bacillus bacteria. A much larger number, 

with > 40% sequence identity, were found (∼ 200) in strains of Bacillus and related bacteria such as 

Paenibacillus, 28 Brevibacillus 
29 and other bacterial strains such as Arthrobacter, 30 Ktedonobacter, 

31 Herpetosiphon, 32 Haloferax 
33 and S. cellulosum (CYP109C1, CYP109C2 and CYP109D1). The 

CYP109B1 enzyme also shares > 40% sequence identity with the CYP106A1 and CYP106A2 

enzymes, both from strains of B. megaterium. The CY106 enzymes oxidise steroids and di- and 

tri-terpenoids.34-36 CYP109C1 and CYP109C2 shared > 40% sequence identity with other CYP 

enzymes from strains of Paenibacillus, Bacillus and Arthrobacter while CYP109D1 from S. 

cellulosum had a lower sequence homology with the Bacillus CYP enzymes. However CYP109D1 

does share > 40% sequence identity with several CYP enzymes from Mycobacterium strains 

including CYP278A1 and CYP123B1 from M. marinum (Table 1).37 

 In order to better understand the relationship of these CYP enzymes from different bacterial 

strains we compared the sequence of CYP109B1 with other CYP109 and CYP106 members from 

selected Bacillus strains, and the other members of the CYPome of B. subtilis str. 168 (CYP102A2, 

CYP102A3, CYP107H1, CYP107J1, CYP107K1, CYP134A1 and CYP152A1) (Fig. 1).38-49 A 

phylogenetic tree of these Bacillus CYP enzymes, and the CYP109 enzymes from S. cellulosum, 

CYP278A1 from M. marinum and other well characterised bacterial CYP enzymes highlights that, 

as expected, the CYP109 enzymes cluster together but that there are different levels of sequence 
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homology depending on the strain of Bacillus (Fig. 1 and Table 1). It is of note that CYP106A1 and 

CYP106A2 are more similar to the CYP109B subfamily enzymes than are CYP109 members from 

the A, C and D subfamilies suggesting these systems are related and would be expected to share 

functional similarities. The CYP109C1 and CYP109C2 enzymes from S. cellulosum have greater 

similarity to CYP109B1 than CYP109D1 from the same bacterium. However the CYP109C and 

CYP109D subfamily members all have a lower homology with CYP109B1 than the CYP109A1 

enzyme from B. subtilis strain W23. CYP278A1 from M. marinum is most closely related to 

CYP109D1. CYP123B1 from M. marinum also has > 40% similarity with CYP109D1, whilst 

CYP123 from M. tuberculosis strain H37Rv clusters with the CYP107 family enzymes. The 

CYP107 family congregates together with the CYP109 family while the CYP102 family and the 

peroxygenase enzyme, CYP152A1, form a distinctive grouping (Fig. 1).  

To analyse the local sequence similarities between the CYP109 family members we aligned the 

sequences of CYP109B1, CYP109C1, CYP109C2 and CYP109D1 with CYP109 enzymes from B. 

mojavensis, B. amyloliquefaciens and B. cereus, CYP106A2 from B. megaterium ATCC13368 and 

CYP278A1 from M. marinum (Fig. 2); we also included CYP101A1 (P450cam) for comparative 

purposes. CYP109B1 is broadly similar to the other CYP109 family members and there are 

numerous regions of high sequence identity and similarity between all the enzymes. The EXXR 

motif of the K-helix, which has been linked to heme incorporation, is strictly conserved in all the 

CYP109 P450s analysed in this work (EEXLR).50, 51 Other areas that appear particularly well 

conserved include the I-helix and the proximal heme binding loop (Fig. 2 and S1). In the I-helix the 

acid-alcohol pair is conserved with glutamate and threonine residues being strictly maintained 

(Glu242 and Thr243 in CYP109B1) with the exception of CYP109D1, where the glutamate residue 

is replaced with an aspartate (Fig. 2 and S1).52 Analysis of the residues between Leu236 and Thr245 
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of the I-helix (Fig. S1) reveals that the only residue that shows significant variation between the 

CYP109 family members and CYP278A1 is Asn241, in CYP109B1: this corresponds to a Thr 

residue in CYP109C1, a His residue in CYP109C2 and a Ser residue in CYP278A1. The only other 

changes in this region occur at Leu237 (Val residue in CYP278A1), Val238 (Ala residue in 

CYP109C1) and Thr244 (Ala residue in CYP109C1). Thus, the 236LLVAGNETTT245 sequence is 

conserved across all the members of the CYP109B and CYP109A subfamilies aligned in this work 

(Fig. 2). The CYP106A2 enzyme showed greater variations in this region compared to the CYP109 

and CYP278A1 enzymes having the equivalent sequence ILGAGVETTS (with differences 

highlighted in bold). 

The heme binding domain is also highly conserved (Fig. 2 and S1) with the residues 

highlighted in bold in the following motif HXXFGXGXHFCXGAXL being strictly maintained 

across the CYP109 and CYP106A2 enzymes. The phenylalanine, seven residues before the iron 

binding cysteine residue, is replaced by a leucine in CYP278A1 (Fig. S1).53 The first and third 

residues after the cysteine, which are involved in the proximal hydrogen bonding interactions with 

the sulfur of this residue and stabilise the heme and regulate its redox potential, are well conserved. 

The first is a leucine or isoleucine whilst the latter is an alanine in all the CYPs aligned in Fig. 

2.54-56 CYP106A2, CYP109D1 and CYP278A1 have a different arrangement of proline residues, 

prior to the heme binding loop, when compared to Pro336 and Pro338 in CYP109B1, which may 

lead to subtle changes in this part of the substrate binding pocket in these enzymes. 

Obvious areas of difference between the enzymes analysed include the insertion of additional 

amino acids between the A- and B-helices in CYP109D1 and CYP278A1 and a further insertion 

between the D- and E-helices in CYP278A1. CYP109D1 also has a deletion in the G-helix 

compared to the other CYP enzymes (Fig. 2) while CYP109 from B. cereus has a two amino acid 
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insertion at the end of this helix. CYP109B1 and the CYP109 enzymes from B. mojavensis and B. 

amyloliquefaciens possess fewer residues at the C-terminus of the L-helix. CYP106A2 has a ten 

amino acid insertion prior to the first substrate recognition site (SRS1, before Met70 in CYP109B1) 

and a truncated G-helix compared to CYP109B1. 

There are differences in the six regions assigned as substrate recognition sites (SRS1-6) as 

defined by Gotoh. 57 These substrate recognition sites are the residues that comprise the active site 

of the CYP109 enzymes. For example the CYP109D1 interaction with ionone has been modelled 

and the His94 residue in SRS1 was postulated to be important in H-bonding to the carbonyl oxygen 

of the ionone substrate. This residue is not well conserved across the CYP109 enzymes being 

replaced by an asparagine residue, Asn83, in CYP109B1, vide infra (Fig. 2). 

Structure of CYP109B1 

The overall structure of CYP109B1 

The crystal structure of CYP109B1 was solved at 1.8 Å resolution using molecular replacement and 

the PDB file 2WHW as a search model. The molecule was traced from residues Asp22 to Met396 

with gaps due to unresolved electron density between Met70 to Gly78 and Glu216 to Gly221; these 

correspond to the flexible parts of cytochrome P450 enzymes between B/B′ and H/I loops. Despite 

the absence of electron density in these regions it is apparent that CYP109B1 displays the classic 

P450 fold with eleven helices and nine β-sheets observed (Fig. 3a, Table S1).  

CYP109B1 was crystallised in an open conformation with an access channel leading from 

the heme to the enzyme surface (Fig. S2). The F-helix and G-helix extend out forming the access 

channel and these helices along with the F/G loop (Val166 to Ala176) and B/B′ loop, which is at the 

top of the channel are likely to play a role in substrate recognition and entry (Fig. 3 and Fig. S2). 

The tertiary structure of CYP109B1 matches closely those of other CYP enzymes which have been 
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crystallised with an open conformation including CYP101A1 (PDB: 3L61) and CYP101D2 (PDB: 

3NV5) (Fig. S3).58, 59 

The heme environment 

The heme-iron is bound to the proximal cysteine ligand, Cys349 (2.3 Å) and Wat28 is the sixth iron 

ligand (Fe–O, 2.4 Å, Table S2). In this structure the iron is out of the plane of the heme by 0.5 Å 

toward the proximal cysteine sulfur. The sulfur of this cysteine forms hydrogen bonds with the main 

chain atoms of Phe342, His347, Phe348 and Gly351 (Fig. 3b). These residues are conserved across 

all members of the different CYP109 family (and CYP106A2) and their interactions with the atoms 

in the peptide chain backbone are conserved across other P450 enzymes even though the identity of 

the residues may differ. 

Like other CYP enzymes, the B- and C-rings of the heme in CYP109B1 interact with the 

polypeptide chain via hydrophobic interactions with non-polar residues from the D-, I- and 

L-helices. The A-ring propionate forms a salt bridge with the side-chain of Arg291 and a hydrogen 

bond with three water molecules (Wat9, Wat65 and Wat78) (Fig. S4). The D-ring propionate forms 

salt bridges with N atoms from the side chains of His89, His347 and Arg93 and is in van der Waals 

contact with Ile82. The residues His89, Arg93, Arg291 and His347 are all conserved across the 

CYP109 family members and the CYP106A2 and CYP278A1 enzymes (Fig. S4). They are also 

found in other CYP enzymes, for example in the CYP101 subfamily of enzymes these Arg and His 

residues are conserved, with the exception of CYP101A1 where a Gln residue replaces His89, 

which suggests the heme to protein interactions have been preserved (Fig. 2).14, 58, 60, 61 The Ile82 

residue aligns structurally with Thr101 in CYP101A1, which extends into the active site and 

presumably plays a role in substrate binding (Fig. 3c). This residue varies among the CYP109 

enzymes but is always an aliphatic hydrophobic residue (Ile, Leu or Val) while it is also a Thr 
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residue in CYP106A2.  

The active site  

The first tier of the active site consists of predominantly hydrophobic residues including Ile82, 

Ala239, Pro285 and Leu289 (Fig. 3c). Ala239 and Pro285 are well conserved across the CYP109 

family while Ile82 (vide supra) and Leu289 show more diversity. Leu289 varies from Val, Leu, Ile 

and Met residues in the CYP109 enzymes. Thr243, of the acid-alcohol pair, is also found in this tier 

and all of these residues are within 4 Å of the heme group (Fig. 3c). As part of the acid-alcohol pair, 

Thr243 is hypothesised to be involved in facilitating proton delivery to the bound dioxygen and 

stabilising the ferrous-oxy form, both of which are important in the cleavage of the O−O bond to 

generate the reactive intermediate.52, 62 The acidic residue Glu242 points away from the active site 

in a similar fashion to that observed in the open conformations of other P450 systems. Glu242 

hydrogen bonds directly to two water molecules and there is no obvious salt-bridge network as 

observed in the CYP101 family of enzymes (Fig. 3d).14, 63, 64 

Asn83, which corresponds to His94 in CYP109D1 - the residue proposed to be important in 

ionone binding, sits in the tier of residues above those in the immediate vicinity of the heme, with 

the side chain pointing into the active site (Fig. 3d). While this residue is also conserved in the 

CYP109B subfamily enzymes from B. mojavensis and B. amyloliquefaciens and CYP278A1 it 

varies in more distant CYP109 relatives. The corresponding amino acid is a Gly residue in the 

CYP109B subfamily member for B. cereus, a Thr residue in CYP109A and a Phe residue in both 

CYP109C1 and CYP109C2 (Fig. 2). 

Leu235 of the I-helix forms part of the second tier of residues which point into the active site 

(Fig. 3d). This corresponds to Leu244 of CYP101A1 and this leucine is well conserved across the 

CYP109B subfamily (Fig. 4a); however, it varies in the other CYP109 subfamilies; CYP109C1 
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(Phe), CYP109D1 (Gly) and in CYP278A1 (Thr) (Fig. 2). Val238 of CYP109B1, equivalent to 

Val247 in CYP101A1, would also be expected to be part of this second tier of active site residues. 

However, in the open structure it points away from the active site towards the access channel in a 

similar position to Val247 and Leu253 in the open structures of CYP101A1 and CYP101D2, 

respectively.58, 59 This residue is well conserved across the P450 enzymes discussed here with only 

CYP109C1 showing any variation (Ala). 

The residues either side of Ala286, in SRS5, are both proline residues. One, Pro285 as noted 

earlier, is conserved across the CYP109 family while the other, Pro287, is only conserved in 

CYP109B1 and the closely related subfamily members from B. mojavensis and B. 

amyloliquefaciens. In the other enzymes the corresponding residue is a Gln (Ile and residues in 

CYP106A2 and CYP101A1, respectively, Fig. 2 and 3d). Proline residues are known to cause 

structural changes in the surrounding region and the orientation of the loop comprising these 

residues is different to the equivalent loops in the open conformations of CYP101A1 and 

CYP101D2 (Fig. 4b). A similar arrangement of two proline residues is found in P450Bm3 

(CYP102A1), CYP102A2 and CYP102A3. In CYP102A1 the residues Pro326 and Pro329 are 

located in this region and the introduction of a third proline through the mutation Ala330Pro alters 

substrate selectivity and activity, virtually abolishing fatty acid binding:65 therefore this region has 

been shown to be important in substrate binding. One effect of these proline residues in CYP109B1 

is that the subsequent β-sheet (β3-1) is longer than those of CYP101A1 and CYP101D2 and there 

are differences in the orientation of side chains of subsequent residues. Ala286 of CYP109B1 aligns 

structurally with Val295 of CYP101A1 and both point into the active site (Fig. 4b). Val288, two 

residues to the C-terminus of Ala286, points away from the active site while the acidic residue in 

the same position in the amino acid sequence of CYP101A1, Asp297 (and in CYP101D2, Glu303) 
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points towards the heme and interacts with the heme A-ring propionate. Val288 of CYP109B1 

therefore aligns structurally with Ala296 of CYP101A1. Consequently Leu289 of CYP109B1 is 

structurally the equivalent of Asp297 of CYP101A1 (and Glu303 of CYP101D2) and forms part of 

the active site (Fig. 4b and Table S3). From this point onwards the secondary structure forms a 

β-sheet. Arg299 of CYP101A1 and the equivalent residue in CYP101D2 (Arg305), points toward 

and forms a salt bridge with the A-ring propionate,58 while Arg290 in CYP109B1, which 

structurally aligns with Gly298 in CYP101A1 (Ala304 in CYP101D2), points away from the heme 

(Fig. 4b). The following residue in CYP109B1 is Arg291 and its side chain points toward the A-ring 

propionate with which it forms a salt bridge (Fig. 3d). The alignment shows that this double Arg 

arrangement (Arg290 and Arg291) is only conserved in the three CYP109 subfamily members that 

contain the second proline residue (Pro287) (Fig. 2). These modifications in primary structure result 

in substantial changes in the secondary structure. These may not be picked up by sequence 

alignment alone and as a result the crystal structure is a very useful tool to understand substrate 

binding and to facilitate the design of more efficient catalysts through protein engineering. 

Val385 and Ile386, of SRS6, are located high in the active site in the loop region in between the 

last β-sheet (Fig. 3d). These residues are in the final substrate recognition site of P450 enzymes and 

correspond to Ile395 and Val396 of CYP101A1; their location in the open structure of CYP109B1 

is similar to that in CYP101A1 (and the Ile401 and Val402 equivalents in the open structure of 

CYP101D2). In the closed form of the enzyme these would be expected to take up similar positions 

to those in the CYP101 family in the second tier of residues in the active site with Val385 being 

closer to the heme. These two residues are poorly conserved across the CYP109 family members 

and CYP278A1, with residues including Phe, Thr, Met, Pro and His being found in these positions, 

as well as Val and Ile. 
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Due to the open structure and the different length of some of the helices and loops it is more 

difficult to assess which residues of the F/G loop might be important in substrate binding in the 

closed form of the enzyme. Val166, which is conserved in all the CYP109B subfamily members, 

and aligns structurally with Thr185 in the open form of CYP101A1, is located at the end of the 

F-helix (Fig. 3d and 4a). The Val166 residue may interact with the substrate in a closed form of the 

enzyme in a similar fashion to Thr185. This residue is not conserved in CYP109D1 (Met), 

CYP109C2 (Leu) or CYP278A1 (Met).  

It is unfortunate, albeit not uncommon, that one of the missing regions of the CYP109B1 

structure corresponds to the region of the B/C loops where residues which have key interactions 

with the substrate are often located. For example this is the region where Phe87, Tyr96 and Phe98 

of CYP101A1 reside. All of these residues of CYP101A1, in particular Tyr96, are important in 

substrate binding and recognition.61, 66, 67 This region, corresponding to the residues between Met70 

and Asn79, is extremely variable across the CYP109 family members and is likely to have an 

impact on the substrate preferences of these enzymes. Asn79 of CYP109B1, which corresponds to 

Phe98 of CYP101A1, and Met98 of CYP101D2, is the only one of the residues to be resolved in the 

structure and is located in a similar position to Phe98 and Met98 in the open forms of CYP101A1 

and CYP101D2, respectively. This residue is very poorly conserved across the CYP109 family. The 

high mobility associated with this region in the absence of bound substrate and the resulting 

absence of resolvable electron density is not unusual in crystal structures of CYP enzymes. 

Attempts to crystallise the CYP109B1 enzyme in a closed conformation with a substrate to assist 

with resolving the electron density of all of the polypeptide chain have so far been unsuccessful. 

Both co-crystallisation and soaking experiments were undertaken with β-ionone and oleic acid and 
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while crystals were obtained they were unsuitable for X-ray diffraction analysis due to crystal 

twinning and low resolution. 

Finally despite the relatively high overall sequence similarity of CYP106A2 with CYP109B1 

the residues which constitute the active site, based on sequence alignment, show significant 

variation. For example Ile82, Asn83, Val166, Val238, Val385 and Ile386 in CYP109B1 align with 

Thr89, Glu90, Phe173, Gly242, Thr396 and Gly397 in CYP106A2 (Table S3). These differences in 

the substrate binding pocket of CYP106A2 are likely accentuated by the insertion of amino acids 

before SRS1 (Fig. 2) and the absence of proline residues in SRS5 (Fig. 4b), vide supra. However it 

is clear that the modified primary structure in these regions results in the different substrate 

preferences of the CYP106 family compared the CYP109 enzymes. The variability across the 

residues in the active site and access channel of the CYP109 enzymes provides a rationale for the 

different substrate binding properties of the various members of this family and the structure 

reported here provides information on the areas of the protein that could be targeted to alter the 

substrate selectivity. Overall, the results indicate that the subfamilies of the CYP109 family may 

have diverse roles in the bacterial strains in which they are found. 

Turnover of α- and β-ionone 

CYP109B1 has been reported to oxidise α-ionone and β-ionone regioselectively at the allylic C3 

and C4 positions, respectively.20 Saturated fatty acids bind with larger shifts in the spin state to high 

spin than the norisoprenoids, however binding is weaker. Unsaturated fatty acids bind more tightly 

but with lower spin state shifts. The oxidation of fatty acids by CYP109B1 was not selective with 

five products being observed (ω-1 to ω-6) with the unsaturated fatty acids reported to produce 

greater than 20 products.20 The crystal structure of CYP109B1 provides a few clues to the nature of 

fatty acid binding. The entrance to the substrate access channel has a positively charged patch due 
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to Arg290 and Pro287 which may facilitate substrate entry and binding (Fig. S2). There are other 

negatively charged residues present but analysis is hampered by missing residue electron density 

especially in regions important for substrate binding and recognition, for example Met70 to Gly78 

of the B/B′ loop. 

As yet, the natural CYP electron transfer partners from B. subtilis are not known. We recently 

identified a PFOR from Pseudomonas putida KT24440 which was able to act as an electron transfer 

carrier to CYP238A1 from the same bacterium.10 The PFOR protein was similar to the electron 

transfer system of Class IV self-sufficient fusion systems from Rhodococcus sp. (P450Rhf), 

Cupriavidus metallidurans and Rhodococcus ruber.68-70 The PFOR domain of the Rhodococcus 

system has been used to reconstitute the turnover of many P450s by creating artificial fusion 

proteins.71-73 We wanted to assess if the PFOR protein from P. putida was capable of acting as a 

promiscuous electron transfer partner to other bacterial P450 enzymes without the need to fuse the 

two together. Therefore we created a whole-cell oxidation system by cloning the genes for the PFOR 

protein and CYP109B1 into the pETDuet vector so each gene is downstream of its own promoter. By 

producing both proteins in E. coli and adding α- and β-ionone as substrates we observed products for 

each norisoprenoid by GC-MS or HPLC (Fig. 5).  

β-Ionone oxidation resulted in a single product (Fig. 5) but α-ionone resulted in a mixture of 

products (data not shown). Scaling up the reaction we were able to purify sufficient product by silica 

gel chromatography for characterisation by NMR. The products of oxidation were isolated (2-10 mg 

of each) and characterised as 4-hydroxy-β-ionone and a mixture of cis- and 

trans-3-hydroxy-α-ionone (See experimental and Fig. S5).  

We were also able to generate products from β-ionone using an in vitro turnover system 

consisting of CYP109B1, PFOR, yeast alcohol dehydrogenase and NADH to show that the PFOR 
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was responsible for supporting the catalytic cycle of CYP109B1 (Fig. 5): this shows that the PFOR 

electron transfer partner can drive the activity of CYP109B1. In addition this is the first example of 

this PFOR electron transfer partner being capable of supporting electron transfer to a 

non-physiological CYP enzyme. Combining the use of a simple whole-cell oxidation system for 

generating metabolites from P450 oxidations and the ability of the PFOR to transfer electrons to 

support other bacterial CYP enzymes will be generally applicable to other P450 systems where the 

electron transfer partners are unknown. 

CYP109B1 has previously been shown to be functional when using adrenodoxin as an electron 

transfer partner: Adrenodoxin is predominantly negatively charged around the iron-sulphur 

cluster.14, 74 The electrostatic potential of the CYP109B1 proximal face is mainly positive in the 

vicinity of the heme. This is due to the side-chains of Lys57, Lys63, Pro87, Arg103, Lys106, Lys223, 

Arg295 and Lys323 (Fig. 6). While some of these residues are conserved among the closely related 

CYP109 family members (Fig. 2) there is no obvious pattern. This is perhaps not surprising given 

that the electron transfer pathways in bacterial species may vary considerably. 

The structure of the PFOR is not available with the only similar structurally characterised 

enzyme being that from Pseudomonas cepacia (now Burkholderia cepacia, PDB 2PIA).75 These 

proteins share 42% sequence identity (53% similarity) and the key residues around the iron-sulfur 

cluster are conserved though there are modifications in the residues around the coordinating cysteines 

(Fig. S6). The electrostatic potential of the surface of this protein around the [2Fe-2S] iron-sulfur 

cluster is neutral though there are three major regions of negative charge which surround the cluster 

(Fig. 6b). The residues that contribute to these three negatively charged regions are Ser58, Glu104 

and Glu223; Asp320 and the C-terminus carboxylate group and Asp298, Asp299 and Glu300. There 

are also regions of positive charge on the surface one due to Arg267 and another which is further 
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away from the cluster from Lys109 and Arg110. A comparison of the sequences of PP1957 with the 

PFOR from P. cepacia (2PIA) highlights that the majority of the negatively charged residues are 

conserved (Fig. S6 and Table S4). The exceptions are Glu104 which is modified to a His residue and 

Asp299 which is replaced by a Ser residue. The positively charged residues are not conserved with 

Lys106, Arg107 and Arg267 being replaced with Asp, Ala and Glu residues, respectively. Arg297 

and Arg244 which are close to two of the negatively charged patches (next to Asp298 and Asp320, 

respectively) are both modified to Ser residues in PP1957 (Table S4). Overall this suggest that the 

negatively charged surface around the iron-sulfur cluster is maintained in PP1957, in agreement with 

its lower pI compared to 2PIA (4.9 vs. 5.6), which may in part explain why it is an effective electron 

transfer partner for CYP109B1. 

  

Page 18 of 41Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



18 
 

Experimental 

General 

General DNA and microbiological experiments were carried out using standard methods.76 The 

KOD polymerase, used for the PCR steps, and pET28a and pETDuet expression vectors were from 

Merck-Millipore. T4 DNA ligase and restriction enzymes for molecular biology were from New 

England Biolabs. General reagents and organic compounds were from Sigma-Aldrich or VWR, 

Australia. Isopropyl-β-D-thiogalactopyranoside (IPTG, Scimar, Australia), growth media and buffer 

components were from Melford Laboratories, UK, or VWR, Australia and NADH was from Roche 

Diagnostics, UK or Astral Scientific, Australia.  

Cloning, expression and purification 

The gene encoding full-length CYP109B1 was cloned into the vector pET28a(+) using the 

following primers which contain the restriction sites BamHI and SalI; CYP109B1 5', 

5′-ggagtgaggatccatgaatgtgttaaaccgccg-3’ and CYP109B1 3', 5′-agtctcctgtcgacttacattttcacacggaagc. 

This construct adds the sequence MGSSHHHHHHSSGLVPRGSHMASMTGGQQMGRGS to the 

N-terminus of target protein which contains a His tag for Ni2+-chelating affinity chromatography. 

The sequences of all genes were confirmed by DNA sequencing (Australian Genome Research 

Facility, Adelaide). 

The recombinant plasmid was transformed into Escherichia coli strain BL21(DE3) and the 

transformed cells were cultured in 2xYT medium at 37 °C with 30 µg mL–1 kanamycin. When the 

OD600 of the culture reached 0.6 – 0.8, 0.5 mM IPTG was added in order to induce the production of 

the recombinant protein. After further growth for 18 hours at 28 °C, cells were harvested by 

centrifugation, resuspended in buffer P (1×Phosphate Buffered Saline, 10 mM β-mercaptoethanol, 

pH 7.4) and lysed by sonication on ice. The crude extracts were then centrifuged at 27000 g for 45 
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min at 4 °C to remove the cell debris. 

The supernatant containing the protein was loaded onto a Ni2+-chelating affinity column (1.0 

mL of Ni2+-NTA agarose) which had been equilibrated with buffer P, and washed twice with the 

same buffer and then subsequently with buffer P containing 10 mM imidazole (5 column volumes). 

CYP109B1 was eluted with buffer P containing 300 mM imidazole. The eluent was 

buffer-exchanged into buffer A (20 mM HEPES, 10 mM β-mercaptoethanol, pH 7.4) by 

ultrafiltration. The protein solution was concentrated to 1 mL in buffer A and injected onto a 

Resource Q column (GE Healthcare, USA) and eluted with a gradient of 0 to 1 M KCl in buffer A. 

CYP109B1 eluted at ca. 100 mM KCl as a single peak, which was collected and concentrated by 

ultrafiltration and then applied to a Superdex-75 size-exclusion chromatography column (GE 

Healthcare, USA) equilibrated in buffer B (buffer A with 150 mM KCl) for further purification. The 

purity of CYP109B1 was estimated to be greater than 95% by SDS–PAGE Gel analysis (Fig. S7).  

Crystallisation 

The concentration of CYP109B1 was calculated using the extinction coefficient at 418 nm (ε418 128 

mM−1 cm−1).20 Purified CYP109B1 was concentrated in crystallisation buffer (200 mM KH2PO4, 

200 mM KCl, 10 mM β-mercaptoethanol, pH 7.4) to 50 mg mL–1. The sitting-drop vapour-diffusion 

method was used with Crystal Screen, Crystal Screen 2 and Index (Hampton Research, USA) to 

screen for CYP109B1 crystals at 16 °C in 48-well plates (Tianjin Xiangyushun Macromolecule 

Technology Ltd, China). Two drops (1 µL each) of the protein solution, with 30 or 50 mg mL–1 

protein, were mixed with 1 µL of reservoir solution and equilibrated against 100 µL reservoir 

solution. After a week several dark red thin-plate crystals were obtained from Crystal Screen kit 2 

condition No.7 (10% w/v polyethylene glycol 1000, 10% w/v polyethylene glycol 8000). However, 

none of the crystals were suitable for X-ray diffraction analysis. Further optimisation was 
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undertaken by varying the concentration of the two polyethylene glycol (PEG) precipitants, the 

protein concentration, volume ratio of protein to reservoir solution and additive screening. Finally, 

the single crystals (0.01×0.05×0.4 mm) which gave high resolution data were grown under 

optimised conditions consisting of 16% w/v PEG 1000, 10% w/v PEG 8000, 0.625% w/v PEG 

3350, with 30 mg mL–1 protein concentration and the ratio of the volume of protein to reservoir 

solution was 2:1.  

Crystallographic data collection and processing 

X-ray diffraction data were collected to 1.8 Å resolution from CYP109B1 crystals flash-cooled at 

100 K in a nitrogen gas stream. Data were collected on a Rigaku R-AXIS HTC image plate using 

Cu Kα radiation from an in-house Rigaku MicroMax-007 rotating-anode X-ray generator operating 

at 40 kV and 30 mA. No cryoprotectant was used. The intensity set was indexed, integrated and 

scaled with the HKL-2000 package.77 The crystals belonged to space group P21, with unit-cell 

parameters a = 54.00, b = 67.57, c = 56.41 Å and β = 113.04 º. There was one molecule in each 

asymmetric unit and the Matthews’ coefficient was 2.10 with 41.6% solvent content. The complete 

data collection results and statistics are summarised in Table 2. 

Structure determination and refinement 

For the structure determination of CYP109B1, the molecular-replacement (MR) program Phaser in 

the CCP4 suite 78, 79  was used to find the phases. The structure of CYP107L1 (PDB:2WHW), PikC, 

a macrolide hydroxylating P450, which has 38% sequence identity, was used as a search model.73  

The model was rebuilt with Coot 80 and refined with REFMAC5 and Phenix.refine.81, 82 The 

stereochemical quality of the refined structure was checked with the program MolProbity.83 A 

summary of the structure refinement statistics is provided in Table 2. The coordinates of the crystal 

structure have been deposited in the PDB (http://www.pdb.org; with accession code PDB: 4RM4).84 
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Growth and expression of the in vivo system 

The PP1957 gene encoding the PFOR was previously cloned into the pETDuet vector using the 

NcoI (ccatgg) and EcoRI (gaattc) restriction sites.10 A whole-cell oxidation system was generated 

by using the following primers to amplify the CYP109B1 gene. CYP109B1 5', 

5'-ttaattcatatggctagcatgactggtggacag-3' CYP109B1 3', 

5'-ttaattggtaccctattacattttcacacggaagctctttaatc-3'. The PCR product was cut using the NdeI and KpnI 

restriction enzymes and ligated into the pETDuetPP1957 vector cut with the same two enzymes to 

generate the pETDuetPP1957/CYP109B1 vector. The incorporation of the whole gene was 

confirmed by restriction enzyme digest and DNA sequencing. 

The plasmid pETDuetPP1957/CYP109B1 was transformed into competent BL21(DE3) cells 

and grown on LB plates containing ampicillin, 100 µg mL−1 (LBamp). A single colony was 

inoculated into 500 mL broth (2xYTamp) in a 2 L flask and grown at 37 ºC overnight. Protein 

expression was induced by the addition of 100 µM IPTG (from a 0.4 M stock in H2O) and the 

temperature was reduced to 25 °C and the shaker speed to 140 rpm. The growths were allowed to 

continue for another 24 hours before the cell pellet was harvested by centrifugation and washed in E. 

coli minimal media (EMM).85 The cell pellet was resuspended in an equal volume of antibiotic 

containing media (EMMamp). The ionone substrates were added to the resuspended cells to a 

concentration of 2 mM (from a 0.5 M stock in EtOH) and the reactions were then shaken at 220 rpm 

and 30 °C. The samples were analysed by HPLC or GC-MS. HPLC was performed using an Agilent 

1260 Infinity pump equipped with an Agilent Eclipse Plus C18 column (250 mm x 4.6 mm, 5 µm) 

and an autoinjector. A gradient, 20 - 95%, of acetonitrile (with trifluoroacetic acid, 0.1%) in water 

(TFA, 0.1%) was developed over 30 min using a mobile phase of water/acetonitrile (0.1% 

trifluoroacetic acid) at a flow rate of 1 ml min−1. GC-MS was performed on a Shimadzu GC-17A 
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with a DB-5 MS fused silica column (30 m x 0.25 mm, 025 µm) and a QP5050A GC-MS detector. 

The injector was held at 250 °C and the interface at 280 °C. For the ionone substrates, the initial 

oven temperature was 120 °C which was held for 3 min, before increasing to 220 °C at 10 °C per 

minute, where it was held for 7 min. The GC (HPLC) retention times were as follows: β-ionone, 7.5 

min (25 min); 4-hydroxy-β-ionone, 9.9 min (14.7 min); α-ionone, 6.7 min; 3-hydroxy-α-ionone, 

9.4 min. 

For product isolation the cells were removed by centrifugation and supernatant was extracted 

using EtOAc. The organic layer was separated and the extraction of the aqueous phase was repeated 

with EtOAc (2 x 100 mL). The combined organic layers were washed with brine (3 x 100 mL), then 

dried over MgSO4, filtered and concentrated in vacuo. The resultant oil, a mixture of substrate and 

product, was purified using silica gel flash chromatography (hexane/EtOAc, 2:1). The products 

were then isolated and characterised by NMR as described below.  

αααα-Ionone and ββββ-ionone oxidation products 

After extraction and silica gel chromatography the hydroxylated products were isolated (2-10 mg of 

each) and characterised using 1H, 13C, COSY, HMBC and HSQC NMR techniques using a Varian 

Inova-600 spectrometer (Fig. S6). The oxidation of α-ionone resulted in a mixture of products. The 

major product was assigned by NMR as trans-3-hydroxy-ionone. The minor product was not isolated 

but the minor signals in the product NMR spectra matched those of cis-3-hydroxy-ionone. 

Data for 4-hydroxy-ββββ-ionone: 
1H NMR (600 MHz, CDCl3);

60, 86 δ 7.19 (d, J = 16.4 Hz, 1H, H8), 

6.12 (d, J = 16.4 Hz, 1H, H7), 4.02 (t, J = 4.9 Hz, 1H, H4), 2.31 (s, 3H, H10), 1.93 (ddd, J = 14.0, 

7.4, 3.2 Hz, 1H, H3), 1.85 (s, 3H, H13), 1.73 (ddd, J = 13.0, 7.6, 3.9 Hz, 1H, H3), 1.69–1.63 (m, 1H, 

H2), 1.46 (ddd, J = 11.3, 7.3, 2.7 Hz, 1H, H2), 1.07 (s, 3H, H12), 1.04 (s, 3H, H11); 13C NMR (150 

MHz, CDCl3) δ 198.38 (C9), 142.63 (C8), 139.44 (C6), 133.88 (C5), 133.11 (C7), 69.94 (C4), 

Page 23 of 41 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



23 
 

34.65 (C2), 28.85 (C12), 28.31 (C3), 27.49 (C11), 27.38 (C10), 18.48 (C13). 

Data for trans-3-hydroxy-αααα-ionone: 
1H NMR (600 MHz, CDCl3); δ 6.54 (dd, J = 15.8, 10.1 Hz, 

1H, H7), 6.10 (d, J = 15.5 Hz, 1H, H8), 5.63 (s, 1H, H4), 4.27 (s, 1H, H3), 2.50 (d, J = 10.1 Hz, 1H, 

H6), 2.26 (s, 3H, H10), 1.84 (dd, J = 13.7, 5.6 Hz, 1H, H2), 1.62 (s, 3H, H13), 1.41 (dd, J = 13.9, 

5.8 Hz, 1H, H2), 1.03 (s, 3H, H11), 0.89 (s, 3H, H12); 13C NMR (150 MHz, CDCl3) δ 198.03 (C9), 

147.10 (C7), 135.44(C5), 133.61 (C8), 125.82 (C4), 65.47 (C3), 54.30 (C6), 43.83 (C2), 33.86 (C1), 

29.31 (C11), 27.20 (C10), 24.70 (C12), 22.66 (C13). 

Phylogenetic Analysis 

The data was taken from the CYP450 engineering database (http://www.cyped.uni-stuttgart.de/) or 

the databases at the National Center for Biotechnology Information (NCBI). The phenogram (Fig. 1) 

was generated at Phylodendron (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html). BLAST 

searches were performed using the databases at the NCBI. Sequence alignments were performed 

using ClustalW and ESPript.87, 88 The substrate recognition sites of CYP109B1 were defined by 

alignment with those of other P450s, including CYP101A1, by Gotoh as follows; SRS1, 77-84; 

SRS2 and 3, 168-181; SRS4, 228-245; SRS5, 282-294 and SRS6 380-387.  
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Conclusion 

The structure of CYP109B1, a member of a bacterial family of cytochrome P450 enzymes with 

potential roles in biocatalysis, has been solved and this provides important information concerning 

residues that are involved in the enzyme-substrate interactions in the CYP109 family. The number 

of CYP109 enzymes identified which have unknown function and the high variability in the B/B′ 

region may indicate varied substrate specificity across this diverse family. In addition, we have 

shown that CYP109B1 can accept electrons from a phthalate family oxygenase reductase both in 

vitro and in vivo. This will allow the facile identification of the oxidation products generated by 

CYP109 family members. Together, these results will facilitate the engineering this family of 

cytochrome P450 enzymes for more efficient and selective substrate turnover, which will in turn 

enable the development of biocatalytic routes to as yet unobtainable fine chemicals using CYP109 

family members. 
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Table 1 The sequence identities of CYP109B1 and selected other CYP109 family members with different CYP enzymes including CYP106 family 
members from other Bacillus strains (CYP106A1; B. megaterium DSM319 and CYP106A2; B. megaterium ATCC 13368 – P450meg) and 
CYP278A1 from Mycobacterium marinum. 
 

Protein; CYP109B1 Accession number Identities Positives Gaps Score 

CYP109 B. mojavensis WP_010333858 360/396(91%) 382/396(96%) 0/396(0%) 758 

CYP109 B. amyloliquefaciens YP_001420823 253/386(66%) 309/386(80%) 0/386(0%) 545 

CYP109 B. cereus NP_979552 187/390(48%) 264/390(67%) 9/390(2%) 386 

CYP109A1 YP_003866322 167/382(44%) 257/382(67%) 8/382(2%) 334 

CYP109C1 S. cellulosum YP_001610759 136/347(39%) 194/347(55%) 20/347(5%) 297 

CYP109C2 S. cellulosum YP_001619565 158/360(44%) 228/360(63%) 3/360(0%) 319 

CYP109D1 S. cellulosum WP_012237265 126/368(34%) 195/368(52%) 23/368(6%) 227 

      
CYP106A1 B. megaterium  KGJ82431 151/372(41%) 220/372(59%) 20/372(5%) 274 

CYP106A2 B. megaterium Q06069 156/373(42%) 227/373(60%) 18/373(4%) 288 

CYP278A1 M. marinum WP_012394577 129/379(34%) 195/379(51%) 30/379(7%) 200 

CYP109C1 YP_001610759 Identities Positives Gaps Score 

CYP109D1 WP_012237265 163/396(41%) 221/396(55%) 22/396(5%) 254 

CYP109D1 WP_012237265 Identities Positives Gaps Score 

CYP278A1 M. marinum WP_012394577 180/427(42%) 244/427(57%) 27/427(6%) 299 
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Table 2 Data collection and refinement statistics of CYP109B1 
 

 CYP109B1 

Data collection statistics  

Space group P21 

Cell dimensions  a/b/c (Å) 
                   α/β/γ (º) 

54.0/67.6/56.4   
90.00/113.0/90.00 

Wavelength (Å) 1.5418 

Resolution (Å) 50-1.77(1.83-1.77) 

Average I/σ(I)1 21.7(3.7) 

Completeness (%)1 85.2(93.7) 

Average Redundancy1 2.5 (2.3) 

Rmerge (%)1,2 3.7 (22.9) 

Molecules in one ASU 1 

Structure refinement statistics  

Resolution (Å) 51.90-1.77 

Average B-factor (Å2) 23.0 

Rwork/Rfree (%)3 20.2/25.2 

r.m.s.d. bond lengths (Å) 0.007 

r.m.s.d. bond angles (°) 1.07 

Ramachandran favoured (%) 95.8 

Ramachandran outliers (%)   0 

MolProbity score 1.83 

Poor rotamers (%) 0.6 

Clash scores, all atoms 10.5 
 

 1 Values in parentheses correspond to the highest-resolution shell. 
 2 

Rmerge =ΣhΣi |Ii–‹I›| /ΣhΣi Ii, where Ii is the ith intensity measurement of reflection h, and <I> is the 
average intensity from multiple observations 3 

Rwork/Rfree=Σ ||Fo|–|Fc|| / Σ|Fo|, where Fo and Fc are 

the observed and calculated structure factors, respectively. 
3 

Rwork/Rfree=Σ ||Fo|-|Fc|| / Σ|Fo|, where Fo and Fc are the observed and calculated structure factors, 
respectively. 
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Scheme 1. Product isolated from the oxidation of α- and β-ionone by CYP109B1 using the 

phthalate family oxygenase reductase from Pseudomonas putida KT24440 as an electron transfer 

partner. 
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Figures 

 

Figure 1 Phylogenetic tree of selected CYP109 family enzymes. The CYP106A1 and CYP106A2 

(P450Bm1) enzymes from strains of Bacillus megaterium , the other CYP enzymes from B. subtilis 
str. 168 (CYP102A2, CYP102A3, CYP107H1, CYP107J1, CYP107K1, CYP134A1 and 
CYP152A1) and other well characterised bacterial CYP enzymes are included. CYP101A1 
(P450cam) from Pseudomonas putida, CYP102A1, P450Bm3, from Bacillus megaterium, 
CYP111A1, P450lin from a Pseudomonas, CYP153A1 from Acinetobacter sp. EB104, CYP108A1, 

P450terp from a Pseudomonas and CYP107A1, P450eryF from Saccharopolyspora erythraea are 
the CYP enzyme included for comparison. CYP123 from M. tuberculosis and CYP278A1 from M. 

marinum are also included. CYP109B1 is clustered with the other members of the CYP109 family 
from Bacillus sp (CYP109 is from Bacillus amyloliquefaciens FZB42). The CYP109D1 enzyme 
from Sorangium cellulosum So ce56 clusters more closely with CYP278A1 from M. marinum than 

with the other CYP109 enzymes. The data was taken from the CYPengineering database 
(http://www.cyped.uni-stuttgart.de/) which clusters CYP123 from M. tuberculosis with the CYP109 
enzymes. However, our analysis found very little sequence overlap between these enzymes. The 
phenogram generated at Phylodendron (http://iubio.bio.indiana.edu/treeapp/treeprint-form.html). 
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Figure 2 Sequence alignment of CYP109B1 from Bacillus with other members of the CYP109 
family, CYP106A2 from Bacillus megaterium (P450Bm1), CYP278A1 from Mycobacterium 

marinum and CYP101A1 (P450cam). Black arrows and cylinders indicate the β-sheets and 
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α-helices, respectively. Conserved and similar residues are highlighted with red and yellow 
highlighting, respectively. CYP109C1, CYP109C2 and CYP109D1 are from Sorangium cellulosum 
So ce56, CYP109A1 from Bacillus subtilis strain W23, CYP109amy from Bacillus 

amyloliquefaciens FZB42, CYP109moj from B. mojavensis and the CYP109 enzyme from B. 

cereus. Helices α13 and α15 are the I and K helices, respectively. 
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      (a) 

 
      (b) 

 

      (c) 
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(d) 

 
Figure 3 (a) The overall structure of CYP109B1. The heme, the α-helices, β-sheets and loops are 
shown in green, cyan, magenta and pink, respectively.  
(b) The environment of the proximal side of the heme. The thiolate sulfur of the heme ligand, 
Cys349, is hydrogen-bonded to the NH of Gly351 and its carbonyl oxygen forms a hydrogen bond 
with the carbonyl oxygen of Phe348 (dashed line). The carbonyl groups of Phe342 and His347 
interact with the backbone amide NH of Cys349 via hydrogen bonds. 
(c) and (d) The substrate binding pocket of CYP109B1 showing residues in tier 1 (c) and those 

higher up in the active site (d). Water molecules are shown in red, the heme in orange and hydrogen 
bonding interactions as dashed lines. 
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(a) 

 

 
(b) 

 
Figure 4. Overlay of (a) important active site residues in CYP109B1 (cyan) with their equivalents 
in CYP101A1 (PDB code: 3L62, grey) and CYP101D2 (PDB code: 3NV5, yellow) and (b) the loop 
region around SRS5 which contains two proline residues in CYP109B1 (cyan) with the equivalent 

regions in CYP101A1 (grey) and CYP101D2 (yellow). 
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      (a) 

 
 

      (b) 

 

Figure 5 (a) HPLC analysis of the whole-cell oxidation of β-ionone with CYP109B1 and (b) HPLC 
analysis of the in vitro oxidation of the same substrate with CYP101B1 supported with PFOR after 
30 minutes (black) and 90 minutes (red). 4-Hydroxy-β-ionone is labeled (A) as are impurities (*) 
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(a)  (b) 

 

 
Figure 6 (a) The electrostatic potential surface of the proximal face of CYP109B1. The area around 
the heme is dominated by positively charged residues. (b) The electrostatic potential surface of the 
phthalate family oxygenase reductase enzyme from Pseudomonas cepacia (PDB: 2PIA) around the 
iron-sulfur cluster. The area around the cluster is dominated by three negatively positively charged 

regions. These residues are conserved in PP1957 (Fig S6). Positively charged residues are shown in 
blue with negatively charged residues shown in red. 
 
 

Page 41 of 41 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


