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Mycobacterium tuberculosis is a bacterium that causes tuberculosis, one of the most prevalent 

infectious diseases. Predicating the subcellular localization of mycobacterial proteins in this 

bacterium may provide vital clues for the prediction of protein function as well as for drug 

discovery and design. Therefore, a computational method that can predict the subcellular 

localization of mycobacterial proteins with high precision is highly desirable. We propose a 

computational method to predict the subcellular localization of mycobacterial proteins. An objective 

and strict benchmark dataset was constructed after collecting 272 non-redundant proteins from the 

universal protein resource (UniProt database). Subsequently, a novel feature selection strategy based 

on binomial distribution was used to optimize the feature vector. Finally, a subset containing 219 

chosen tripeptide features was imported into a support vector machine-based method to estimate the 

performance of the dataset in accurately and sensitively identifying these proteins. We found that the 

proposed method gave a maximum overall accuracy of 89.71% with an average accuracy of 81.12% 

in the jackknife cross-validation. The results indicate that our prediction method gave an efficient 

and powerful performance when compared with other published methods. We made the proposed 

method available on a purpose built Web server called MycoSub that is freely accessible at 

http://lin.uestc.edu.cn/server/MycoSub. We anticipate that MycoSub will become a useful tool for 

studying the functions of mycobacterial proteins and for designing and developing anti-

mycobacterium drugs. 

1. Introduction 

Mycobacterium tuberculosis is an extraordinarily successful 

pathogenic bacterium that causes tuberculosis. It has been reported 

that approximately 9 million people are infected annually1, 2. 

Mycobacterium tuberculosis attacks the lung, but it can also infect 

other organs and systems. It can change its morphology, colony 

characteristics, virulence, resistance, and immunogenicity. Because 

of its unique cell wall, studies on the subcellular localization of 

mycobacterial proteins may provide useful insights about their 
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functions and may help in understanding the intricate pathways that 

regulate the biological processes at the cellular level. Therefore, it 

has been suggested that the accurate identification of the subcellular 

localization of mycobacterial proteins may be very important for 

elucidating protein functions involved in various cellular processes 3. 

Wet experiments are an objective approach that could be used to 

recognize the subcellular localization of mycobacterial proteins; 

however, biochemistry-based methods are often time consuming and 

costly. Therefore, the development of computational approaches has 

attracted a lot of attention. Many methods such as the support vector 

machine (SVM) 4-7, artificial neural network 8, K-nearest neighbor 9-

12, Bayesian classifier 13, 14, increment of diversity 15, covariant 

discriminant 16, 17 and ensemble learning 18-20 algorithms have been 

developed to predict the subcellular localization of proteins. Features 

such as amino acid composition 21, pseudo amino acid composition 

22, physico-chemical properties 23, N-peptide composition 24, 25, 

pseudo-average chemical shift 26, and motifs 27, 28 have been 

proposed to represent protein sequences. 

Although previous studies on the subcellular localization of 

eukaryotic and prokaryotic proteins have produced encouraging 

results, few studies have focused on predicting the subcellular 

localization of mycobacterial proteins. The recent accumulation of 

proteomics data has triggered the development of computational 

methods to predict the subcellular localization of mycobacterial 

proteins. Rashid et al. 29 used SVM-based method to predict 852 

mycobacterial proteins and obtained a maximum overall accuracy of 

86.8% in a five-fold cross-validation. However, the sequence 

identity of the database was so high that the performance of the 

proposed methods may have been overestimated. Lin et al. 30 

constructed a non-redundant dataset based on a 852 dataset, which 

had a sequence identity of only 30%. In a jackknife cross-validation, 

they reported an overall accuracy of 90% and an average accuracy of 

73.9%. Subsequently, Li et al. 28 improved the overall accuracy of 

their dataset to 95.5% with an average accuracy of 76.5% in a 

jackknife cross-validation. Fan et al. 26 developed a pseudo-average 

chemical shift method to predict the subcellular localization of 

mycobacterial proteins. Although these methods can achieve high 

overall accuracies, the average accuracy needs to be improved. 

Here, we proposed a SVM-based model to identify the subcellular 

localization of mycobacterial proteins. A binomial distribution 

method was used to select informative tripeptides and the jackknife 

cross-validation showed that our model obtained an overall accuracy 

of 89.71% with an average accuracy of 81.12% in a benchmark 

dataset containing 272 mycobacterial proteins with sequence 

identities of no more than 25%. We also compared the performance 

of our method with the performances of previously published 

methods. In addition to predicting the subcellular localization of the 

proteins, our method provided useful information about local 

sequences, which may have broad applications in areas from protein 

function to drug design research. 

The current study was devoted to enhance the prediction po

wer and quality in Predicting the subcellular localization of my

cobacterial proteins by incorporating the optimal tripeptides into

the general form of pseudo amino acid composition. 

According to recent publications 31-37 and a comprehensive review 

38, the rest of the papers are organized as follows: (i) construct a 

valid benchmark dataset to train and test the predictor; (ii) formulate 

the samples with an effective mathematical expression that can truly 

reflect their intrinsic correlation with the target to be predicted; (iii) 

select a powerful machine learning method to operate the prediction; 

(iv) perform cross-validation tests to objectively evaluate the 

anticipated prediction accuracy of the predictor; (v) provide a web-

server for the prediction method. 

2. Methods 

2. 1. Dataset 

The data that we designed for predicting subcellular localization of 

mycobacterial proteins were extracted from the Universal Protein 

Resource (UniProt) 39. To guarantee a high-quality and well-defined 

dataset, we selected the protein sequences as follows: (i) protein 

sequences that have been reviewed and annotated by experts were 

chosen; (ii) protein sequences that were fragments of other proteins 

were removed; (iii) sequences for which the existence of the protein 

was uncertain or that were predicted were eliminated; and (iv) 

sequences that were inferred from homologous proteins were 

eliminated. Generally, if a designed dataset contains highly similar 

sequences, misleading results with overestimated accuracies will be 

obtained and the generalization ability of the proposed model will be 

reduced. To avoid such overestimations, the PISCES program 40 was 

employed with 25% as the sequence identity cutoff to remove 

redundant sequences. 

As is well known, proteins may simultaneously exist at, or move 

between, two or more different subcellular localizations. Some web 

servers such as iLoc-Euk 41, iLoc-Hum 42, iLoc-Plant 43, iLoc-Gpos 

44, iLoc-Gneg 45, and iLoc-Virus 46 have been developed to cope with 
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the multiple localization problems. However, in this study we didn’t 

consider the case of multiplex proteins because the number of 

multiplex proteins in the existing mycobacterial protein database is 

not large enough to construct a statistically meaningful benchmark 

dataset for studying the case of multiple localizations. As a result, we 

obtained 272 mycobacterial proteins sequences which are distributed 

among 3 subcellular localizations (Figure 1) and can be formulated 

by 

1 2 3S=S US US                                      (1) 

where S1 contains 153 cytoplasmic proteins, S2 contains 18 secretory 

proteins, and S3 contains 101 membrane proteins. The 272 sequences 

can be downloaded from the MycoSub.  

 

Figure 1. Schematic illustration to show the three subcellular 

localizations of M. tuberculosis: cell membrane, cytoplasm and 

extracell. 

2. 2. Tripeptide compositions 

After building the benchmark dataset, we extracted a set of 

informative parameters that was used to develop the predictor for the 

subcellular localization of mycobacterial proteins. One of the    

most important criteria was to formulate an effective mathematical 

expression that truly reflected the correlation between the intrinsic 

features of the sequences and the protein types to be predicted. Wang 

et al. 47 described a protein sequence, which is generally made from 

various combinations of 20 amino acids. To classify the proteins 

sequences, the n-gram features were extracted and used as the input 

signals for the classifier. The n-gram features have been used as 

modulators of biological function 48, to predict plausible structures 

for oligopeptides, and for denovo protein design 49. In this work, the 

tripeptide compositions (3-gram features) were used to represent a 

protein sequence by an 8000 dimensional vector as:  

[ ]T8000 1 2 8000, , ..., , ...,iF f f f f=                          (2) 

where the symbol T denotes the transposition of a vector and if  is 

the frequency of the i-th tripeptide in a protein sequence, which can 

be calculated as: 

( )2
8000

1
−== ∑ =

Lnnnf ii iii
                          (3) 

where ni and L denote the number of the i-th tripeptide and the length 

of the protein sequence, respectively. 

2.3. Feature selection 

Inclusion of redundant and noisy information can result in poor 

predictive results and is time costly. To economize on run-time and 

computational resources, feature selection is a smart technique that 

can be used to deal with this problem. Currently, many techniques 

have been proposed to optimize feature sets. They include principal 

component analysis 50, 51, diffusion maps 52, minimal-redundancy-

maximal-relevance 53, 54, analysis of variance 55, 56, local linear 

discriminant analysis 57, and geometry preserving projections 58. 

In the present study, a binomial distribution technique was applied 

to pick out informative tripeptides 59. According to Eq. (2), the three 

types of mycobacterial proteins in the benchmark dataset can contain 

up to 8000 types of tripeptides. That a particular type of tripeptides 

appears in one type of protein may be a stochastic event. Thus, it is 

necessary to judge whether the occurrence of a particular tripeptide 

in one type of protein is a stochastic event or not. 

We initially defined the prior probability qj as: 

Mmq jj =                                         (4) 

where mj is the number of tripeptides that appeared in the j-th type of 

protein and M is the total occurrence frequency of all tripeptides in 

the benchmark dataset. 

The probability of the i-th tripeptide occurring in the j-th type of 

protein can be defined as: 
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                    (5) 

where Ni represents the total number of the i-th tripeptides in the 

benchmark dataset, nij represents the number of occurrences of the i-

th tripeptide in the j-th type of protein, and the sum is taken from nij 

to Ni. 

If p(nij) is a small value, it indicates the observation of the i-th 

tripeptide in the j-th type of protein is not a random event. The CL of 

the i-th tripeptide in the j-th type of protein is defined as: 

( )ijij npCL −=1                                       (6) 

The CLs of the 8000 tripeptides in the j-th type of protein can be 

calculated based on Eqs. (4–6). We ranked the 8000 tripeptides in 

descending order according to their CLs. Because three types of 

proteins were considered in this study, each of the tripeptides had 

three different rank indexes denoted as rm, rs, rc (rm, rs, rc∈ (1, 

8000)). Thus, we defined the rank of these tripeptides in the 

benchmark dataset as: 

min{ , , }m s c

i i i ir r r r=                                 (7) 

where ri represents the rank of the i-th tripeptide in the benchmark 

dataset, the superscripts ‘m’, ‘s’, and ‘c’ indicate membrane proteins, 

secretory proteins, and cytoplasmic proteins, respectively.  

Subsequently, incremental feature selection was used to determine 

the optimal number of features. First, the feature subset started from 

features with the lowest r value in the ranked feature set. Then, a 

new feature subset was produced when the features with the second 

lowest r value were added. This two-step process was repeated from 

the lower r values to the higher r values until all the candidate 

features were added. The resulting feature subset with k tripeptides 

can be described as: 

T
' ' ' '

1 2, ,..., ,..., =  k i kF f f f f                            (8) 

For each of the feature sets, a SVM-based model was constructed 

and a 5-fold cross-validation test was used to investigate its accuracy. 

The optimal feature set can be considered to be obtained when the 

overall accuracy was the maximum. The final predictor was built 

using the k optimal features. 

2.4. Support vector machine 

The SVM approach is a supervised machine learning method based 

on statistical learning theory, which has been used successfully in 

many bioinformatics applications 36, 40, 60-63. The basic idea of SVM 

is to map samples into a high-dimension Hilbert space and to seek a 

separating hyperplane in this space. To handle multi-class problems, 

“one-versus-one” and “one-versus-rest” strategies are generally 

applied to extend the traditional SVM. In this study, the one-versus-

one strategy was used. The radial basis function was chosen as the 

kernel function. The LibSVM2.83 software 60 was used to implement 

SVM.  

2.5．．．．Criteria definitions 

Jackknife cross-validation always yields a unique result for a given 

benchmark dataset and has been widely and increasingly adopted 31, 

61, 62, 64-67. We used the jackknife cross-validation to evaluate the 

performance of our method. In the jackknife cross-validation, each 

protein in the dataset was singled out in turn as an independent test 

sample and all the rule parameters were calculated based on the 

remaining proteins excluding the one being identified. Furthermore, 

to reduce the computational time, the 5-fold cross-validation was 

used to select the C and γ parameters in the SVM. 

To provide a more intuitive and easier-to-understand method to 

measure the prediction quality, we used the following five 

parameters: sensitivity (Sn), specificity (Sp), Matthew’s correlation 

coefficient (MCC), overall accuracy (OA), and average accuracy 

(AA), which were defined as follows: 

( ) ( )
( )iN

iN
iSn +

+
−−=1

                                       (9) 

( ) ( )
( )iN

iN
iSp −

−
+−= 1

                                    (10) 
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( )
( )

( )
( )

( ) ( )
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−

−
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iNiN
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1            (11) 
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=
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−

+ −=
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δ 1

1

i

iNiNOA                                (12) 
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−





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


−

= 1

1
i iN

iN

AA                              (13) 

where ( )iN +   is the total number of the investigated mycobacterial 

proteins samples in the subset Si, ( )iN
+
−  is the number of 

mycobacterial proteins samples in Si that were incorrectly predicted 

belonging to the other subsets, ( )iN
−  is the total number of the 

mycobacterial proteins samples in all of the other subsets, ( )iN
−
+  is 

the number of the mycobacterial proteins samples that were 
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incorrectly predicted belonging to Si, ζ is the number of subsets 

(Eq.(1)) and δ is the number of the total samples in S. 

It should be noted that the set of metrics is valid only for the 

single-label systems. For the multi-label systems whose existence 

has become more frequent in system biology 41, 42 and system 

medicine 68, 69, a completely different set of metrics as defined in 70 is 

needed. 

3. Results and discussion  

3.1．．．．Predictive performance 

The subcellular localization of mycobacterial proteins predicted 

using SVM can help economize the resources and computational 

time required. Following previous studies 64, 71-73, the regularization 

(C) and kernel (γ) parameters of the SVM were optimized by a grid 

search with 5-fold cross-validation. 

Generally, the high dimension features can lead not only to an 

over-fitting problem but can also cause information redundancy or 

noise, which would result in low capability in the generalization of a 

predictor and poor prediction in the cross-validation. To overcome 

the high-dimension problems, we selected informative sequence 

features using binomial distribution. If we selected tripeptides with 

high CLs, the results were robust and credible. The selected 

tripeptides were also informative; however, the number of these 

tripeptides was too small to reflect enough information about the 

proteins. For example, the overall accuracy was only 71.3% when 27 

tripeptides were used to predict the subcellular localization of three 

types of mycobacterial proteins in 5-fold cross-validations. In 

general, higher numbers of tripeptides can better represent the 

proteins. However, when too many tripeptides were used, the model 

would become overfitted, which reduced its robustness and 

predictive accuracy. For instance, we found that 6281 tripeptides 

produced an overall accuracy of only 68.4% in the 5-fold cross-

validations. Therefore, to build a robust model with high accuracy, it 

is very important to choose the appropriate number of features. 

Because our dataset contained 272 mycobacterial protein 

sequences, to avoid the overtraining problem we set the maximum 

number of selected tripeptide features to 272. By selecting the 

appropriate CL, we found that a feature subset containing 219 

tripeptides achieved a maximum overall accuracy of 89.71% and an 

average accuracy of 81.12%. The sensitivities were 88.12%, 61.11%, 

and 94.12% for membrane proteins, secretory proteins, and 

cytoplasmic proteins, respectively. With the detailed information is 

shown in table 1. Furthermore, we also calculated the OA achieved 

by completely random guess (CRG). Obviously, the OA achieved by 

CRG is 50.00%. If considering the weight or prior probability, the 

OA is [101× (101/272)+18× (18/272)+153× (153/272)]/272 = 

45.87%. These results demonstrate that our method is superior to 

random guess and suggest that binomial distribution is a powerful 

technique for selecting optimal features.  

Table 1 The jackknife test results on the dataset M272. 

Location Sn Sp MCC 

Membrane 88.11 94.15 0.826 

Secretory 61.11 1.00 0.771 

Cytoplasm 94.12 84.87 0.798 

OA(%) 89.71   

AA(%) 81.12   

3.2. Comparison with other methods 

Two published datasets, M330 and M638, have been used previ

ously to investigate the performance of prediction methods for 

the subcellular localization of mycobacterial proteins. Thus, we 

also tested the predictive capability of our method using these 

two datasets.  

For the M330 dataset, an overall accuracy of 90% and an average 

accuracy of 73.9% has been reported using pseudo amino acid 

composition and reduced amino acids 30. Li et al. 28 improved the 

overall accuracy to 95.5% and the average accuracy to 76.5%. Fan et 

al. 26 obtained an overall accuracy of 93.33% with an average 

accuracy of 78.27% using pseudo-average chemical shift. We found 

that although the overall accuracy of our method was lower than that 

of the other methods, the average accuracy of our method was much 

higher than that of the other methods (Table 2). Notably, our method 

correctly recognized 75% of the secretory proteins, which is ~30% 

higher than was reported for the other existing methods. 

In the M330 dataset, the numbers of integral membrane proteins 

(176) and cytoplasmic proteins (111) were much more than the 

numbers of membrane-attached proteins by lipid anchor proteins (27) 

and secretory proteins (16). Thus, the overall accuracies of the 

predictions were influenced significantly by the success rate for the 

predictions of integral membrane proteins and cytoplasmic proteins. 

For example, if all integral membrane and cytoplasmic proteins were 

predicted correctly while the other two types of proteins were all 

incorrectly predicted, the overall accuracy would be 86.97%, but the 

average accuracy would be only 50%. Thus, our method is more 

practical than the other methods tested. 
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Table 2 Comparison of our proposed method with other methods on the M330 dataset. 

Predictor 
Sn (%) 

OA (%) AA (%) 
Integral membrane Attached to the membrane Secretory Cytoplasm 

Our method 90.91 77.78 75.00 86.49 87.56 82.54 

Fan et al. 26 96.63 80.77 40.00 95.69 93.33 78.27 

Li et al. 28 100.00 72.00 46.70 87.30 95.50 76.50 

Lin et al. 30 93.80 74.10 31.30 96.40 90.00 73.90 

The comparative results with the M638 dataset are listed in Table 

3. Fan et al. 26 obtained an overall accuracy of 87.77% with an 

average accuracy of 70.37%, while we obtained an overall accuracy 

of 86.21% with an average accuracy of 73.25% using our method. 

Although the overall accuracy of our method was slightly lower than 

that of Fan et al. 26 (about 1.5%), the average accuracy of our method 

was higher (about 2.9%). In particular, the accuracies for the 

secretory proteins and attached to the membrane proteins were about 

10% higher than the accuracies reported by Fan et al. 26. These 

results show that our method was superior to the other existing 

methods tested, especially for predicting the secretory proteins and 

attached to the membrane proteins.  

Table 3 Comparison of our predictor method with other methods with the M638 dataset. 

Location 
Our method Fan et al.26 

Sn Sp MCC Sn Sp MCC 

Integral membrane 88.85 87.65 0.765 90.45 87.96 0.784 

Attached to the membrane 73.33 99.84 0.831 63.33 99.18 0.695 

Secretory 41.38 99.84 0.608 34.48 99.34 0.481 

Cytoplasm 89.43 87.67 0.765 93.21 91.96 0.847 

OA(%) 86.21   87.77   

AA(%) 73.25   70.37   

4. Conclusions 

In this work, we developed a promising method to predict the 

subcellular localization of mycobacterial proteins. A binomial 

distribution-based feature selection technique was developed to 

select over-represented tripeptides. In the jackknife test, our 

proposed model achieved an overall accuracy of 89.71% with an 

average accuracy of 81.12% for the subcellular localization of 

mycobacterial proteins. Although our results are encouraging, there 

is clearly considerable room for improvement. The accuracy of the 

subcellular localization of mycobacterial proteins was higher using 

our method compared with the accuracies reported using previous 

methods, indicating that our method is a much more powerful one. 

Our method is available on a purpose-built Web server called 

MycoSub (http://lin.uestc.edu.cn/server/MycoSub). 
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