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Targeting mitotic regulation is recognized as an important strategy for cancer therapy. Aurora A/B kinase 

and polo-like kinase 1 (PLK1) are key mitotic regulators, and many inhibitors have been developed. 

Combinations of these inhibitors are anticipated to be more effective therapeutics compared with 

single-inhibitor treatments; however, a systematic analysis of the combined effects is lacking. Here, we 

constructed the first mammalian cell mitotic regulation network model, which spans from mitotic entry to 10 

anaphase initiation, and contains all key mitotic kinase targets. The combined effects of different kinase 

inhibitors and microtubule inhibitors were systematically explored. Simultaneous inhibition of Aurora B 

and PLK1 strongly induces polyploidy. Microtubule inhibitor dosage can be significantly reduced when 

combined with PLK1 inhibitor. The efficacy of these inhibitor combinations was validated by our 

experimental results. The mitotic regulatory network model provides a platform to study complex 15 

interactions during mitosis, enables identification of mitotic regulators, and determines targets for drug 

discovery research. The suggested use of combining microtubule inhibitors with PLK1 inhibitors is 

anticipated to enhance microtubule-inhibitor tolerance in a wide range of patients.

IntroductionF


 

Eukaryotic cell division occurs during mitosis. To ensure that two 20 

identical copies of DNA are distributed to the two daughter cells, 

mitosis is tightly controlled. Mitotic failure results in genomic 

instability, which may cause cell death or cancer. H

1-3
H Cell 

proliferation is more active in cancer cells compared with normal 

cells; therefore, strategies to disrupt mitosis are utilized for 25 

anti-cancer therapy. H

4
H Microtubule inhibitors, which block 

microtubule dynamics and cause abnormal mitotic spindles, are 

successfully used in clinical applications. However, these agents 

have adverse side effects, such as peripheral neuropathy, because 

microtubules have important functions in non-mitotic cells.5, 6 30 

Research on mitotic regulatory mechanisms has provided insight 

into this complex process. Several proteins with unique functions 

in mitosis were identified as novel anti-cancer drug targets, such 

as mitotic kinases, kinesins, and checkpoint proteins. H

7 

Aurora kinases and polo-like kinase 1 are mitotic kinases that 35 
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have attracted much attention. Human Aurora kinases are 

classified as three types designated as Aurora A, Aurora B, and 

Aurora C. Aurora A is required for centrosome maturation and 

spindle assembly, and participates in activation of 

cyclin-dependent kinase 1 (CDK1), the key kinase that controls 40 

progression of mitosis during mitotic entry. Aurora B is a 

component of the chromosome passenger complex and regulates 

chromatid separation by destabilizing incorrect 

kinetochore-microtubule attachment. Expression of Aurora C is 

limited to the testes, and it functions only during meiosis. Aurora 45 

A/B were overexpressed in several cancer cell lines, and are 

considered as potential anti-cancer drug targets.8, 9 Pan-Aurora 

kinase inhibitors and selective inhibitors of Aurora A/B are 

currently under development, although the benefit of Aurora 

isoform specificity is unclear. H

10-12
H Polo-like kinase 1 (PLK1) is 50 

the most investigated protein of the polo-like kinase family, 

which has five members. PLK1 has multiple functions in 

cell-cycle control. During mitosis, it regulates mitotic entry, 

centrosome biogenesis, mitotic chromosomes, and cytokinesis. 

PLK1 overexpression is linked with cancer, and it is identified as 55 

a promising drug target.13, 14 Several PLK1 inhibitors have been 

developed, and some are under clinical or preclinical study. In 

2013, volasertib (BI 6727, for treating acute myeloid leukemia) 

became the first PLK1 inhibitor received the FDA's new 

“Breakthrough Therapy” designation and is under consideration 60 

for accelerated approval.H

15
H Considering the functions of these 

kinases and the phenotypes induced by their inhibitors, 

combination therapy using Aurora or PLK1 inhibitors is 

anticipated to be highly effective. H

16
H However, systematic 
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experimental and theoretical investigations are lacking. 

Constructing and simulating biological networks is widely used 

in cell-cycle studies, and mitosis has been modeled at different 

levels. Tyson and Novák generated network models describing 

CDK1 regulation, and integrated the module into whole 5 

cell-cycle models. H

17-20
H Ferrell et al. modeled CDK1 regulation in 

Xenopus oocytes using two positive-feedback loops (Wee1 and 

CDC25) and one negative-feedback loop (anaphase promoting 

complex/cyclosome, APC/C), and obtained the oscillation 

dynamics predicted from experiments. H

21-25
H Several network 10 

models of spindle-assembly checkpoint were published, including 

biophysical and molecular models (for review see Ref. H

26
H). The 

first model of mitotic entry containing Aurora A and PLK1 was 

reported by Zou et al. in 2011.H

27
H Aurora kinases and PLK1 play 

important roles in both mitotic entry and spindle-assembly 15 

checkpoint, but no quantitative discussion has been published. 

Therefore, a more comprehensive network model simulating 

multiple mitotic phases is required to test the therapeutic effects 

of Aurora and PLK1 inhibitor combinations, and to identify 

potential nodes for new drug targeting. 20 

We constructed a model for the whole mitotic regulatory network 

that describes mitosis from prophase to anaphase. The model 

contains all three potential kinase targets, including Aurora A/B 

and PLK1, and can be used to analyze the anti-cancer effects of 

drug regimens. Dynamic simulation of the network model 25 

enabled prediction of several potent dual-target combinations, 

and these predictions were validated by performing experimental 

studies. 

Results 

Mitotic Regulatory Network  30 

We constructed a theoretical model of the mitotic regulatory 

network to simulate the progression through mitosis (Fig. 1). The 

network model contains the following four modules, and each 

module has an output species: (1) regulation of CDK1 activity 

(CDK1:CycB); (2) inter-regulation between Aurora A and PLK1, 35 

which promotes centrosome maturation and spindle formation 

[centrosomal p-AurkA (p-AurkA-cs)]; (3) kinetochore- 

microtubule attachment (Attached); and (4) spindle-assembly 

checkpoint (APC/C:CDC20). This network was generated using 

information retrieved from experimental reports, review articles, 40 

and published network models of mitotic stages (see subsequent 

discussion). 

CDK1 is the key enzyme in mitosis. In our network model, 

CDK1 is activated by dephosphorylation of Tyr15 during entry to 

mitosis, and inactivated by degradation of the Cyclin B activator 45 

after spindle-assembly checkpoint is turned off. The effects of 

Wee1 and CDC25 are described in published models.18-22, 27 

CDK1 binding to Cyclin B is not considered in our model 

because Cyclin B level reaches maximum before the initial time 

point of our model. H

28 50 

Aurora A and PLK1 have important roles in mitotic entry and 

spindle formation. H

16
H The Aurora A/Bora/PLK1 pathway in our  

 

55 

Fig. 1 Mitotic regulatory network. The network contains four modules: (1) CDK1 regulation, top left; (2) inter-regulation between 

Aurora A and PLK1, top right; (3) kinetochore-microtubule attachment, bottom right; and (4) spindle-assembly checkpoint, bottom left. 

Species functions are denoted by color: kinase (blue), phosphatase (pink), ubiquitin ligase (green), non-enzymatic protein/complex 

(yellow), and attachment states (gray) 
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model is based on a report that Bora and Aurora A cooperatively 

activate PLK1. H

28
H Previous work also based this pathway on the 

same report. H

27
H Localization of Aurora A on centrosome is 

regulated by PLK1 by triggering the degradation of Bora.H

29 

Kinetochore-microtubule attachment is a complex stochastic 5 

process. Before microtubules from opposite spindle poles attach 

to sister kinetochores (amphitelic orientation), single attachment 

(monotelic orientation) is an obligatory step. Misattachments 

(syntelic and merotelic orientations) may occur. Merotelic 

orientation is related to the thickness of attachment bundles from 10 

different spindle poles. H

30
H This process cannot be accurately 

described in detail in the mitotic regulatory network. We 

constructed a two-state description of kinetochore-microtubule 

attachment and define the states as unattached and attached. 

Aurora A promotes the transition from unattached to attached, 15 

whereas Aurora B destabilizes the attachment and promotes 

transition from attached to unattached. The transition time is used 

to indicate mitotic delay and chromosome instability. This 

description is similar to the biological model developed by Mistry 

et al. H

31 20 

Spindle-assembly checkpoint prevents anaphase onset until all 

chromosomes are correctly attached to the mitotic spindle. This 

pathway inhibits the function of CDC20, a co-factor of E3 

ubiquitin ligase anaphase-promoting complex/cyclosome 

(APC/C). Mitotic-checkpoint complex (MCC), which contains 25 

CDC20, is the spindle-assembly checkpoint effector. H

32
H Network 

models of MCC formation have been constructed to simulate 

mitotic dynamics. H

33-37
H MCC formation in our model is simplified 

to one reaction: transition from CDC20 to MCC. Synthesis and 

degradation of CDC20 are included in our network model, for 30 

these reactions determined the CDC20 level.H

38-41 

Mitotic regulatory network dynamics are formulated in ordinary 

differential equations (ODEs). The computational model contains 

27 equations that describe 29 reactions. Of these, 21 are 

enzymatic reactions with Michaelis-Menten kinetics, and the 35 

remaining 8 are protein-protein binding/dissociation reactions 

with mass-action law kinetics. The equations are presented in 

Table S1. Molecular concentrations were specified according to 

published reports. The proportions of molecules in different 

phosphorylation or protein-binding states at the initial time point 40 

were set as parameters (see Table S2 for details). 

Parameter Optimization 

The computational model contained 44 kinetic parameters and 11 

initial concentration parameters. All parameters were obtained by 

fitting to the following published experimental data: (1) one 45 

curve from a fluorescence resonance energy transfer (FRET) 

experiment on CDK1 activity; H

42
H (2) five sets of western blot data 

measuring the concentrations of different molecular species (only 

the points from 9 to 12 hours after G1/S transit were chosen).28, 43 

All experiments were conducted using HeLa cells. Parameter 50 

fitting was performed using a method developed by our group 

called differential simulated annealing (DSA). H

44
H Parameter 

perturbation was used to select parameter sets that the ODE 

solver processes until a stable state is reached. Calculations for 

parameter optimization are described in Materials and Methods. 55 

A total of 137 parameter sets were obtained from 1,000 

independent simulations (see Fig. S1 for the distribution range of 

 

 
Fig. 2  Parameter-fitting for the mitotic regulatory network. 60 

Gray lines represent simulated curves of 137 parameter sets. Blue 

circles represent published data for molecular species 

concentration from: (A) FRET experiments; H

42
H (B−F) western blot 

experiments.28, 43 

 65 

each parameter). Using these parameter sets, computed curves are 

consistent with experimental data (Fig. 2). For other molecular 

species not used in curve fitting, the kinetics meets known fact in 

mitosis (Fig. S2). The computational model using all 137 

parameter sets reproduces the behavior of mitosis. 70 

Parameter Sensitivity Analysis Identifies Key Network 

Regulators 

To identify key reactions that affect network dynamics, 

single-parameter sensitivity analysis was performed. The effect of 

each reaction on the dynamics of the four output species 75 

(corresponding to the four modules) was calculated and ranked 

(see Materials and Methods section). The 10 most sensitive 

reactions were identified as key reactions for each output species 

(Table 1). 

Many of the top-ranked reactions are catalyzed by Aurora kinases 80 

and PLK1, which are known key regulators of mitosis. Aurora A 

autoactivation and its activation of PLK1 are crucial for 

centrosome maturation (p-AurkA-cs) and 

kinetochore-microtubule attachment (Attached). Aurora B 

autoactivation and its inhibition of attachment are crucial for 85 

kinetochore-microtubule attachment and spindle-assembly 

checkpoint signal (APC:CDC20). The two reactions in which 

PLK1 regulates Aurora A localization (PLK1 promotes Bora 

degradation and Bora inhibits AurkA localization) greatly affect 

centrosome maturation. These results are consistent with the 90 

functions of Aurora kinases and PLK1. 
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Table 1.  Most sensitive key reactions for each output species 

Rank p-AurkA-cs Attached APC/C:CDC20 CDK1:CycB 

1 
Bora inhibits AurkA 

localization 
AurkA autoactivation CDC20 degradation CDC25 activates CDK1 

2 
PLK1 promotes Bora 

degradation 
AurkB autoactivation CDC20 synthesis 

APC promotes CycB 

degradation 

3 AurkA autoactivation 

AurkA promotes 

kinetochore -microtubule 

attachment 

BUBR1 promotes AurkB 

dephosphorylation 
CDC20 degradation 

4 AurkA activates PLK1 
Bora inhibits AurkA 

localization 
CDC20 forms MCC CDC20 synthesis 

5 MYPT1 inhibits PLK1 
BUBR1 promotes AurkB 

dephosphorylation 
AurkB autoactivation Wee1 inhibits CDK1 

6 
CDK1 activates 

MYPT1 

AurkB inhibits 

kinetochore -microtubule 

attachment 

AurkA promotes 

kinetochore -microtubule 

attachment 

CDC20 forms MCC 

7 CDC25 activates CDK1 
PLK1 promotes Bora 

degradation 

Bora inhibits AurkA 

localization 
AurkA autoactivation 

8 
APC promotes CycB 

degradation 
MYPT1 inhibits PLK1 

AurkB inhibits 

kinetochore -microtubule 

attachment 

BUBR1 promotes AurkB 

dephosphorylation 

9 Wee1 inhibits CDK1 PLK1 recruits BUBR1 APC binds CDC20 APC binds CDC20 

10 CDC20 degradation AurkA activates PLK1 
PLK1 promotes Bora 

degradation 
AurkB autoactivation 

 

Most of the top-ranked reactions have been reported to affect 

mitotic regulation. Our parameter-sensitivity analysis indicates 

that the reaction BUBR1 promotes AurkB dephosphorylation 5 

largely affects both kinetochore-microtubule attachment and 

APC/C:CDC20 activity. This is consistent with published reports 

that BUBR1 regulates spindle-assembly checkpoint and inhibits 

APC/C:CDC20 activity.45, 46 CDC20 synthesis is crucial for 

spindle-assembly checkpoint and CDK1 activity. Kidokoro et al. 10 

reported that CDC20 expression was suppressed by p53, and 

identified CDC20 as an anti-cancer target. H

47
H Cyclin B degradation 

ranks high for spindle-assembly checkpoint and CDK1 activity. 

The E2 ubiquitin-conjugating enzyme of this degradation 

pathway, UbcH10, was closely implicated in cancer.48, 49 These 15 

results validate our computational simulations, and demonstrate 

that our model can predict the effects of targeted disruption of 

mitosis. 

Network Simulation Validates Aurora A/B as a Beneficial 
Therapeutic Target 20 

Many inhibitors have been developed to target Aurora A/B since 

they were identified as potential anti-cancer drug targets. 

Approximately 30 compounds are in clinical or pre-clinical 

development, including pan-Aurora kinase inhibitors and 

selective inhibitors of Aurora A or Aurora B.H

10
H However, the 25 

effect of combination targeting of Aurora A/B has not been 

evaluated at a biological or network level. Although pan-Aurora 

kinase inhibitors cause mitotic-spindle defects that are consistent 

with Aurora A inhibition, the resultant phenotype is polyploid 

(typical for Aurora B inhibition) rather than mitotic blockade 30 

(typical for Aurora A inhibition). H

50-52
H This bypass of Aurora A by 

Aurora B inhibition is supported by RNAi experiments, but the 

molecular mechanism is unknown.H

53
H We used our network model 

to simulate the effects of combined inhibition of Aurora A/B. 

Aurora A inhibition was expressed as the rate reduction of all 35 

reactions catalyzed by Aurora A after non-competitive inhibition. 

 

 

[I] is concentration of the inhibitor and Ki is the inhibitory 

constant. The doses were set to  every 0.25 from −1 to 1. 40 

Aurora B inhibition was expressed in the same way. Effects of 

combined inhibition at each dosage pair were calculated. 

Simulated curves of phosphorylated Aurora A at centrosome and 

kinetochore-microtubule attachment are presented in Fig. 3. For 

clarity, only selected dose results are presented. For Aurora A, 45 

 
= 0 (50% inhibition) or 

 
= 0.5 (76% inhibition).  
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Fig. 3  Simulations for combined inhibition of Aurora A/B. (A) 

Centrosome maturation represented by phosphorylated Aurora A 

at the centrosome (normalized to the value at 200 min with no 

inhibition). (B) Kinetochore-microtubule attachment represented 5 

by the ratio of attached kinetochore. 

 

 
Fig. 4  Simulations from combined inhibition of Aurora B and 

PLK1. The representations are the same as in Fig. 3. 10 

 

For Aurora B, 
 

= 0.5 (76% inhibition). Each of the 137 

parameter sets was used in the calculation; only the parameter set 

nearest to the centroid of the parameter-distribution was 

presented as a representative simulation result (the centroid is 15 

defined as the point having the least total distance to all the 

parameter sets in the parameter space with logarithmic 

coordinates; cityblock distances are used). Results of other 

parameter sets are similar with the one shown here. The same 

constraints apply for all subsequent analyses. 20 

Aurora A inhibition delays centrosome maturation and 

kinetochore-microtubule attachment in the mitotic network model. 

This is consistent with experimental results showing that Aurora 

A inhibition delays mitosis. Aurora B inhibition does not affect 

centrosome maturation but enables kinetochore-microtubule 25 

attachment at an earlier time point. Aurora B inhibition leads to 

formation of the kinetochore-microtubule attachment before 

mature centrosomes are generated, turns off the spindle-assembly 

checkpoint, and results in polyploidy. The 

kinetochore-microtubule attachment time shift due to Aurora B 30 

inhibition increases with the Aurora A inhibitor dosage. This 

result indicates that combined inhibition of Aurora A/B more 

potently induces polyploidy. This is consistent with published 

experimental data using knockdowns; inactivation of both Aurora 

A/B generates more polyploid cells than inactivation of only 35 

Aurora B. H

53 

Combined Inhibition of Aurora B and PLK1 Effectively 

Generates Polyploidy 

Aurora A and PLK1 are both required for spindle assembly; 

therefore, combined inhibition of Aurora B and PLK1 may have 40 

similar effects as combined inhibition of Aurora A/B. We 

simulated the effect of combined inhibition of Aurora B and 

PLK1 to test this hypothesis using the same computational 

methods that were used for testing Aurora A/B inhibition. 

Simulation results are presented in Fig. 4. For clarity, only 45 

selected dose results are presented. For PLK1, 
 

= 0 (50% 

 
Fig. 5  Experimental effects of combined PLK1 and Aurora B 

inhibitors on HeLa cells. (A−D) HeLa cell DNA contents were 

measured using flow cytometry. Cells were treated with (A) 50 

DMSO, (B) BI 2536, (C) AZD1152, or (D) BI 2536 and 

AZD1152. (E) Immunostaining of α-tubulin (α-Tub) and Centrin 

in HeLa cells; cells were treated with DMSO, BI 2536, AZD1152, 

or BI 2536 and AZD1152. Scale bar=10 μm. 

 55 

inhibition) and   = 0.75 (85% inhibition). For Aurora B, 

 
= 0.75 (85% inhibition). 

Inhibition of PLK1 delays centrosome maturation and 

kinetochore-microtubule attachment, similar to the effects of 

Aurora A inhibition, but the kinetics are different. PLK1 60 

indirectly regulates Aurora A, in that PLK1 controls Aurora A 

localization by promoting Bora degradation.H

29
H For this reason, 

combined inhibition of PLK1 and Aurora B generates similar 

results as that of singly inhibiting Aurora B. The time shift for 

inhibition is lengthened with simultaneous inhibition of PLK1 65 

and Aurora B. Therefore, combined inhibition of PLK1 and 

Au r o r a  B  m o r e  e f f e c t i v e l y  p r o d u c e s  p o l yp l o i d y . 

We experimentally tested the combined inhibition of PLK1 and  
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Fig. 6  Response surface of microtubule inhibitor and PLK1 

inhibitor for kinetochore-microtubule attachment. (A) Simulated 

surface; (B) Bliss independent surface; (C) synergy contours are 

the difference between simulated surface and Bliss independence 5 

surface. 

 

Aurora B. HeLa cells were treated with the PLK1 inhibitor BI 

2536 (2.5 nM) and the selective Aurora B inhibitor AZD1152 (10 

nM) individually or combined for 24 h. Cell DNA contents were 10 

measured using flow cytometry (Fig. 5). As expected, PLK1 

inhibitor causes mitotic arrest, whereas Aurora B inhibitor causes 

polyploidy (14.06% of cells with DNA content 8N). Cells treated 

with both PLK1 and Aurora B inhibitors exhibited significantly 

higher index of polyploidy (31.17%). This result is in agreement 15 

with our mitotic network simulation, and indicates that inhibition 

of PLK1 and Aurora B is a potent anti-cancer drug-target 

combination. 

Effective Microtubule Inhibitor Dosage Is Reduced by 

Combination with PLK1 Inhibitor 20 

Microtubule inhibitors are a class of drugs that target mitosis, and 

are successfully used in cancer therapy. However, these drugs 

have adverse side effects including neurotoxicity and 

myelosuppression, because microtubules have important 

functions in normal cells. Combination therapies using 25 

microtubule inhibitors with other drugs may improve drug 

efficacy and reduce adverse side effects. H

5
H The advantage of 

combining microtubule inhibitors with mitotic kinase inhibitors 

has been postulated previously, H

16
H but a systematic study has not 

been reported. Network simulation is an efficient method to 30 

identify synergistic drug combinations.54, 55 Using our network 

model, we studied the combined effects of microtubule inhibitors 

with Aurora A/B or PLK1 inhibitors on kinetochore-microtubule 

attachment. 

Microtubule assembly inhibition was modeled as a rate decrease 35 

in the transition from unattached to attached kinetochores. 

Inhibition of Aurora kinases or PLK1 was expressed as described 

previously. The doses were set to  every 0.125 from −2 

to 2. Inhibitor response was represented by the area under the 

curve of attached kinetochores. Synergy was quantified using the 40 

Bliss independence model, which assumes that inhibitors act 

through distinct mechanisms. H

54
H The response surfaces were 

generated using 1,089 dose pairs. 

 
Fig. 7  Quantification of kinetochore-microtubule attachment 45 

(black) for HeLa cells treated with microtubule inhibitor 

nocodazole (NOC) and/or PLK1 inhibitor BI 2536 (BI), with 

S-trityl-L-cysteine (STLC) as negative control for BI 2536. Each 

data point represents three independent experiments; error bars 

indicate standard error. For combined inhibition, Bliss 50 

independence percentages (white) are shown. 

 

We tested inhibitors of Aurora A/B kinases and PLK1; only 

PLK1 inhibitor was significantly synergistic with microtubule 

inhibitor (Fig. 6). The maximum additional inhibition reaches 55 

40% near the dosage close to the Ki value of microtubule 

inhibitor. The four reactions catalyzed by PLK1 (promote 

p-Wee1 degradation, CDC25 phosphorylation, promote Bora 

degradation, and recruit BUBR1) were simulated separately to 

test the effect of combining PLK1 inhibitor with microtubule 60 

inhibitor. The results show that the synergistic effect is primarily 

due to the reaction recruit BUBR1, which regulates 

kinetochore-microtubule attachment through an alternative 

pathway that does not depend on microtubule formation. Parallel 

pathways represent a common network architecture for drug 65 

synergy. H

56 

The simulation results indicate that microtubule inhibitor effect is 

enhanced by a PLK1 inhibitor, and will achieve a better effect at 

a lower microtubule inhibitor dose. We designed an experiment 

to quantitatively measure the synergy effect by using different 70 

concentrations of microtubule inhibitor and/or PLK1 inhibitor to 

treat cells, and quantifying the percentage of unattached 

kinetochores. This experiment was performed using HeLa cells. 

Nocodazole was the microtubule inhibitor, and BI 2536 was the 

PLK1 inhibitor. To induce mono-astral spindles similar to that of 75 

PLK1 inhibition, 5 nM S-trityl-L-cysteine (STLC) was used in 

addition to nocodazole; treating cells with STLC alone served as 

negative control. For each concentration pair of nocodazole and 

BI 2536, the Bliss independence percentage of unattached 

kinetochores was calculated. 80 

For either nocodazole or BI 2536, three concentration values 

were used to generate partial inhibition of kinetochore- 

microtubule attachment. Then, three concentration pairs with 
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middle or low concentration of both inhibitors were tested for 

synergistic effects. At each concentration pair, the effect of 

nocodazole and BI 2536 combined is approximately 20% higher 

than the Bliss independence value (Fig. 7). For all three 

concentration pairs, the ratio of unattached kinetochores exceeds 5 

the value obtained when using 25 ng nocodazole alone. 

Combination of 10 ng nocodazole and 25 nM BI 2536 achieves 

approximately 80% unattached kinetochores. This experimental 

result validates our simulation prediction that simultaneously 

using microtubule inhibitor and PLK1 is a potent anti-cancer 10 

therapeutic strategy. 

Discussion and Conclusions 

Combination drug therapy is widely used to treat diseases due to 

higher effectiveness, lower dose and toxicity, and/or less 

resistance. Considerable effort has been invested to quantitatively 15 

measure dose-effects of drugs and drug combinations. H

57
H From a 

systems point of view, it is necessary to use biological network 

models of diseases to investigate all possible effects of single 

drugs or drug combinations. Mathematical models based on 

molecular reaction-rate laws provide quantitative descriptions of 20 

the system. Time-course network simulation reveals dynamic 

behavior, and drug actions can be modulated using system-level 

perturbations (for review see Ref. H58H). Here we constructed a 

model of mitotic regulatory network with ODE. This is the first 

molecular level model of mitosis spanning from mitotic entry to 25 

anaphase initiation. The network model contains all key mitotic 

kinase targets and can be used to simulate the effects of different 

types of agents. Though experimental data can be used in curve 

fitting is not sufficient to determine a unique parameter set (the 

parameter distribution ranges are large, Fig. S1), the accuracy of 30 

our model is validated by successfully reproducing the dynamic 

behavior of the system, identifying key reactions through 

parameter sensitivity analysis, and predicting several efficient 

anti-cancer drug combinations which are validated by 

experiments. Using an ensemble of parameter sets has been 35 

applied in several studies in systems biology, for example, model 

selection59 and metabolism modeling60. Our work also supports 

the use of network simulations with ensemble-based approach as 

powerful tools to identify novel therapeutic strategies for the 

treatment complex diseases.  40 

Our simulation explains the published experimental result 

exhibiting bypass of Aurora A by Aurora B inhibition. H

53
H 

Simultaneously inhibiting Aurora A/B is validated as an effective 

strategy, which efficiently generates a greater number of 

polyploid cells compared with that of Aurora A or Aurora B 45 

inhibition. Therefore, research efforts to develop pan-Aurora 

kinase inhibitors and selective inhibitors of Aurora A or Aurora B 

are expected to provide new and beneficial therapeutic strategies. 

The effectiveness of different inhibitor types may depend on 

specific cell line properties or cancer types. Hence, extensive 50 

experimental and clinical validation of identified kinase inhibitors 

also will be required. 

Two highly efficient anti-cancer drug combinations, Aurora 

B/PLK1 and microtubule formation/PLK1, were identified 

through simulation. The time shift due to Aurora B inhibition 55 

increases with PLK1 inhibitor dosage, therefore the effect of 

Aurora B inhibitors, polyploidy, will be strengthened. In our 

experiment, cells treated with both Aurora B and PLK1 inhibitors 

exhibited much higher index of polyploidy, validating the 

prediction of our simulation. Therefore Aurora B/PLK1 is an 60 

efficient anti-cancer drug target combination. 

Simulation shows inhibiting microtubule formation and PLK1 

activity is synergistic, and our experiment reveals treating cells 

with this inhibitor combination is highly effective at lower 

concentrations. Microtubule inhibitors are currently used in clinic 65 

but have adverse side effects.5, 6 According to our prediction, 

combined using of PLK1 inhibitor can reduce the dosage of 

microtubule inhibitor. Therefore this combination may overcome 

the adverse side effects thus is a potent strategy for treating 

cancer. Of course, the effectiveness of the two anti-cancer drug 70 

combinations we proposed needs further experimental study on 

animal models and cancer patients. 

Materials and Methods 

Parameter Fitting and Sensitivity Analysis 

Differential simulated annealing (DSA) is a modified simulated 75 

annealing method based on local second-order approximation. 

DSA has good performance in parameter fitting during complex 

network simulation.H

44
H The ODE solver used for the present study 

was gsl_odeiv2_msbdf in GNU Scientific Library (GSL). The 

objective function of the mitotic regulatory network is 80 

 

where  is the experimental value of the th set of western 

blot data at the th time point;  is the predicted value; 

 is the experimental value of the FRET data at the th time 

point; and  is the predicted value. The FRET data points 85 

were retrieved every minute from published results42, resulting 

201 points. As there are 20 Western blot data points for fitting, a 

weight coefficient of 5 (based on experience) is introduced to the 

FRET item. Penalty functions ( ) are constraints of parameters 

or simulated curves. Initial concentration ratio parameters of one 90 

substance have relations, which is expressed by a penalty 

function. Penalty functions for curves are added to avoid 

unnatural kinetics for species not used for fitting. All penalty 

function formulas are listed in Table S3. 

The initial ranges of kinetic parameters were determined to make 95 

velocities of reactions in proper magnitude. Each parameter range 

covers 4 magnitudes. For Michaelis-Menten equations, first kcat 

were set to 1 to 104 min−1, and KM were then decided. A total of 

1,000 independent simulations were run, and 421 reached 

convergence. Perturbation of every single parameter was 100 

performed for all 421 sets. For a kinetic parameter , the 

perturbed parameter  (  5, 25, 125, 1/5, 1/25, and 

1/125); for an initial concentration proportion parameter , the 

perturbed parameter  (  takes the same 

value). The formula for the initial concentration proportion 105 

parameter  is derived as follows: transformation of  (range, 

0 to 1) to  (range, 0 to ∞), and thereafter . For each 

parameter set, if solving the ODE fails in a perturbed condition, 

the parameter set is considered unstable and rejected. Finally, 137 

parameter sets were retained. 110 
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The sensitivity  of each kinetic parameter ( , because initial 

concentration proportion parameters were not included for 

sensitivity analysis) was calculated based on the result of 

parameter perturbation 

 5 

where  is the area between the original and th perturbed 

computing curve of the th output species;  is the weight 

for the th perturbation, ; ; and  for 

. For each parameter set, the sensitivities of all kinetic 

parameters were ranked in descending order. Then, the median 10 

rank of each parameter in 137 parameter sets was calculated, and 

all median values were sorted in ascending order as a sensitivity 

sequence of kinetic parameters in all sets. Then, the parameter 

sequence was merged with the reaction sequence. For an 

enzymatic reaction with two parameters, the more sensitive 15 

position was taken and the other was removed. 

Cell Culture and Analysis of Cell-Cycle Progression 

HeLa cells (female) were seeded onto 6-well plates (3×104 

cells/well) and cultured overnight at 37°C in a 5% CO2 

atmosphere in DMEM (Gibco, Grand Island, NY) with 10% fetal 20 

bovine serum (HyClone Laboratories Inc., Logan, UT), 100 

U/mL penicillin, and 100 μg/mL streptomycin (Invitrogen, Grand 

Island, NY). After treating with DMSO, 2.5 nM BI 2536 (Axon 

Medchem, Groningen, The Netherlands), or 10 nM AZD1152 

(Selleck, Huston, TX) individually or in combination for 24 h, 25 

cells were detached with trypsin and collected by centrifugation 

at 1,000×g for 5 min. After washing twice with phosphate 

buffered saline (PBS), the cells were fixed in 70% ethanol-PBS 

for 2 h at 4°C, and then washed with PBS and collected by 

centrifugation. For analysis of cell-cycle progression, the cells 30 

were analyzed by Becton Dickinson FACScan (BD Biosciences, 

San Jose, CA) after treating with 400 µL PBS-containing 100 

mg/mL RNase, 1% Triton X-100, and 0.5 mg/mL propidium 

iodide for 30 min at 37°C. 

Immunofluorescence and Microscopy Quantifications 35 

HeLa cells grown on glass coverslips were arrested at G1/S by 

treating with 2.5 mM thymidine (Sigma, St Louis, MO) for 18 h. 

After release into fresh medium containing STLC, different 

concentrations of nocodazole (Sigma, St Louis, MO) and BI 2536 

were added individually or in combination for 12 h, and cells 40 

were fixed in cold methanol for 5 minutes. Coverslips were 

incubated overnight at 4°C with anti-α-tubulin (Sigma, St Louis, 

MO) and anti-centromere (Antibodies Inc., Davis, CA, 

15-234-0001) diluted 1:200 in PBS with 3% bovine serum 

albumin, washed with PBS, and incubated with fluorescently 45 

labeled secondary antibodies for 1 h at room temperature. After 

washing with PBS, the coverslips were mounted with Mowiol 

(Sigma-Aldrich, St Louis, MO) containing 1 μg/mL 

4',6-diamidino-2-phenylindole (DAPI, Sigma-Aldrich, St Louis, 

MO) to stain DNA. Cells were analyzed with an Olympus IX-71 50 

inverted microscope with a 60x1.42 oil objective. For 

quantification of kinetochore-microtubule attachment, more than 

100 cells were measured for each sample. 
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