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Abstract  20 

Low ethanol tolerance is a crucial factor that restricts the feasibility of bioethanol production in renewable cyanobacterial systems. 
Our previous studies showed that several transcriptional regulators were differentially regulated by exogenous ethanol in 
Synechocystis. In this study, by constructing knockout mutants of 34 Synechocystis putative transcriptional regulator-encoding 
genes and analyzing their phenotypes under ethanol stress, we found that three mutants of regulatory gene sll1392, sll1712 and 
slr1860 grew poorly in BG11 medium supplemented with ethanol when compared with the wild type in the same medium, 25 

suggesting that the genes may be involved in the regulation of ethanol tolerance. To decipher the regulatory mechanism, a 
targeted LC-MS and an untargeted GC-MS approach were employed to determine metabolic profiles of the three mutants and 
the wild type under both normal and ethanol stress conditions. The results were then subjected to PCA and WGCNA analyses to 
determine the responsive metabolites and metabolic modules related to ethanol tolerance. Interestingly, the results showed that 
there was a significant overlapping of the responsive metabolites and metabolic modules between three regulatory proteins, 30 

suggesting that a possible crosstalk between various regulatory proteins may be involved in combating against ethanol toxicity in 
Synechocystis. The study provided new insights to ethanol-tolerance regulation and knowledge important to rational tolerance 
engineering in Synechocystis.  
 
Keywords: Regulatory proteins, Ethanol tolerance, Metabolomics, Overlapping, Synechocystis 35 
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Introduction 
Biofuel production directly from photosynthetic 
microorganisms, such as cyanobacteria, has attracted 
significant interests in recent years, mostly due to the 
exciting progresses in employing synthetic biology 40 

approaches to engineer cyanobacteria for biofuel production 
directly from solar energy and CO2 [1-3]. As the most 
widely used biofuel, ethanol production was also achieved 
in engineered cyanobacteria by introducing 
ethanol-biosynthetic pathway from native 45 

ethanol-producing bacterium such as Zymomonas mobilis 
[4, 5]. Using systematic evaluation and selection of alcohol 
dehydrogenase (adh) genes from different sources and 
optimization of culturing conditions, a relatively high 
ethanol production rate of 212 mg/L·day was recently 50 

reported in an engineered Synechocystis sp. PCC 6803 
(hereafter Synechocystis) [6]. However, compared with 
native ethanol-producing microbes, such as yeast 
Saccharomyces cerevisiae and bacterium Z. mobilis, 
ethanol yield in the renewable cyanobacterial systems is still 55 

very low. Among various possible reasons that may be 
responsible for the low productivity, low tolerance to 
ethanol toxicity in cyanobacteria has been suggested as one 
of the crucial factors [7, 8], and needs to be addressed by 
tolerance engineering [9].  60 

To determine tolerance mechanism of ethanol stress, 
we have previously applied quantitative iTRAQ 
LC-MS/MS proteomics and RNA-Seq transcriptomics of 
Synechocystis grown under exogenous ethanol stress, and 
the results showed that multiple transcriptional regulators 65 

were differentially regulated, suggesting that ethanol 
tolerance could be under regulation of different types of 
signal transduction proteins, including response regulators 
of two-component signal transduction system (TCS), 
transcriptional regulators (TR) and eukaryotic-like protein 70 

phosphatases (PP) in Synechocystis [10, 11]. Due to high 
complexities of the cells, cellular networks are typically 
organized into various functional modules that can be 
individually controlled by different regulatory proteins, and 
the finding of multiple regulators involved in ethanol 75 

tolerance thus suggested that multiple biological modules 
may be required to combat ethanol toxicity in Synechocystis, 
which is consistent with early conclusions from other 
biofuel-producing species that the microbial cells tend to 
employ a combination of multiple cellular changes as 80 

protection mechanisms against biofuel toxicity [7, 8]. In 
addition, the finding also raised a question of how different 
signal proteins are coordinating to assure the proper 
functionality of the different biological modules related to 
ethanol tolerance [12]. Although no direct answer available 85 

to the question, early studies have found that coordination or 
crosstalk of different signal proteins in respond to 
environmental stress are commonly observed in various 
microbes. For example, Antiqueira et al. (2012) recently 
integrated transcriptional, protein-protein and allosteric or 90 

equivalent interactions to understand the regulatory 
dynamics of transcription factors (TFs) and their interplay 
with other cellular components, and they found that there is 
an extensive crosstalk between TFs and their target genes in 
Escherichia coli [13]. In another study, Hanna et al. (2013) 95 

found that a (p)ppGpp-dependent crosstalk between at least 
three stress responses (i.e., nutrient, oxidative, and 
low-oxygen stress) played a central role for Brucella suis to 
adapt to growth-affecting stress conditions such as nutrient 
deficiency, in the host cells [14]. In cyanobacteria, although 100 

only several cases of crosstalk between regulatory proteins 

have been reported and characterized [15, 16], it was 
proposed that the crosstalk between signaling cascades may 
be even more elaborate than is currently believed, playing 
important roles in coordinating cellular responses to a 105 

variety of stress conditions [17]. 
In addition to engineering individual gene or enzyme 

for better biofuels tolerance, more evidences suggested that 
manipulation of regulatory genes could be a better option as 
it provides a route to achieve complex phenotypes that are 110 

not readily accessible by targeting small number of 
metabolic genes [18, 19]. For example, global transcription 
machinery engineering (gTME) approach has been applied 
to S. cerevisiae for improved glucose/ethanol tolerance [20], 
and expression of a mutated global regulator gene irrE from 115 

an extremely radiation-resistant bacterium, Deinococcus 

radiodurans, has led to 10- to 100-fold enhancement of E. 

coli tolerances to ethanol or butanol in shock experiments 
[21]. However, currently little information is available 
regarding regulation of ethanol tolerance in cyanobacteria, 120 

which makes it challenging for further tolerance 
engineering.   

Synechocystis genome contains a number of genes 
encoding putative transcriptional regulators (TR) [22] and 
eukaryotic-like Ser/Thr protein phosphatases (PP) [23]. So 125 

far only several genes were functionally characterized, and 
the results showed that they were involved in the regulation 
of a wide-range of physiological functions, such as survival 
under nitrogen stress [24], survival under inorganic carbon 
starvation and osmotic stress [25], low CO2-induced 130 

activation of the bicarbonate transporter [26], biogenesis of 
photosystem I [27], photosystem stoichiometry in response 
to high light [28], ferric uptake [29], and heat response [30]. 
However, so far only one TR gene, sll1392, was found 
related to ethanol tolerance in Synechocystis in our recent 135 

study [11], and no PP has ever been reported related to 
tolerance to solvents or biofuel products in Synechocystis. 
To decipher regulatory networks related to ethanol tolerance 
and identify potential targets for ethanol tolerance 
engineering, in this study, we first constructed 34 knockout 140 

mutants for genes encoding most of the TRs and PPs in the 
Synechocystis genome, and then conducted comparative 
analysis of their ethanol tolerance. The efforts led to 
discovery of one TR-encoding genes sll1712 and one PP 
gene slr1860, whose disruptions caused increased 145 

sensitivity to ethanol in Synechocystis, and also further 
confirmed the involvement of TR sll1392 in ethanol 
tolerance [11]. We then applied a metabolomics approach 
employing both gas chromatography-mass spectrometry 
(GC-MS) and liquid chromatography-mass spectrometry 150 

(LC-MS) to determine the time-series metabolic changes in 
the wild type and three Synechocystis mutants grown under 
normal and ethanol stress conditions [31, 32]. Finally, a 
principal component analysis (PCA) and a weighted 
correlation network analysis (WGCNA) approaches were 155 

applied to the metabolomic data to reveal the responsive 
metabolites and metabolic modules associated with each of 
the mutants under ethanol stress [33]. The results suggested 
a significant functional overlapping in regulating ethanol 
tolerance by three different regulatory proteins in 160 

Synechocystis.  
 

Experimental   
Bacterial growth conditions 

Synechocystis and the TR or PP knockout mutants 165 

constructed in this study were grown in BG11 medium (pH 
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7.5) under a light intensity of approximately 50 µmol 
photons m-2 s-1 in an illuminating incubator of 130 rpm at 
30°C (HNY-211B Illuminating Shaker, Honour, China) [10, 
11]. Cell density was measured at OD730 on a UV-1750 170 

spectrophotometer (Shimadzu, Japan). For control growth 
and ethanol treatment, 10 mL fresh cells at OD730 of 0.5 
were collected by centrifugation and then inoculated into 50 
mL BG11 liquid medium in a 250-mL flask. 1.9% ethanol 
(v/v) at a final concentration was added at the beginning of 175 

cultivation. Ethanol of analytical pure was purchased from 
Merck (Whitehouse Station, NJ, U.S.A). For each condition, 
three biological replicates were established independently, 
and each sample was measured in triplicates. Growth 
experiments were repeated at least three times to confirm 180 

the growth patterns. 
 
Construction and analysis of knockout mutants 

A fusion PCR based method was employed for the 
construction of gene knockout fragments [34]. Briefly, for 185 

the gene target selected, three sets of primers were designed 
to amplify a linear DNA fragment containing the 
chloramphenicol resistance cassette (amplified from a 
plasmid pACYC184) with two flanking arms of DNA 
upstream and downstream of the targeted gene. The linear 190 

fused PCR amplicon was used directly for transformation 
into Synechocystis by natural transformation. The 
chloramphenicol-resistant transformants were obtained and 
passed several times on fresh BG11 plates supplemented 
with 10 µg/mL chloramphenicol to achieve full 195 

chromosome segregation (confirmed by PCR). The 
successful knockout mutants were confirmed by PCR and 
sequencing analysis, coupled with real-time RT-PCR. PCR 
primers for mutant construction and validation were listed in 
Suppl. Table 1. Similar to the cultivation conditions 200 

described above, comparative analysis of the wild type 
Synechocystis and the mutants were performed in 100-mL 
flasks each with 25 mL BG11 medium with or without 
ethanol of various concentration, and each condition was 
performed in biological triplicates. All the cultures were 205 

sampled and measured every 12 h.  
 
Real-time RT-PCR analysis  

Real-time RT-PCR analysis was performed as described 
previously [11]. Quantification of gene expression was 210 

determined according to standard process of RT-PCR which 
used serial dilutions of known concentration of chromosome 
DNA as template to make a standard curve. The 16s rRNA 
was used as an internal control. Three technical replicates were 
performed for each gene. Data analysis was carried out using 215 

the StepOnePlus analytical software (Applied Biosystems, 
Foster City, CA). Briefly, the amount of relative gene transcript 
was normalized by that of 16s rRNA in each sample (mutant 
or wild type), and the data presented were ratios of the amount 
of normalized transcript in the mutant compared with the wild 220 

type. RT-PCR primers for three genes were listed in Suppl. 
Table 1. 
 
Targeted LC-MS Based Metabolomics Analysis 

Due to its advantages toward chemically unstable 225 

metabolites, LC–MS based metabolomic analysis has 

become increasingly popular method to investigate 
microbial metabolism recently [31, 35]. These unstable 
metabolites including the redox active nucleotides 
(NADPH, NADH) and the hydrolytically unstable 230 

nucleotides (ATP, GTP, cAMP, PEP) crucial for all major 
metabolic pathways in cells [36-38]. Most recently, LC-MS 
metabolomic analysis was also applied to characterize 
changes in the cyanobacterial primary metabolism under 
diverse environmental conditions or in defined mutants. The 235 

resulting identification of metabolites and their steady state 
concentrations have provided a better understanding of 
cyanobacterial metabolism [39]. A method of isolation and 
tandem LC–MS/MS quantification of a subset of targeted 
internal metabolites was previously established for 240 

Synechococcus sp. PCC 7002 [36]. Briefly, i) Sample 

quenching, extraction, and preparation: Chemicals used for 
LC-MS metabolomic isolation was purchased from 
Sigma-Aldrich (Taufkirchen, Germany). For metabolomic 
analysis, cells were collected from normal and 245 

ethanol-stressed cultures of the wild type and the mutants at 
48 h and 72 h, respectively. For each sample, cells 
equivalent to 106 cells, were collected by centrifugation at 
8,000 x g for 8 min at room temperature (Eppendorf 5430R, 
Hamburg, Germany). The cell samples were quenched and 250 

extracted rapidly with 900 µL of 80:20 MeOH/H2O (-80˚C) 
and then frozen in liquid nitrogen. The samples were then 
frozen-thawed three times to release metabolites from the 
cells. The supernatant was collected after centrifugation at 
15,000 x g for 5 min at -4˚C and then stored at -80˚C. The 255 

remaining cell pellets were re-suspended in 500 µL of 80:20 
MeOH/H2O (-80˚C) and the above extraction process was 
repeated. The supernatant from the second extraction was 
pooled with that from the first extraction and stored at -80˚C 
until LC-MS analysis [36]; ii) LC-MS analysis: The 260 

chromatographic separation was achieved with a SYnergi 
Hydro-RP (C18) 150 mm × 2.0 mm I.D., 4 µm 80 Å 
particles column (Phenomenex, Torrance, CA, USA) at 
40˚C. Mobile phrase A (MPA) is an aqueous 10 mM 
tributylamine solution with pH 4.95 adjusted with acetic 265 

acid and Mobile phrase B (MPB) is 100% methanol of 
HPLC grade (Darmstadt, Germany). The optimized 
gradient profile was determined as follows: 0 min (0% B), 8 
min (35% B), 18 min (35% B), 24 min (90% B), 28 min 
(90% B), 30 min (50% B), 31 min (0% B). A 14-minute 270 

post-time equilibration was employed, bringing total 
run-time to 45 min. Flow rate was set as a constant 0.2 
mL/min [40]. LC-MS analysis was conducted on an Agilent 
1260 series binary HPLC system (Agilent Technologies, 
Waldbronn, Germany) coupled to an Agilent 6410 triple 275 

quadrupole mass analyser equipped with an electrospray 
ionization (ESI) source. Injected sample volume for all 
cases was 10 µL; capillary voltage was 4000 V; and 
nebulizer gas flow rate and pressure were 10 L/min and 50 
psi, respectively. Nitrogen nebulizer gas temperature was 280 

300˚C. The MS was operated in negative mode for multiple 
reaction monitoring (MRM) development, method 
optimization, and sample analysis. Data were acquired 
using Agilent Mass Hunter workstation LC/QQQ 
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acquisition software (version B.04.01) and chromatographic 285 

peaks were subsequently integrated via Agilent Qualitative 
Analysis software (version B.04.00); iii) Targeted 

metabolite analysis: a total of 24 metabolites were selected 
for LC-MS based targeted metabolite analysis in this study. 
The abbreviations, molecular weights and MRM values 290 

determined and optimized for each of the 24 detected 
metabolites as well as the product ion formulas were 
provided in Suppl. Table 2. The standard compounds for 
these 24 metabolites were purchased from Sigma, and their 
MS and MS/MS experimental parameters were optimized 295 

with the mix standard solution. The concentration of each 
standard metabolite used for analysis is 50 µM. All 
metabolomics profile data was normalized by the internal 
control and the cell numbers of the samples, and then 
subjected to principal component analysis (PCA) using 300 

software SIMCA-P 11.5 [41]. 
 
GC-MS Based Metabolomics Analysis 

Untargeted GC-MS based metabolomics is capable of 
detecting a wide range of chemical metabolite classes in a 305 

single run, and achieving good coverage of polar 
metabolites, such as amino acids and organic acids, making 
it a powerful technique in deciphering metabolic response in 
cells [39]. Using a modified protocol established by Krall et 

al. (2009) [42], we previously applied the GC-MS 310 

metabolomics to Synechocystis under butanol and salt stress, 
and the results have aided the exploration of the mechanism 
responsive to these stresses [43, 44]. All chemicals used for 
metabolome isolation and GC-MS analyses were obtained 
from Sigma-Aldrich (Taufkirchen, Germany). The identical 315 

cells collected for LC-MS analysis were also used for 
GC-MS metabolomic analysis. The metabolomic analysis 
protocol included: i) Metabolome extraction: cells were 
re-suspended in 1.0 mL cold 10:3:1 (v/v/v) 
methanol:chloroform:H2O solution (MCW), and frozen in 320 

liquid nitrogen and thawed for five times. Supernatants 
were collected by centrifugation at 15,000 x g for 3 min at 
4ºC (Eppendorf 5430R, Hamburg, Germany). To normalize 
variations across samples, an internal standard (IS) solution 
(100 µg/mL U-13C-sorbitol, 10 µL) was added to 100 µL 325 

supernatant in a 1.5-mL microtube before it was dried by 
vacuum centrifugation for 2-3 h (4ºC). ii) Sample 
derivatization: derivatization was conducted according to 
the two-stage technique by Roessner et al. (2001) [45]. The 
samples were dissolved in 10 µL methoxyamine 330 

hydrochloride (40 mg/mL in pyridine) and shaken at 30ºC 
for 90 min, then were added with 90 µL 
N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) 
and incubated at 37ºC for 30 min to trimethylsilylate the 
polar functional groups. The derivate samples were 335 

collected by centrifugation at 15,000 x g for 3 min before 
GC/MS analysis. iii) GC-MS analysis: analysis was 
performed on a GC-MS system-GC 7890 coupled to an 
MSD 5975 (Agilent Technologies, Inc., Santa Clara, CA, 
USA) equipped with a HP-5MS capillary column (30 m × 340 

250 mm id). 2 µL derivatized sample was injected in 
splitless mode at 230ºC injector temperature. The GC was 
operated at constant flow of 1 mL/min helium. The 
temperature program started isocratic at 45ºC for 2 min, 
followed by temperature ramping of 5ºC/min to a final 345 

temperature of 280ºC, and then held constant for additional 
2 min. The range of mass scan was m/z 38-650. iv) Data 

processing and statistical analysis: The mass fragmentation 
spectrum was analyzed using the Automated Mass Spectral 
Deconvolution and Identification System (AMDIS) [46] to 350 

identify the compounds by matching the data with Fiehn 

Library [47] and the mass spectral library of the National 
Institute of Standards and Technology (NIST). Peak areas of 
all identified metabolites were normalized against the 
internal standard and the acquired relative abundances for 355 

each identified metabolite were used for future data analysis. 
All metabolomics profile data was normalized by the 
internal control and the cell numbers of the samples, and 
assessed by a PCA analysis using software SIMCA-P 11.5 
[41]. To further reveal association between metabolite 360 

dynamics and the conditions/mutants, two-dimensional 
scatter plotting analysis for the conditions/mutants and 
metabolites was performed [48]. As both 
conditions/mutants and metabolites were assumed to be of a 
unit variance, their projections on the plane reside within a 365 

circle of radius 1 centered at the origin. Variables with a 
strong relationship are projected in the same direction from 
the origin. Basically, the greater the distance from the origin, 
the stronger is the relationship. In this study, the third circle 
with radius of 0.5 was selected as a cutoff for high 370 

associations between conditions/mutants and metabolites, as 
described in previous CCA analysis between genes and 
metabolites involved in Escherichia coli primary 
metabolism [48].   
 375 

WGCNA Network Construction 

Correlation network was created from the GC-MS 
metabolomic data, by calculating weighted Pearson 
correlation matrices corresponding to metabolite abundance, 
and then by following the standard procedure of WGCNA 380 

to create the networks [32, 33, 49]. Briefly, weighted 
correlation matrices were transformed into matrices of 
connection strengths using a power function [33]. These 
connection strengths were then used to calculate topological 
overlap (TO), a robust and biologically meaningful 385 

measurement that encapsulates the similarity of two 
metabolites’ correlation relationships with all other 
metabolites in the network [33]. Hierarchical clustering 
based on TO was used to group metabolites with highly 
similar correlation relationships into modules. Metabolite 390 

dendrograms were obtained by average linkage hierarchical 
clustering [32, 33, 49, 50], while the color row underneath 
the dendgram showed the module assignment determined 
by the Dynamic Tree Cut of WGCNA. The network for 
each module was generated with the minimum spanning 395 

tree with dissimilarity matrix from WGCNA. The modules 
with correlation r > 0.5, and p-value less than 0.05 were 
extracted for further investigation. Hub metabolites were 
screened by high connectivity with other metabolites (≥ 5) 
in the modules strongly associated with phenotype.  400 

 

Results and Discussion 
Ethanol tolerance analysis of the transcriptional 

regulator mutants 

To identify possible TRs and PPs involved in ethanol 405 

tolerance, we constructed a mutant library including 34 
putative TR and PP coding genes. Except for sll1626, 
sll1423, sll0567 and sll1712 genes where only partial 
segregation can be achieved after more than ten passages 
(data not shown), chromosomal integration and full 410 

segregation were confirmed by PCR and sequencing for the 
other 30 regulatory genes. All mutants were screened for 
ethanol tolerance changes, first in 96-well cultivation plates 
and then confirmed in flask cultivation, in parallel with the 
wild type Synechocystis in both normal BG11 medium and 415 

the BG11 medium supplemented with 1.9% (v/v) ethanol. 
The full list of TR mutants constructed in this study was 
provided in Suppl. Table 1. The comparative analysis 
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showed that two TR mutants, ∆sll1392 and partially 
segregated ∆sll1712, and a PP mutant ∆slr1860, grew 420 

poorly in the BG11 medium supplemented with ethanol, 
when compared with wild type, suggesting that they were 
more sensitive to ethanol and the genes may be involved in 
ethanol tolerance in Synechocystis. The involvement of 
sll1392 in ethanol tolerance was reported previously and 425 

further confirmed in this study [11]. In addition, in the 
normal BG11 medium without ethanol, the mutants grew 
equally well as the wild type, suggesting the deletion of any 
of three genes had no negative effects on cell growth (Fig. 
1). The fact that full segregation cannot be achieved for the 430 

∆sll1712 mutant after more than 10 passages under 
selective pressure suggested that the gene might be essential 
for the growth under the test condition (Suppl. Fig. 1). To 
demonstrate the slow growth of the ∆sll1712 mutant under 
ethanol stress was due to down-regulation of sll1712 gene, 435 

RT-qPCR assay was conducted, and the results 
demonstrated that the sll1712 gene was down-regulated by 
about two and half folds in the partially segregated ∆sll1712 

mutant, while expression of sll1392 and slr1860 dropped to 
undetectable levels (Suppl. Fig. 2). Cell morphologies of 440 

the wild-type Synechocystis and three mutants with or 
without ethanol stress were also compared using 
microscopic and flow cytometric analyses; however, no 
visible difference between the wild type and the mutants 
was observed (data not shown).   445 

According to sequence analysis, sll1392 and sll1712 
were determined as DNA-binding transcriptional regulators, 
while slr1860 was one of the seven eukaryotic-like Ser/Thr 
protein phosphatases in the Synechocystis genome [23]. 
Early study found that Slr1860 exhibited divalent metal 450 

ion-dependent protein-serine phosphatase activity that 
catalyzes the dephosphorylation of phosphoprotein substrate 
Slr1856 in vitro [51]. Although this is the first time that 
these three genes were found functionally related to ethanol 
tolerance, they have been previously found involved in 455 

responses to various environmental stress in Synechocystis. 
The sll1392 gene was also named as pfsR, an acronym for 
photosynthesis, iron homeostasis, and stress response [52]. 
In addition, the gene was identified as part of core 
transcriptional response in Synechocystis using large-scale 460 

expression profiles under various growth conditions [53], 
and found to be up-regulated following transfer from pH 7.5 
to pH 10 [54]. The sll1712 gene was repressed in response 
to UV-B and white light irradiation in Synechocystis [55], 
down-regulated by 3% and 0.3% inorganic phosphate (Pi) 465 

[56]; however, it was positively regulated by cadmium [57] 
and hexane [58]. The slr1860 gene was also repressed in 
response to UV-B and white light irradiation in 
Synechocystis [55], induced by glucose or light deprivation, 
and required for cell growth under conditions of low 470 

concentration of inorganic carbon in the presence of glucose 
[59]; in addition, early study showed that the regulation of 
glucose catabolism by a histidine kinase Hik31 may be 
involved in slr1860 phosphatase in Synechocystis [60].  
 475 

Targeted LC-MS metabolomic analysis 

Using the method with minor modifications, we eventually 
established reproducible analyses of 24 selected standard 

metabolites for Synechocystis, including NADPH, NADP, 
NADH, acetyl coenzyme A (AcCOA), α-nicotinamide 480 

adenine dinucleotide  (NAD), 
adenosine-5′-diphosphoglucose (ADP-GCS), uridine 
5′-diphosphoglucose (UDP-GCS), adenosine 
5′-triphosphate (ATP), adenosine 5′-diphosphate (ADP), 
coenzyme A hydrate (COA), adenosine 5′-monophosphate 485 

(AMP), D-fructose 1,6-bisphosphate (FBP), D-ribulose 
1,5-bisphosphate (RiBP), D-fructose 6-phosphate (F6P), 
D-glucose 6-phosphate (G6P), D-ribose 5-phosphate (R5P), 
D-(−)-3-phosphoglyceric acid (3PG), dihydroxyaceton 
(DHAP), DL-glyceraldehyde 3-phosphate (GHAP), 490 

phospho(enol)pyruvic acid (PEP), L-glutamic acid (GLU), 
α-ketoglutaric acid (AKG), oxaloacetic acid (OXA), and 
sodium fumarate dibasicadenosine (FUM), most of which 
are unstable metabolites in central carbohydrate metabolism 
together with those involved in the cellular energy charge 495 

and redox poise in Synechocystis (Suppl. Table 2) [36]. 
Using pure metabolites as references, a semi-quantitative 
characterization of all 24 metabolites was achieved for all 
the cell samples. 

Cell samples of the wild type, ∆sll1392, ∆sll1712 and 500 

∆slr1860 mutants grown in BG11 media with or without 
ethanol were collected at two time points (i.e., 48 and 72 h), 
which are corresponding to the middle-exponential phase 
and transition between exponential and stationary phases, 
respectively. Each condition analysis consisted of three 505 

biological replicates and two technical replicates. With the 
optimized LC-MS protocol, sixteen sets of the metabolomic 
profiles each with 24 metabolites detected were then 
obtained. The data was normalized by the internal control 
and the cell numbers (Suppl. Table 3) and then analyzed by 510 

PCA plots (Fig. 2A). The results showed that: i) clustering 
of the biological replicates for each sample was clearly 
observed for each condition, suggesting overall good quality 
of the LC-MS analysis; ii) the well separation of 
metabolomic profiles of the control and the ethanol-treated 515 

samples was clearly observed at both 48 and 72 h, 
suggesting that significant metabolic changes occurred upon 
ethanol stress in both wild type and mutants; in addition, the 
results also demonstrated that the LC-MS methodology we 
applied in the study is sensitive enough to distinguish the 520 

cellular responses upon stress; iii) in the control growth 
condition without ethanol, difference between three mutants 
and the wild type was found relatively small, consistent with 
the growth patterns observed in Fig. 1. The clustering of the 
wild type and the mutants was more obvious at 72 h, 525 

probably due to the fact that the cell aging became a 
dominating factor at this stage; iv) in the growth condition 
with ethanol stress, significantly different responses 
between the wild type and the mutants were observed at 
both 48 and 72 h, further confirming that these genes may 530 

be involved in response to ethanol stress; v) between the 
three mutants, the results showed that ∆sll1392 and 
∆slr1860 seemed shared a slightly similar response to 
ethanol, while metabolic responses in ∆sll1712 were 
significantly different from the two other mutants, especially 535 

at 72 h after long time of ethanol stress, suggesting a 
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difference tolerance mechanism may be utilized in the 
∆sll1712 mutant.    

Heat maps of 24 metabolites in the wild type and the 
mutants at both 48 h and 72 h were generated (Fig. 2B). In 540 

the analysis, the ratio of a given metabolites was calculated 
between the concentration of the metabolite under a given 
condition and the average concentration of the metabolite in 
all samples. The similar approach has been successfully 
applied in transcriptomic analysis [61]. The results showed 545 

very significant up-regulation of a dozen metabolites under 
the ethanol stress conditions in the three mutants when 
compared with the wild type, including G6P, NAD, F6P, 
AMP, R5P, AcCOA, DHAP, NADP and OXA, suggesting 
an overall up-regulation of central carbohydrate metabolic 550 

pathway and its possible role in ethanol stress tolerance. In 
our previous proteomic analysis of Synechocystis under 
ethanol stress, we found that a number of proteins involved 
in core carbohydrate metabolism, such as pyruvate 
dehydrogenase, succinate dehydrogenase, 555 

6-phosphofructokinase, fructose-1,6-bisphosphatase, and 
phosphoenolpyruvate carboxylase, were down-regulated 
[10]. The up-regulated metabolites in the mutants grown 
under ethanol stress thus suggested that the regulatory 
proteins may be functional as negative effectors for the 560 

central carbohydrate metabolism, although the details 
remain to be determined. Meanwhile, it is interesting that 
the intracellular abundances of these metabolites were 
regulated by all three regulatory genes, suggesting a 
possible functional overlapping between the networks 565 

regulated by three individual regulatory genes. Although 
none of the metabolites have been found previously related 
to ethanol tolerance, changes of metabolites such as F6P, 
G5P, R5P, OXA and NADP have been found related to 
environmental stress in various organisms [62-65]. In 570 

addition, the results also showed that NADPH, NADP, 
ADP and ATP were found up-regulated only in the 
∆sll1712 mutant, consistent with its different metabolic 
status upon ethanol stress from other two mutants, as 
showed in the PCA plots (Fig. 2A). Moreover, a very 575 

similar pattern was observed between 48 h and 72 h in the 
heat maps, although the up-regulation patterns of the 
metabolites described above seemed becoming more 
significant at 72 h. 
 580 

Untargeted GC-MS metabolomic analysis 

In this study, following the same sampling and analytical 
strategy for LC-MS metabolomic analysis as described 
above, we collected cells of the wild type and three mutants 
(i.e. ∆sll1392, ∆sll1712 and ∆slr1860) grown in BG11 585 

media with or without ethanol treatment at both 48 and 72 h. 
For each sample, three biological replicates were 
independently cultivated, metabolites-isolated, and analyzed 
by a GC-MS as described before [32, 43, 44]. Under the 
optimized analytical conditions, a good separation of 590 

intracellular metabolites was achieved on the GC column 
and the further MS analysis allowed chemical classification 
of a total 45 metabolites from all samples, including various 
amino acids, sugars and organic acids (Suppl. Table 4). 
Overall quality of the datasets was assessed first by a PCA 595 

analysis. In general, the score plots of the GC-MS 
metabolomic profiles revealed very similar patterns as we 
described above for the LC-MS metabolomic profiles, such 
as overall good reproducibility between biological replicates 
and a good separation between samples with or without 600 

ethanol stress. In addition, under ethanol stress condition, 
the relatively different metabolic status of the ∆sll1712 
mutant from other two mutants (i.e. ∆sll1392 and ∆slr1860) 

was also observed in the GC-MS metabolomic datasets (Fig. 
3). However, some differences from the LC-MS based 605 

analysis were also observed: for example, at 48 h, the 
∆sll1392 mutant grown under ethanol stress were close to 
its growth without ethanol stress, suggesting that the 
metabolic changes in the ∆sll1392 mutant with or without 
ethanol, as reflected from the GC-MS metabolomic 610 

measurements, were not so significant, which may also 
highlight the values to utilize both LC-MS and GC-MS for 
a complete interpretation of metabolic status in cells.    

As the major goal of this study is to determine 
response mechanisms mediated by each of the regulatory 615 

genes, we further employed two computational approaches, 
a two-dimensional scatter PCA analysis and a WGCNA 
network analysis, to the GC-MS metabolomic datasets in an 
attempt to determine the responsive metabolites and 
metabolic modules in each mutant and to establish links of 620 

metabolites, metabolic modules to the genes. The first 
approach, a two-dimensional scatter PCA plot that can be 
used to study associations between two sets of variables 
measured under the same experimental units [48], has been 
applied to integrate data originating from different ‘omics' 625 

technologies [48, 66], such as clustering properties of 
metabolites and transcripts involved in primary metabolism 
in E. coli [48]. In this study, we assumed two variables as 
metabolites and the samples under growth conditions (i.e., 
control or ethanol stress), which thus allowed determination 630 

of association between responsive metabolites and the stress 
condition in each of the mutants at each time point (i.e., 48, 
72). In each of the plots, we included the wild type and one 
of the mutants grown with or without ethanol stress, and the 
metabolomic measurements associated with these four 635 

samples (Fig. 4). The results showed that all four samples 
can be visibly separated in each of the plots; in addition, 
profiles of the wild type and the mutant grown under control 
conditions (i.e., without ethanol) tended to be close in the 
plots, consistent with their similar growth patterns under 640 

control condition (Fig. 1). However, under ethanol stress 
condition, obvious separation between the mutant and the 
wild type can be observed, although the separation patterns 
could be different between three mutants (Fig. 4). The 
visualization of their correlations showed that for any given 645 

sample, a number of metabolites were found in close 
proximity to it, suggesting these metabolites may be highly 
associated with the cellular responses in the given sample. 
Using a cut off of 0.5 (i.e., insider cycle), a dozen of 
metabolites that are important in differentiating the wild type 650 

and each of the mutants were identified for 48 and 72 h, 
respectively. At 48 h, we found L-serine clustered with 
∆sll1392, L-threonine, L-serine, succinic acid, myristic acid, 
L-pyroglutamic acid, palmitic acid, stearic acid, L-(+) lactic 
acid, sucrose and 3-hydroxypyridine clustered with 655 

∆sll1712, L-threonine, glycerol, sucrose, 
methyl-beta-D-galactopyranoside, succinic acid, L-serine, 
urea and glyceric acid clustered with ∆slr1860, respectively. 
Pie chart analysis showed that only L-serine was common 
among all three mutants at 48 h, where between ∆sll1712 660 

and ∆slr1860, succinic acid, sucrose and L-threonine were 
also commonly shared (Fig. 5A). While at 72 h, we found 
methyl palmitate, sucrose, methyl stearate, L-pyroglutamic 
acid, glycerol 1-phosphate, oleic acid and D-malic acid 
clustered with ∆sll1392, phytol, heptadecanoic acid, 665 

palmitic acid, D-malic acid, glycerol 1-phosphate, glycine, 
linoleic acid, methyl palmitate, adenosine, sucrose clustered 
with ∆sll1712, methyl palmitate, benzoic acid, stearic acid, 
sucrose, glycine, oleic acid, heptadecanoic acid clustered 
with ∆slr1860, respectively. Pie chart analysis showed that 670 
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methyl palmitate and sucrose were common among all 
three mutants at 72 h (Fig. 5B). Meanwhile, the responsive 
metabolites shared by each pair of the mutants were 
presented in Fig. 5, suggesting there were also differences in 
terms of the constitute metabolites of the networks they 675 

mediated.  
The roles of amino acid and sucrose in butanol 

tolerance were reported previously in E. coli [32, 67]. In a 
transcriptomic analysis of E. coli upon ethanol stress, the 
results showed an increased expression level of genes 680 

related to amino acid metabolism (i.e., tryptophan, histidine, 
valine, leucine, and isoleucine) [67]. While in a 
metabolomic and network analysis of E. coli upon butanol 
stress, we identified two butanol-associated modules, one 
containing serine, and another containing sucrose [32]. In 685 

addition, our previous metabolomics study showed that 
serine, sucrose and methyl palmitate were differentially 
regulated in Synechocystis under butanol stress [43], 
suggesting these metabolites could be involved in tolerance 
to biofuels. More importantly, the fact that these putative 690 

tolerance-related metabolites seemed regulated by three 
different regulatory proteins suggested a possible functional 
overlapping between three regulatory networks in 
Synechocystis upon ethanol stress.        

In a second approach, we applied a WGCNA network 695 

analysis method to the GC-MS metabolomic datasets. 
WGCNA is a correlation-based and unsupervised 
computational method to describe and visualizes correlation 
patterns of data points [49, 50]. Previous comparative 
analysis demonstrated that the WGCNA method has overall 700 

advantages than other commonly used statistic methods 
such as PCA and batch learning self-organizing maps 
(BL-SOM) as it can additionally define “modules” of 
co-expressed metabolites explicitly and provide additional 
network statistics that described the systems properties of 705 

metabolic networks [68]. Following the standard protocol, 
we first constructed unsigned networks for 48 and 72 h, and 
then localized the correlated metabolites into various 
metabolic modules identified in the networks. In addition, 
the association of each distinguished metabolic module with 710 

sample conditions was determined, as highly associated 
modules indicated on the plots (Fig. 6). Setting a minimal 
number of metabolites in any module greater than 3, the 
WGCNA analysis identified 6 and 6 distinct metabolic 
modules within the metabolic networks of 48 and 72 h, 715 

respectively. Using a cutoff of correlation coefficients (r 
value) between module and sample condition greater than 
0.5 and their statistical confidence (p value) less than 0.05, a 
total of 3 and 4 distinguished metabolic modules with high 
association with a given mutant or ethanol stress condition 720 

were identified from 48 h and 72 h, respectively. 
Metabolites included in each of the highly associated 
modules were indicated inside the plots. As shown in Fig. 6, 
except for the module M7 which was highly associated only 
with the gene knockout in the ∆slr1860 mutant at 72 h with 725 

r=0.53 and p value =0.008, all other six modules were 
found associated with positively ethanol stress. Among 
them the modules M1 and M5 were highly associated only 
with ethanol stress at 48h and 72 h, respectively, while four 
reminding modules (i.e., module M2, M3, M4, and M6) 730 

were associated with both ethanol stress and the gene 
knockout events, which may represent the key 
ethanol-induced responses in each of the mutants. 
Interestingly, while three modules (i.e., M2, M3 and M6) 
were associated with ∆sll1712 and one module M4 735 

associated ∆slr1860, no module was identified associated 
with ∆sll1392, which was consistent with the PCA analysis 
that the metabolic changes in the ∆sll1712 mutant under 
ethanol stress seemed significantly different from other two 
mutants.     740 

Hub metabolites are those with high degree of 
connectivity in biological interaction networks and are thus 
supposed with high biological importance [69]. Assuming 
hub metabolites with connectivity greater than 5, from the 
WGCNA network we were able to identify seven hub 745 

metabolite, glutamic acid and pyroglutamic acid in the 
module M2 associated with both ethanol stress and 
∆sll1712 at 48 h, sucrose and methyl palmitate in the 
module M4 associated with both ethanol stress and 
∆slr1860, linoleic acid and urea in the module M6 750 

associated with both ethanol stress and ∆sll1712, 
heptadecanoic acid in the module M7 associated with 
∆slr1860 at 72 h (Fig. 7). Analysis of the hub-associated 
metabolites showed that the two networks associated with 
∆sll1712 contains more amino acids (Fig. 7AC), while the 755 

two networks associated with ∆slr1860 contained more 
metabolites related to fatty acid metabolism (Fig. 7BD), 
which may reflect the different tolerance mechanism 
mediated by two regulatory proteins.  

In a previous proteomic analysis of Synechocystis 760 

under various environmental perturbations, a 
cyanophycinase involved in the breakdown of cyanophycin, 
a storage molecule for excess carbon and nitrogen, into 
arginine and aspartic acid, was found moderately 
up-regulated [70]. Our previous metabolomic analysis 765 

confirmed this result by showing aspartic acid, succinic acid 
and L-glutamic acid were induced by butanol treatment [43], 
as arginine and aspartic acid can be further converted to 
glutamate and succinate, respectively [71]. The 
identification of glutamic acid as a hub metabolite in the 770 

∆sll1712 mutant sensitive to ethanol further suggested that 
the cyanophycin degradation pathway may be involved in 
tolerance response to biofuels, and may worth further 
investigation. In addition, serine, methyl palmitate and 
sucrose identified by two-dimensional scatter PCA analysis 775 

were also found located in the module M2 associated with 
both ethanol stress and ∆sll1712 at 48 h, and the module 
M4 associated with both ethanol stress and ∆slr1860 at 72 h, 
respectively. Moreover, a good agreement was found 
between results from the WGCNA and the PCA analysis, 780 

both indicating that serine, sucrose and methyl palmitate 
could be important metabolites in combating ethanol toxicity, 
and their abundances were under regulation of three 
regulatory proteins, Sll1392, Sll1712 and Slr1860.       
 785 

Conclusions   
In this study, by constructing and screening knockout 
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mutants for 34 regulator-encoding genes, two 
transcriptional regulators (TR) and one eukaryotic-like 
protein phosphatases (PP) were found involved in ethanol 790 

tolerance in Synechocystis. To decipher the regulation, we 
used a targeted LC-MS and an untargeted GC-MS 
approaches to determine metabolic profiles of the three 
mutants and the wild type under both normal and ethanol 
stress conditions. The metabolomic analysis along with 795 

network construction allowed identification of a few dozen 
stable and unstable metabolites, and seven metabolic 
modules related to ethanol tolerance in the Synechocystis 
mutants. Further comparative analysis of these responsive 
metabolites and metabolic modules showed an obvious 800 

functional overlapping between three networks mediated by 
the regulatory genes, suggesting a possible crosstalk 
between them. Although it is well established that microbial 
cells typically utilize a combination of multiple cellular 
changes as protection mechanisms to combat biofuel 805 

toxicity [7, 8, 10, 11, 37], this is the first report that the 
metabolic responses could be co-regulated by several 
different regulatory genes. The study provided new insights 
to the regulation of ethanol tolerance and useful knowledge 
key to tolerance engineering in Synechocystis.  810 
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3PG: D-(−)-3-phosphoglyceric acid; AcCOA: acetyl 
coenzyme A; ADP: adenosine 5′-diphosphate; ADP-GCS: 
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AMDIS: Automated Mass Spectral Deconvolution and 
Identification System; AMP: adenosine 5′-monophosphate; 
ATP: adenosine 5′-triphosphate; BL-SOM: batch learning 
self-organizing maps; COA: coenzyme A hydrate; DHAP: 
dihydroxyaceton; ESI: electrospray ionization; F6P: 820 

D-fructose 6-phosphate; FBP: D-fructose 1,6-bisphosphate; 
FUM: sodium fumarate dibasic; G6P: D-glucose 
6-phosphate; GAP: DL-glyceraldehyde 3-phosphate; 
GC-MS: Gas Chromatography-Mass Spectrometry; GLU: 
L-glutamic acid; gTME: global transcription machinery 825 

engineering; IS: internal standard; LC-MS: Liquid 
Chromatography–Mass Spectrometry; MPA: mobile 
phrase A; MPB: mobile phrase B; MRM: multiple reaction 
monitoring; MSTFA: N-methyl-N-(trimethylsilyl) 
trifluoroacetamide; NAD: α-nicotinamide adenine 830 

dinucleotide; NIST: National Institute of Standards and 
Technology; OXA: oxaloacetic acid; PCA: Principal 
Component Analysis; PEP: phospho(enol)pyruvic acid; PP: 
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TCS: two-component signal transduction system; TFs: 
transcription factors; TO: topological overlap; TR: 
transcriptional regulators; UDP-GCS: uridine 
5′-diphosphoglucose; WGCNA: Weighted Correlation 
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Figure Legends: 

Fig. 1: Growth time courses of the wild type and the mutants in BG11 media with or without ethanol. A) the wild type and 
the ∆sll1392 mutant; B) the wild type and the ∆sll1712 mutant; C) the wild type and the ∆slr1860 mutant. An ethanol 
concentration of 1.9% (v/v) was used.  1005 

Fig. 2: Targeted LC-MS metabolomic analysis. A) PCA plots of the LC-MS metabolomic profiles at 48 h (above) and 72 h 
(below), respectively. B) Heat maps of the LC-MS metabolomic profiles at 48 h (above) and 72 h (below), respectively.  

Fig. 3: PCA plots of GC-MS metabolomic profiles. GC-MS metabolomic profiles at 48 h (above) and 72 h (below).  

Fig. 4: Visualization of the PCA results of metabolites identified by GC-MS in each of the mutants under different 

conditions. The wild type and three individual mutants under normal (-C) and ethanol-supplemented media (-E) were indicated 1010 

beside the plots. In the plots, the metabolites classified were indicated by black triangles (∆) and the clustering patterns were 
indicated by circles. The responsive metabolites were numbered and identified below. A) Wild type and ∆sll1392 at 48 h; B) 
Wild type and ∆sll1712 at 48 h; C) Wild type and ∆slr1860 at 48 h; D) Wild type and ∆sll1392 at 72 h; E) Wild type and 
∆sll1712 at 72 h; F) Wild type and ∆slr1860 at 72 h.   

Fig. 5:  Overlapping of the responsive metabolites identified by GC-MS under ethanol stress condition in three 1015 

mutants. A) 48 h; and B) 72 h.    
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10

Fig. 6: WGCNA analysis of the GC-MS metabolic profiles of the wild type and the mutants under ethanol stress. A) 48 h; 
B) 72 h. The distinct modules identified at each time point were indicted by color. The modules highly associated with a given 
condition/mutation are indicated, with the metabolites included in the modules indicated by parenthesis. 

Fig. 7: The hub metabolites and their metabolic profiles as represented by the node and edge graph. A) Glutamic acid and 1020 

pyroglutamic acid in the module M2 at 48 h; B) Sucrose and methyl palmitate in the module M4 at 72 h; C) Linoleic acid and 
urea in the module M6 at 72 h; D) Heptadecanoic acid in the module M7 at 72 h. Only those nodes with high connectivity 
strength as displayed near the edges were shown. 

 

 1025 
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