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feature selection and machine learning methods 
 

Zhihua Cai
a
, Dong Xu

b
, Qing Zhange,Jiexia Zhang

*c
, Sai-Ming Ngai*d, Jianlin Shao*d,e 

Lung cancer is one of the leading causes of death worldwide. There are three major types of 

lung cancers, non-small cell lung cancer (NSCLC), small cell lung cancer (SCLC) and 

carcinoid. NSCLC is further classified into Lung adenocarcinoma (LADC), squamous cell lung 

cancer (SQCLC) as well as large cell lung cancer. Many previous works demonstrated that 

DNA methylation has emerged as potential lung cancer-specific biomarkers. However, whether 

there exists a set of DNA methylation markers simultaneously distinguishing such three types 

of lung cancers remains elusive. In the present study, ROC (Receiving operating Curve) 

,RFs(random forests) and mRMR (Maximum Relevancy and Minimum Redundancy) were 

proposed to capture the unbiased, informative as well as compact molecular signatures 

followed by machine learning methods to classify LADC,SQCLC and SCLC. As a result, a 

panel of 16 DNA methylation markers exhibits an ideal classification power with an accuracy 

86.54%, 84.6% and a recall 84.37%, 85.5% in the leave-one-out cross-validation (LOOCV) 

and independent data set test experiments, respectively. Besides, comparison results indicate 

that ensemble-based feature selection methods outperform individual ones when combined 

with incremental feature selection (IFS) strategy in terms of the informative and compact 

property of features. Taken together, results obtained suggest the effectiveness of ensemble-

based feature selection approach and the possible existence of a common panel of DNA 

methylation markers among such three types of lung cancer tissue, which would facilitate 

clinical diagnosis and treatment. 
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Lung cancer is one of the leading causes of cancer-related 

deaths worldwide, developing in more than a million new 

patients annually1. There are three major types of lung cancers, 

non-small cell lung cancer (NSCLC), small cell lung cancer 

(SCLC) and carcinoid. NSCLC is further classified into Lung 

adenocarcinoma (LADC), squamous cell lung cancer (SQCLC) 

as well as large cell lung cancer (LCLC) 

(http://www.cancer.org/Cancer/LungCancer-Non-

SmallCell/DetailedGuide/non-small-cell-lung-cancer-what-is-

non-small-cell-lung-cancer). NSCLC accounts for about 85% 

of all lung cancers with LADC and SQCLC representing almost 

50% and 35% of NSCLC cases, respectively. About 10%-15% 

of lung cancers are small cell lung cancers2-4. Accurate 

classification of lung cancer is the initial and significant step for 

the targeting therapy and clinical management since different 

treatment modalities exist. For example, Bevacizumab is not 

only less effective in treatment of SQCLCs than LADCs, but 

tends to contribute to mortality due to fatal hemoptysis5, 6. 

Therefore, distinct subtypes of NSCLC should not be deemed 
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as a single group clinically and it is increasingly acknowledged 

that such subtypes should be tackled as different diseases7.  

Traditionally, the diagnosis of lung cancer is primarily based on 

the histology, with the use of immunohistochemical assays to 

confirm difficult cases. Whereas immunohistochemistry has 

exhibited an improved accuracy in subclassification of lung 

cancers to some degree, it still presents a challenge in terms of 

effective treatment and prognosis due to interobserver 

variability among pathologists8 or the variable sensitivity and 

specificity of individual marker 9, 10.Thus, more robust, specific 

molecular signatures are required for the purpose of clearer 

discrimination among lung cancer cases. Recently, a few 

studies have been performed to uncover molecular 

signatures/biomarkers for classification of lung cancers into 

specific subtypes such as specific microRNAs, genomic 

mutations and copy number alternations (CNAs). Lebanony et 

al11 identified has-miR-205 expression as a specific marker to 

distinguish SQCLCs from non-squamous NSCLCs. Bishop et 

al9developed a score system based on hsa-miR-205, has-miR-

21 and U6snR to classify NSCLCs cases into SQCLCs or 

LADCs. Another study made attempt to identify signature 

genes of three subhistological types of NSCLC, i.e. LADC, 

SQCLC as well as LCLC 12 based on the gene expression 

profiling data sets. Most recently, the information of 266 CNA 

probes was utilized to distinguish the LADC from SQCLC 

through Maximum Relevance Minimum Redundancy (mRMR) 

feature selection combined with nearest neighbor algorithm13. 

The above mentioned studies have been done with emphasis on 

the classification of subtypes in NSCLCs. In addition, two 

works have been performed regarding the molecular 

classification of subtypes of NSCLC and SCLC. Seidel and 

coauthors presented data from two cohorts totaling more than 

6000 lung cancer patients, characterizing genome alternations 

in 1255 clinically annotated lung tumors of all histological 

subgroups to identify genetically defined and clinically relevant 

subtypes14. Due to the fact that marked distinction of genomic 

alterations existed between and within histological subtypes, 

they devised a statistic model for robust prediction of lung 

cancer subtypes based on such alterations including SQCLC, 

LADC, LCLC, SCLC and carcinoid. By the extension of the 

investigation done by Lebanonyet al11, Gilad and coworkers 

employed K-nearest neighbor (KNN) classifier with Pearson 

correlation distance metric to discriminate four types of  lung 

cancers, including squamous NSCLC, nonsquamous NSCLC, 

SCLC as well as carcinoid based on selected eight-microRNA 

diagnosis assay from 110 array probes(109 microRNA probes 

and a probe for the small RNA U6)15.  Whereas these two 

studies made an effort to differentiate major types of NSCLC 

and SCLC based on either whole genomic alterations or a panel 

of microRNAs, the discrimination of different types of lung 

cancers still reaches incompletion. 

Many previous works demonstrated that DNA methylation has 

emerged as potential lung cancer-specific biomarkers16, 17. A 

Prognostic DNA Methylation Signature for Stage I NSCLC was 

identified based on methylation profiling of a large cohort of 

NSCLC patients with normal lung tissues as control18. Two 

other works endeavored to experimentally discover sensitive 

and specific DNA methylation markers to distinguish 

LADC/SQCLC from normal lung tissue, respectively19, 20. 

Another study21 proposed to use artificial neural networks 

(ANN) and linear discriminant analysis (LDA) to classify the 

cell lines into SCLC or into NSCLC, concluding that ANN 

models based on DNA methylation profiles can objectively 

classify SCLC and NSCLC cells lines with substantial to 

perfect concordance. As a part of The Cancer Genome Atlas 

Research Network, promoter methylome for 178 

histopathologically reviewed SQCLCs was characterized22. 

However, given the methylome availability of lung cancers, 

whether there exists a panel of DNA methylation markers to 

simultaneously discriminate LADC, SQCLC and SCLC 

remains unknown.  

To this end, we attempted to discover a panel of DNA 

methylation markers through constructing a multiclass 

classification models for accurate characterization of above-

mentioned three types of lung cancers.  Feature selection is one 

of the important steps for classification modeling. Many types 

of feature selection methods were proposed based on machine 

learning framework or information theory framework. For 

example, Fernandez-Lozano  et al employed Support Vector 

Machine Recursive Feature Elimination(SVM-RFE) to  classify 

enzyme regulatory proteins or predict transport proteins23, 24. Li 

et al proposed mRMR feature selection approach to predict 

protein cleavage sites or protein domain25, 26. In the present 

work, methylome-wide ranking and screening of DNA 

methylation markers (probe sets from array experiments) was 

performed through ensemble-based feature extraction methods, 

which incorporates Multi-category Receiver Operating 

Characteristic (Multi-ROC), Random Forests (RFs) as well as 

Maximum Relevance and Minimum Redundancy (mRMR) 

methods. The final panel of DNA methylation markers was 

further determined by comprehensive performance evaluation 

of multiclass support vector machine classifier trained with 

Incremental Feature Selection (IFS) strategy. The resulting 

classification model demonstrates its ability to accurately 

differentiate LADC, SQCLC as well as SCLC, suggesting the 

existence of a common panel of DNA methylation markers 

among such three types of lung cancers. 

 

Materials and Methods 

Data collection and preprocessing 

The DNA methylome data sets for construction of classification 

model used in the present study originated from two sources, the 

Cancer Genome Atlas (TCGC) and Gene Expression Omnibus 

(GEO)27, all of which were produced based on Illumina 

HumanMethylation27 array and represented as beta values. The 

methylomes of LADC and SQCLC were downloaded from 

TCGC, which are composed of 141 and 162 samples, 

respectively. The methylomes of 28 SCLC cases were retrieved 

from GEO with accession number GSE50412. Due to the 

presence of missing values in the DNA methylomes from 
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TCGC, we first performed the removal of probes with missing 

values for methylation array data sets of each sample. Common 

probe sets for each sample among LADC, SQCLC and SCLC 

were then retained for further analysis. Thus, the final numbers 

of LADC, SQCLC and SCLC used for classification model 

training are 126,134 and 28(Table 1), respectively, the ratio of 

which from LADC, SQCLC and SCLC is approximately the 

same as the clinical estimation (~80%-85% as NSCLC and 

~10-15% as SCLC). To evaluate the performance of 

classification model, we obtained an independent cohort only 

consisting of 454 LADCs, 401 SQCLCs from TCGA (due to 

the scarcity of SCLC data sets ), the methylome of which were 

assayed on IlluminaHumanMethylation450 array platform 

(including all of probes from Illumina HumanMethylation27 

array). We extracted DNA methylation data of probe sets 

common to those utilized in model construction for the purpose 

of independent validation of the final classification model. 

After removal of probes and samples with missing values, the 

final numbers of LADCs and SQCLCs are 452 and 359, 

respectively (Table 1). All of the data sets were processed by 

in-house Java scripts. 

Multi-category Receiver Operating Characteristic (Multi-ROC). 

Receiver Operating Characteristic (ROC) analysis has been 

extensively employed in diagnostic, prognostic and predictive 

biomarker research and the area under ROC curve (AUC) is 

typically calculated as measurement for the assessment of the 

differentiate ability of some biomarker(s) for binary 

classification problems28. With respect to multi-category 

classification problems, Scurfiled proposed the concept of 

multi-ROC analysis and hypervolume under the manifold 

(HUM) as measurement to evaluate the discriminative ability of 

corresponding biomarker(s) 29, 30.To select a panel of DNA 

methylation markers (i.e. probes, which we hereafter refer to 

features), the discriminative ability of features with respect to 

classification of LADC, SQCLC, and SCLC was ranked 

through Multi-ROC analysis and the HUM measurement. 

As we know, in the case of binary classification problem, AUC  

can be represented as: 

   
1

0
( )AUC ROC u du    

 

where  ROC u  refers to the function expressing ROC   

curve,  
1

0,1u    

With respect to M-class classification problems, Li et al 31, 32 

made the extension of ROC  curve as ROC  ”surface”, which is 

an  1M  -dimensional manifold and the definition of HUM 

can be expressed as an  1M     integral of ROC ”surface”: 

1 1

1 1
0 0

( ) MHUM ROC u du du      

where ( )ROC u  denotes the function expressing ROC  

surface,  
1

0,1
M

u


  and M  corresponds to the number of 

category. 1HUM   means the perfect discrimination ability of 

the classifier and 
1

!
HUM

M
 suggests that the distinguish ability 

of corresponding classifier is equivalent to that by chance. For 

instance, in the case of 2M , the 1 2! 0.5AUC  is non-

informative and for 3M   (in the present study), the non-

informative HUM  is 1 3! 0.1667 .The larger HUM value is, the 

more accurate classification probability of the classifier is. In 

the present study, the HUM value for each feature was 

estimated by the approach proposed by Li et al33. R package 

HUM was used for the implementation. 

Maximum Relevance and Minimum Redundancy (mRMR) 

In addition to rank the discriminative ability of each feature by 

Multi-ROC, we also ranked the features according to their relevance 

to target classes through mRMR strategy34, which has been 

successfully applied to many classification problems25, 26, 35-37
. 

Briefly, the dependency ( , )I x y  between any two random 

variables x and y  is defined as: 

( , )
( , ) ( , ) log

( ) ( )

p x y
I x y p x y dxdy

p x p y
   

where ( )p x  and ( )p y   are the probability density functions of 

x and y ,respectively. ( , )p x y  is the joint probability  density 

function of x and y .Thus, the relevance of feature x and target class 

( , , , )1 2c c c ck  can be represented as ( , )D I x c ,the maximum of 

which is utilized to rank features for classification. To reduce the 

redundancy due to the correlations among ranked features by 

maximum relevance strategy, the average mutual information 

1
( , )

1

m
R I x x j

m j

 


 between candidate feature x and ranked 

features ( 1, , )x i mj   needs to be minimized (maximum Relevance 

Minimum Redundancy (mRMR)). In practice, incremental search 

methods can be used to rank the features through the following 

optimization problem based on mRMR principle: 

1
( , ) ( , )max

1

m
I x c I x x j

mx C j

 
  
   

  

where C  is a set of unranked/candidate features,  , , ( 1)1x x mm    

refers to a set of ranked features. mRMR was implemented by 

software downloaded at http://penglab.janelia.org/proj/mRMR/. 

Random Forests 

Random forests (RFs) is an ensemble learning method 

for classification and regression38, which removes the features with 

less contribution to classification accuracy by introducing random 

variables for the competition.  RFs uses an ensemble of unpruned 

decision trees, each of which is built from a bootstrap sample of the 

training data using a randomly selected subset of variables. The 

trained random forest classifier provides an importance estimate for 

all features39, the merit of which is suitable to perform feature 

selection for classification modeling. The R package implementation 

of Boruta was employed in the study. 
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Multi-class support vector machines (multi-SVMs) and 

performance assessment 

In the present study, multi-class support vector machines was 

employed to construct the classifier for the differentiation of LADC, 

SQCLC and SCLC. The classifier was implemented through 

LIBSVM40
 with one-against-one strategy41. To evaluate the 

performance of the classifier, we adopted LOOCV training scheme, 

which takes out one sample from the entire training data sets for test 

and the remaining samples for training in each of N rounds (N is the 

number of entire training data sets). The measurements of 

performance assessment for multi-class classifier proposed by 

Sokolova et al 42 were used and defined as follows: 

1
 ( )

1

1

2

tp tni il
i tp fn fp tni i i iaverage Accuracy aAcc

l

tpil
i tp fpi iprecision

l

tpil
i tp fni irecall

l

precison recall
F score

precision recall


    



  


  


 
 



  

Where , , ,tp fn fp tni i i i  are counts of true positive, false negative, 

false positive and true negative for class ( 1, , )i i l , respectively. 

Enrichment Analysis 

GO and pathway enrichment analysis of genes corresponding to 

features/probes were performed through DAVID43. Statistical 

significance was determined by hypergeometric analysis followed by 

Bonferroni and Benjamini correction44. 

Results and Discussion 

Feature selection results 

The training data sets and independent test data sets used in this 

study were summarized and listed in Table 1. The systematic batch 

effects among different microarray data sets used in the present 

study were adjusted by DWD method45. To obtain an unbiased and 

compact set of features, three selection methods were proposed to 

rank the features. mRMR ranked the all features related to the types 

of lung cancers according to the criteria of maximum relevance and 

minimum redundancy. Multi-ROC ranked all the features based on 

the HUM value of each feature. RFs ranked all the features through 

assessment of their importance for the classification of different 

types of lung cancers. The overlapped features chosen by three 

approaches were utilized to develop the final classification model. 

Due to the fact that only 140 top features were evaluated as 

important features to discriminate three types of lung cancers 

through RFs method, we chose 200 top features obtained by mRMR 

and Multi-ROC methods as candidate feature list, respectively (the 

reason why we selected a little larger arbitrary number 200 is that it 

would facilitate to make an fair performance comparison among 

individual methods with IFS strategy). Thus, the intersection of three 

top-ranked feature lists is composed of 45 features. The detailed 

feature selected was listed in Supplementary Table S1 A. 

Table 1.  Summary of High-Throughput data sets Used in this Study. 

Platform Roles of datasets Sample types 
Number of 

Samples 

Illumina HumanMethylation27 
Training/cross validation 

data sets 

LADC 126 

SQCLC 134 

SCLC  28 

Illumina HumanMethylation450 Independent test data sets 
LADC 452 

SQCLC 359 

 

Performance of classification model and comparison results 

between ensemble-based and individual feature selection 

methods 

To initially check the discriminant ability of selectively overlapped 

features, we performed the unsupervised hierarchical clustering of 

all the 288 samples to make an attempt to discover the methylation 

pattern of 45 features. As the heatmap shown in Fig. 1, most of three 

types of lung cancer samples can be separated into their correct types. 

The final optimal set of features was selected from ranked 45 

features by the Incremental Feature Selection (IFS) strategy 25, 26, 34. 

With regards to the IFS strategy, ranked features ( , , , )1 2f f fN  are 

added to new data sets one by one from higher to lower rank. A new 

feature subset is produced when one feature is added. Therefore, 

there would be N  feature sets produced from ranked feature 

list ( , , , )1 2f f fN and the i th   feature set is 

 , , , (1 )1 2s f f f i Ni i     . For each of the N   feature sets, multi-

class SVMs predictor was developed and total number of individual 

predictors is N . To achieve an unbiased assessment of the 

performance of the prediction model, the following three cross-

validation methods are often utilized for its effectiveness in practical 

applications: independent dataset test, subsampling test, and leave-

one-out cross-validation (LOOCV). However, of the three test 

methods, the LOOCV is deemed as the least arbitrary that can 

always yield a unique result for a given benchmark dataset as 

elaborated in previous work46. Accordingly, LOOCV has been 

increasingly used by investigators to examine the quality of various 

predictors47-50. Therefore, LOOCV was employed to evaluate each 

classification model on each subset of features for the purpose of 

determination of optimal feature set as well as final classification 

model. The IFS performance curve for ranked 45 features was 

plotted (Fig. 2A). As shown in Fig. 2A, the best performance of IFS 

prediction models is achieved with maximum F-score 0.7445 when 

the first top 16 features were selected (the IFS classification 

performance for each subset of features was listed in 

Supplementary Table S1 A. Therefore, such 16 top ranked features 

were utilized as the final optimal set of features for prediction model 

development. To further assess the robustness of classification 

model based on optimal set of features, the final model was tested on 

and independent test datasets (Table 1), which achieves the similar 

performance to that in LOOCV experiment with 84.6% accuracy. 

The detailed LOOCV performance information on training data sets 

and the performance of final prediction model on independent test 

data sets were shown in Table 2 and the confusion matrices of 

training datasets and independent datasets were listed in 

Supplementary Table S2. whereas the test achieved satisfactory 

results in terms of accuracy and recall metrics (similar to LOOCV 

results), such test biased independent test performance in terms of 

precision and F-score metrics since our prediction model was 

developed based on imbalanced number of three types of lung cancer 

samples with only 28 SCLC samples, which contributes to the larger 

independent test precision (on LADC and SQCLC data sets only ) 

compared to that in LOOCV experiments(on LADC,SQCLC and 

SCLC data sets). 
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Fig. 1. Hierarchical clustering heatmap of 288 samples in terms of DNA 

methylation levels of 45 overlapped features by mRMR, HUM and 

Multi-ROC methods. Each row stands for each feature (probes) and samples 

are arranged along columns. The three types of lung cancer (SQCLC, SCLC 

and LADC) are colored in navy blue, maroon and olive on above bar, 

respectively. 

Table 2.  Performance in LOOCV experiments and on independent data sets 

of final classification model constructed with 16 optimal set of IFS features. 

Data sets Accuracy(%) Precision(%) Recall(%) F-score(%)

Training/cross validation data sets 86.54%±2.2% 66.79%±1.9% 84.37%±2.5% 74.55%±2.2%

Independent data sets 84.60% 85.94% 85.52% 85.04%

Performance assessment metrics

 

The corresponding assessment metrics were represented by average performance ± standard error in the 

case of LOOCV experiments. Independent test experiment was just conducted on LADC and SQCLC. 

 

To investigate whether ensemble-based feature approach can capture 

the more informative, stable and compact set of features than those 

captured by individual ones, we performed IFS experiments based 

on 200, 200 and 140 top ranked features selected by mRMR, Multi-

ROC and RFs, respectively. The IFS curves were plotted in Fig. 2 

(data shown in Supplementary Table S1). As shown in Fig. 2, the 

much larger number of optimal top features was required to obtain 

the similar performance for individual feature selection method as 

compared to ensemble-based feature selection method. Theoretically, 

each of three feature selection methods would obtain the same set of 

features as overlapped set of features and performance by forward 

feature selection or backward feature selection strategy. However, 

time cost of such procedure would increase exponentially. The 

efficiency and effectiveness of ensemble-based method might be due 

to the fact that different method measures the relationship between 

features and target in a different manner. Thus, common features 

selected by ensemble-based methods would exhibit much more 

information than those only obtained by individual methods. Taken 

together, these observations indicate that ensemble-based approach 

followed by IFS procedure might be able to obtain more stable, 

compact as well as informative set of features than individual feature 

selection approaches, which would facilitate the discovery of stable 

DNA methylation biomarkers for the diagnosis of different subtypes 

of lung cancers. 

 

Fig. 2. IFS (incremental feature selection) performance comparison 

among ensemble-based and individual methods (x-axis corresponds to IFS 

data sets and y-axis refers to F-score values, all of which were averagely 

measured based on the LOOCV experiments). A. IFS performance curve on 

45 common feature sets shared by mRMR, Multi-ROC and RFs feature 

selection approaches (ensemble-based method) with maximum F-score 

0.7455 when the first 16 features were employed. The ranking of 45 common 

features were kept as the same as that in mRMR feature ranking list; B. IFS 

performance curve on top 200 HUM feature sets with maximum F-score 

0.7455 when the first 110 features were used; C. IFS performance curve on 

top 140 RFs feature sets maximum F-score 0.7156 when the first 119 features 

were utilized; D. IFS performance curve on top 200 mRMR feature sets with 

maximum F-score 0.7330 when the first 71 features were applied. 

Enrichment analysis of genes corresponding to features  

KEGG and GO analysis was carried out through system DAVID43. 

Only KEGG and GO categories with Bonferroni and Benjamini 

corrected p-values  0.05 were kept for further analysis. As shown in 

Table 3, the genes corresponding to overlapped 45 features were 

enriched in non-small cell lung cancer pathway, ErbB signaling 

pathway, Jak-STAT signaling pathway, Focal adhesion as well as 

other types of cancers pathways. Current researches support that 

ErbB signaling pathway is involved in non-small cell lung cancer 

through genetic and epigenetic regulations51, 52. Focal adhesion 

pathway plays important roles in cell proliferation, survival and 

metastasis in cancer cells53, 54. Focal adhesion kinase (FAK), one of 

the central genes represented in this pathway, plays a significant role 

in cell survival signaling in NSCLCs and SCLCs55-57. The JAK-

STAT pathway is vital in cytokine-mediated immune responses. 

Researches in the JAK-STAT field have elucidated its roles in 

various cellular processes such as proliferation, apoptosis and 

migration, and have found frequent dysregulation of the JAK-STAT 

pathway in diverse types of cancers, including in NSCLCs58-60. With 

respect to GO analysis, the genes corresponding to 45 features were 

categorized into a few significant biological processes (BPs) such as 

regulation of apoptosis and cell death, which are associated with 

lung cancers.  
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Table 3  KEGG pathway and GO analysis (BP: biological process) indicated 

that a several KEGG pathways and GO terms are significantly enriched in 

common set of features obtained by three methods (p≤0.05). 

Term P.Value Bonferroni Benjamini

KEGG:hsa05223:Non-small cell lung cancer 2.57E-06 1.75E-04 1.75E-04

KEGG:hsa04012:ErbB signaling pathway 2.73E-05 0.001858 9.29E-04

KEGG:hsa05200:Pathways in cancer 3.19E-04 0.021481 0.007212

KEGG:hsa04510:Focal adhesion 0.001395 0.090535 0.023446

KEGG:hsa04630:Jak-STAT signaling pathway 0.003956 0.236282 0.037776

BP:GO:0042981:regulation of apoptosis 4.16E-05 0.042106 0.008567

BP:GO:0010941:regulation of cell death 4.68E-05 0.047153 0.006876  

Methylation marker genes identified in this study 

In the present study, we obtained 45 overlapped DNA methylation 

markers through three independent feature selection methods. The 

methylation levels of some of genes corresponding to the identified 

markers such as ERBB2, FAM19A4 and RASSF1 have been shown 

to be related to NSCLCs and may be utilized to distinguish NSCLCs 

and normal lung cells in previous studies61-63. Eventually, we 

identified a panel of 16 DNA methylation markers to distinguish 

SCLCs, SQCLCs and LADCs simultaneously based on IFS strategy 

combined with SVMs method (the annotation of 16 DNA 

methylation marker genes was list in Supplementary Table S3). Of 

the identified 16 DNA methylation marker genes, the expression or 

DNA methylation levels of five of them (ST18, PKP1, HOXA1, 

CDKN2A and ZCCHC11) have been demonstrated to be associated 

with lung cancer. 

The methylation level of ST18 ranks the first in our optimal set of 

features, which is a repressor that binds to DNA sequences 

containing a bipartite element consisting of a direct repeat of the 

sequence 5'-AAAGTTT-3' separated by 2-9 nucleotides. Job et al. 64 

performed high-resolution array comparative genomic hybridization 

analysis of lung adenocarcinoma in sixty never smokers and 

identified fourteen new minimal common regions (MCR) of gain or 

loss, of which five contained a single gene (MOCS2, NSUN3, 

KHDRBS2, SNTG1 and ST18). ST18 was found lost, hyper-

methylated and its mRNA down-regulated in breast cancer65, which 

might be the case for ST18 in lung adenocarcinoma. Therefore, the 

methylation of ST18 might present a different level among SCLCs, 

SQCLCs and LADCs and be a biomarker for lung cancer subtype 

diagnosis. 

PKP1 (plakophilin-1) gene is involved in many biological processes 

such as cell adhesion, cell-cell signaling and signal transduction. 

Previous study66 reported that PKP1 presents aberrant promoter 

DNA methylation in NSCLCs at first time. Another study67 

demonstrated differential expression of PKP1 between LADC and 

SQCLC, which might be attributed to differential DNA methylation 

status of PKP1 between LADC and SQCLC. Taken together, these 

results indicated the methylation level of PKP1 might be different 

between SQCLCs and LADCs, even among SCLCs, SQCLCs and 

LADCs and thus could be as a potential marker for the subtyping of 

lung cancers. 

HOXA1 gene encodes homeobox transcription factor 1. Selamat et 

al.68 used MethyLight, a sensitive real-time PCR-based quantitative 

method, to analyze DNA methylation levels at HOXA1 gene, 

showing that significant DNA hypermethylation of HOXA1 presents 

in lung adenocarcinoma (LADC).  Aber et al.69 demonstrated that 

expression levels of HOXA1 in lung squamous cell carcinoma 

tissues were significantly higher than those in the normal tissues, 

which indicates that HOXA1 might be DNA hypomethylated in lung 

squamous cell carcinoma and overexpression of HOXA1 is likely to 

be play a vital role in human carcinogenesis.  

DNA hypermethylation is frequent for CDKN2A/p16 gene70, which 

should be a useful biomarker for diagnosis of NSCLC71. The 

expression suppression of CDKN2A/p16 gene was reported as major 

causative events in LADC and promoter hyper-methylation of 

CDKN2A(P16) could be as a biomarker in lung cancer72. Besides, 

another study showed that methylation of CDKN2A is more 

common in SCLC compared to LADC and differential gene 

hypermethylation frequencies in tumor tissues from patients with 

adenocarcinoma or squamous cell cancers73. Thus, DNA methylation 

of CDKN21A/p16 would be able to classify LADC and SQCLC, 

even for the differentiation among LADC, SQCLC and SCLC. 

 Another gene ZCCHC11 ranks the eighth in our optimal feature list 

and is an uridylyltransferase that acts as a suppressor of miRNA 

biogenesis by specifically mediating the terminal uridylation of some 

miRNAs. Most recent study74 demonstrated that Zcchc11 promoted 

tumor growth and metastasis, and it was prominently overexpressed 

due to hypo-methylation in human cancers including NSCLCs. 

Therefore, the methylation of Zcchc11 might play different roles in 

different types of lung cancers and be able to as a potential maker 

among LADC, SQCLC and SCLC. 

Conclusion 

In conclusion, the results obtained in this study show that ensemble-

based feature selection followed by IFS method presents the merit of 

acquisition of more informative and compact features than those 

obtained by individual methods, which have been demonstrated by 

the present study. 
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