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The coiled-coil, which consists of two or more α-helices winding around each other, is a ubiquitous and most frequently observed 
protein-protein interaction motif in nature. The coiled-coil is known for its straightforward heptad repeat pattern and can be readily 
recognized based on protein primary sequences, exhibiting a variety of oligomer states and topologies. Due to the stable interaction 
formed between their α-helices, coiled-coils have been under close scrutiny to design novel protein structures for potential applications in 
the fields of material science, synthetic biology and medicine. However, their broader application requires an in-depth and systematic 10 

analysis of the sequence-to-structure relationship of coiled-coil folding and oligomeric formation. In this article, we propose a new 
oligomerization state predictor, termed as RFCoil, which exploits the most useful and non-redundant amino acid indices combined with 
the machine learning algorithm - random forest (RF) to predict the oligomeric states of coiled-coil regions. Benchmarking experiments 
show that RFCoil achieves an AUC (area under the ROC curve) of 0.849 on the 10-fold cross-validation test using the training dataset 
and 0.855 on the independent test using the validation dataset, respectively. Performance comparison results indicate that RFCoil 15 

outperforms four existing predictors LOGICOIL, PrOCoil, SCORER 2.0 and Multicoil2. Furthermore, we extract a number of 
predominant rules from the trained RF model that underlie the oligomeric formation. We also present two case studies to illustrate the 
applicability of the extracted rules to the prediction of coiled-coil oligomerization state. The RFCoil web server, source codes and 
datasets are freely available for academic users at http://protein.cau.edu.cn/RFCoil/. 
 20 

Introduction 
The coiled-coil is a ubiquitous structural motif consisting of two 
or more α-helices, which wind around each other to form a rope-
like structure. Nearly sixty years ago, Crick proposed the 
standard structure model of the coiled-coil, which is distinct from 25 

other protein structures. Dimeric and trimeric coiled-coils are the 
two most common types of coiled-coil structures. Coiled-coils 
can be found in all organisms and it is estimated that nearly 10% 
and 2-9% of eukaryotic and prokaryotic proteins harbour coiled-
coil domain1-4, respectively. Due to their ability to oligomerize, 30 

coiled-coils play crucial roles in many biological processes, such 
as transcription, intracellular trafficking, viral infection and 
cellular signaling5,6. The property of coiled-coils which enables 
two proteins to interact with each other, also attracts a great deal 
of protein designers’ interests7. Coiled-coils are among the first 35 

designed proteins8,9, with potential applications in material 
science, synthetic biology and medicine10,11. Accordingly, 
understanding the mechanism of coiled-coil oligomerization is 
critically important for researchers to design versatile proteins 
with different functions. 40 

The rope-like structure of coiled coils enables them to generate 
an interesting heptad repeat sequence pattern. That is, the 
structure goes around two complete turns of the helix after 7 
residues, rather than the regular 7.2 residues. The heptad repeat is 
often labeled as abcdefg. Residues at register positions a and d 45 

are often hydrophobic, forming a buried hydrophobic surface and 
providing the driving force for oligomerization. In contrast, 

residues at positions e and g are often charged or polar, which 
form salt bridges and electrostatic interactions, helping specify 
the binding partners12. Despite the simple heptad repeat pattern at 50 

the sequence level, coiled-coils display a great variety of 
oligomerization states, including dimers, trimers, tetramers, 
pentamers, and even heptamers. In addition, they often vary in 
the helix orientation, parallel or anti-parallel. Most coiled-coils 
adopt left-handed super-coils; however, right-handed coiled-coils 55 

are also observed13. Accordingly, an important question to 
address is, how can this simple heptad sequence repeat pattern 
encode such diverse structures? 

To answer this question, a number of computational methods 
have been developed to analyze coiled-coils, which can be 60 

generally grouped as sequence-based or structure-based methods. 
Sequence-based methods mainly use the frequencies of residues 
or residue pairs at specific register positions to predict coiled-coil 
regions14-21, oligomerization states4,17,18,22,23 and helix orientations 
24. In contrast, structure-based methods usually utilise structural 65 

information to facilitate the prediction, including SOCKET12 and 
Twister25. In particular, the SOCKET algorithm is able to 
recognize characteristic knobs-into-holes side-chain packing of 
coiled-coil structures, clearly define coiled-coil helix boundaries, 
oligomerization states and helix orientations and assign heptad 70 

registers. The CC+ database26 is developed based on the 
SOCKET algorithm, which includes several coiled-coil datasets 
previously used as training datasets for building coiled-coil 
classifiers. Twister is implemented to compute local structural 
parameters of coiled-coils, based on Crick’s parameterization27. 75 

Page 1 of 7 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

This journal is © The Royal Society of Chemistry [year] Mol. Biosyst., [year], [vol], 00–00  |  2 

Regarding the prediction of coiled-coil oligomerization state, 
two early-stage algorithms SCORER28 and Multicoil29 exist. 
More recently, two new versions, SCORER 2.023 and 
Multicoil217 have been developed, and shown to perform better 
than their respective older versions. Almost at the same time, 5 

another two predictors for coiled-coil oligomerization state, 
PrOCoil22 and LOGICOIL4, were published. Multicoil2 employs 
a Markov Random Field method to integrate sequence features. It 
assigns the probability of a residue in a sequence to be non-
coiled-coil, dimeric or trimeric. SCORER 2.0 and PrOCoil 10 

classify parallel dimeric and trimeric coiled-coils, given a coiled-
coil sequence with known heptad registers. SCORER2.0 uses 
statistically significant amino acid frequencies at seven heptad 
registers in combination with a Bayes factor method to 
distinguish parallel dimers from trimers. PrOCoil designs a new 15 

kernel function and uses the SVM (Support Vector Machine) 
algorithm to classify parallel dimmers and trimers22. LOGICOIL, 
trained with coiled-coil regions larger than 14 amino acids by 
Bayesian variable selection response probabilities, can predict 
multiple oligomerization states for coiled-coil regions such as 20 

parallel dimer, antiparallel dimer, trimer and tetramer4. Therefore, 
LOGICOIL is currently considered as the state-of-the-art 
predictor for oligomerization states of coiled-coils. 

 
Fig. 1 Cartoon representations of parallel (A) dimeric (PDB ID: 1A9330) 25 

and (B) trimeric (PDB ID: 1HTM31) coiled-coils. 
 

In this article, we address the same classification task of 
SCORER 2.0 and PrOCoil by developing a novel tool RFCoil, 
which uses a sequence-based approach to distinguish parallel 30 

dimeric from trimeric coiled-coils (See Fig. 1 for examples of 
parallel dimer and trimer). More specifically, RFCoil employs the 
random forest (RF) algorithm to identify the most important and 
non-redundant amino acid indices and construct the classifiers to 
predict the oligomerization state of coiled-coils. We further 35 

compare the performance of RFCoil with four existing tools 
SCORER 2.0, PrOCoil, Multicoil2 and LOGICOIL by 
performing both 10-fold cross-validation and independent tests. 
The results show that RFCoil outperforms four existing tools 
LOGICOIL, SCORER 2.0, PrOCoil and Multicoil2 on the 40 

independent test. Moreover, we extract a number of important 
rules from the built RF models in an effort to provide biological 
insights into the underlying rules of the formation of 
oligomerization states of coiled-coils. 

Materials and Methods 45 

Dataset 

We used the benchmark dataset originally compiled by the 
developers of PrOCoil to train our models and assess the 
performance of our method. This benchmark dataset comprises 
385 dimers and 92 trimers. The minimum length of the coiled-50 

coils is 8 and nearly half of the coiled-coils have lengths longer 
than 14. This dataset was further divided into ten folds, and any 
two sequences from different folds have a sequence identity no 
more than 60%. The methods were tested using the 10-fold cross-
validation tests. 55 

 Moreover, apart from the benchmark dataset, we also 
constructed an independent test dataset to assess and compare the 
predictive performance of different methods. The procedures for 
constructing this independent test dataset are as follows: First, we 
used the SOCKET algorithm12 to search the PDB database32 for 60 

parallel coiled-coil dimers and trimers. For dimers, we selected 
those sharing a sequence identity of no more than 60% with the 
dimeric coiled-coil sequences in the training dataset. The selected 
dimers were further filtered to ensure that any two sequences 
shared a sequence identity of no more than 60%. The trimeric 65 

coiled-coils were filtered in a similar way as the dimers. Note that 
the sequence identity was calculated using the Needleman-
Wunsch algorithm33. The final independent test set consists of 
363 dimers and 48 trimers. 

RFCoil 70 

Our RFCoil approach includes four major steps, as shown in Fig. 
2. The first step is to construct the training and independent test 
datsets extracted from the PDB database. The second step is to 
encode the input data, which was achieved by extracting the 
average amino acid index values for each heptad register. The 75 

third step is to select the informative and non-redundant features 
for oligomerization state classification. We assumed that no prior 
knowledge of each feature’s importance was known and this 
makes it possible that our feature selection method presented here 
can be applied to other questions. The final step is to use the 80 

selected features as the input to train RFCoil models. More 
details about the RFCoil approach are discussed in the following 
sections. 

 
Fig. 2 Flowchart of RFCoil. Its development comprises four major steps, 85 

including data preparation, feature extraction, feature selection and RF 
model training and validation. 
 
Sequence encoding 
 We attempted to capture the coiled-coil’s oligomerization state 90 
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using its amino acid sequence information and each coiled-coil 
sequence using the physiochemical and biochemical properties of 
amino acids. To realize this, we extracted 529 amino acid indices 
that had no “NA” values in the AAindex database34 (see Table S1 
and S2, ESI†). We encoded each coiled-coil sequence using the 5 

average amino acid index value at each heptad register, obtained 
by the following equation: 

  

           ! !, ! = !!(!,!)!∈!
!(!)

  (1) 

 10 

where r represents a heptad register which can be a, b, c, d, e, f or 
g, i denotes the i-th amino acid index amongst the 529 amino acid 
indices, a represents the amino acid residue in the coiled-coil 
sequence whose heptad register is r, AA(a, i) stands for the value 
of the i-th amino acid index for the amino acid a, while n(r) is the 15 

number of amino acid residues at the heptad register r. As there 
are a total of 7 heptad registers and 529 amino acid indices, a 
coiled-coil sequence is represented by a 3703-dimensional vector. 
 
Random forest 20 

 Ensemble learning is a prevalent machine learning technique. 
Its underlying principle is based on the observation that the 
ensemble of some weak classifiers can usually achieve a better 
accuracy than a single classifier when using the same training 
information. RF35 is an effective ensemble learning algorithm and 25 

has been widely applied in bioinformatics36-41. RF consists of 
many decision trees, each of which is grown as follows. Suppose 
that there are N instances and M variables in the training set. First, 
N instances are randomly selected from the training set with 
replacement. Second, at each node, ! variables are randomly 30 

selected and the best is used to split the node. Finally, each tree is 
grown as large as possible. The RF chooses the classification of 
the most votes given by all the individual trees. In this work, the 
random forest algorithm was implemented using the 
‘randomForest’ R package42. 35 

 
Feature selection and model training 
 As described above, a coiled-coil sequence was encoded by 
3703 features. However, it is likely that some features are 
irrelevant or redundant, making little or no contribution to the 40 

prediction. We thus performed feature selection experiments to 
select and identify the most meaningful features for the 
classification of coiled-coil oligomerization states. For each 
feature, i.e. the variable in the RF, its importance is measured by 
the gini index of RF. When splitting the variable on a node in the 45 

process of growing a tree, the gini impurity criterion, which is a 
“goodness of split” criterion43, is less than the parent node for the 
two child nodes. Therefore, summing up the gini decrease for the 
variables over all trees gives the value to assess the variable’s 
importance. 50 

 After evaluating each feature’s importance, another issue 
remains to be resolved. That is, the integration of individual best 
features does not necessarily lead to the best classification 
performance44 and there still exists redundancy between different 
features. For example, there are many amino acid indices that 55 

describe the amino acid hydrophobicity in the AAindex database 
and some might be highly correlated with each other. To address 
this, we calculated the correlation coefficient between any two 

amino acid indices. If two features encode the same heptad 
register and the correlation coefficient of their representative 60 

amino acid indices has an absolute value of less than a threshold c, 
then the feature with a smaller gini decrease will be removed 
from the feature set. After this repetitive procedure, we select the 
top n features to build the final RF model. 
 In the above process, we used the Kendall rank correlation 65 

coefficient. Let (X1, X2, …, X20) and (Y1, Y2, …, Y20) be two sets 
of amino acid indices. A pair of amino acid index values (Xi, Yi) 
and (Xj, Yj) are defined to be concordant, if both Xi > Xj and Yi > 
Yj or both Xi < Xj and Yi < Yj, or defined to be discordant, if Xi > 
Xj and Yi < Yj or Xi < Xj and Yi > Yj. The Kendall correlation 70 

coefficient τ is defined as follows: 
 

          ! = !"!!"
!
!×!"×(!"!!)

        (2) 

 
where nc and nd represent the numbers of concordant pairs and 75 

discordant pairs, respectively. 

Extracting signifcant rules 

Each tree in the RF can be represented by a set of rules. Each 
path from the root to a leaf node in a tree is a rule. A totoal of 
4,000 decision trees were grown in our work to build the RF 80 

model, resulting in many rules present in the model. We devised 
a method to extract a rule set that contains as few rules as 
possible to correctly classify all the instances in the dataset: 
Firstly, we extracted the rules without wrongly classifying any 
instance in the dataset and identified the rules that could classify 85 

the largest number of dimers or trimers; Secondly, we saved the 
rules found in the first step in the rule set and removed those 
instances that were correctly classified by the rule; Thirdly, we 
repeated steps 1 and 2 until there were no instances in the dataset. 

Accessing the prediction performance of RF model 90 

We used the receiver operating characteristic (ROC) curve45 to 
assess the prediction performance of RF model. The ROC curve 
is a plot of true positive rate (TPR) against false positive rate 
(FPR). TPR defines the ratio of correctly predicted positives to all 
the positive instances, while FPR stands for the ratio of 95 

incorrectly predicted positives to all the negative instances. In this 
study, we defined dimeric coiled-coils as positive instances and 
trimeric coiled-coils as negative instances. In addition, the area 
under the ROC curve (AUC) represents the probability for a 
classifier to rank a randomly selected positive instance higher 100 

than a randomly selected negative one. Hence, AUC was also 
used as an important performance measure in this study to 
compare the performance of different methods. 

Performance comparison between RFCoil and four existing 
predictors 105 

To evaluate the performance of RFCoil, we conducted two 
benchmarking experiments. In the first benchmarking experiment, 
we compare the performance of RFCoil with SCORER 2.0 and 
PrOCoil by performing 10-fold cross-validation tests on the 
PrOCoil dataset. In the second benchmarking experiment, we 110 

used the PrOCoil dataset as the training dataset to train the 
models of RFCoil and PrOCoil. Then the constructed 
independent test dataset was used to assess the performance of 
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RFCoil in comparsion with the other four tools SCORER 2.0, 
PrOCoil, Multicoil2 and LOGICOIL. In particular, the prediction 
outputs of SCORER 2.0, PrOCoil and LOGICOIL were 
generated by their local versions downloaded from the 
corresponding websites. In the case of Multicoil2, we instead 5 

submitted the test sequences to its online server and obtained the 
prediction results. 

Results and discussion 
In this section, we first report the prediction performance of 
RFCoil in comparison to SCORER 2.0 and PrOCoil on the 10-10 

fold cross-validation tests. We then comprehensively assess the 
performance of RFCoil, PrOCoil, SCORER 2.0, LOGICOIL and 
Multicoil2 on the independent tests. Finally, we discuss the final 
features selected by our feature selection method and the 
extracted significant rules on the PrOCoil benchmark dataset. 15 

Prediction performance on the 10-fold cross-validation tests 
using the PrOCoil dataset 

We performed 10-fold cross-validation tests to assess the 
performance of the predictive models of RFCoil using the 

PrOCoil dataset (Table 1). When using the average amino acid 20 

index values at each heptad as the input, the average AUC of 
RFCoil was 0.819, compared with 0.808 of PrOCoil and 0.789 of 
SCORER 2.0, respectively. After setting the Kendall correlation 
coefficient between the amino acid indices at ≤ 0.4 to select the 
95 top features, the average AUC of RFCoil was further 25 

improved to 0.849. The authors of PrOCoil22 found that the 
training set could be further augmented by blast search against 
the NCBI-NR database, which could provide an improved 
prediction performance in their study. Here, our results indicate 
that the AUC of PrOCoil on the augmented training dataset 30 

indeed reached 0.818, representing a better performance than that 
of the original PrOCoil. On the other hand, we find that RFCoil 
performed the best for certain folds and reasonably well for other 
folds during 10-fold cross-validation tests (Table 1). In summary, 
RFCoil achieved a better performance than the other two methods 35 

PrOCoil and SCORER 2.0 on the 10-fold cross-validation tests 
using the PrOCoil dataset. According to the 10-fold cross-
validation tests, we implemented the final online web server of 
RFCoil using the selected feature set. 

 40 

Table 1 The AUC scores of RFCoil, SCORER2.0 and PrOCoil, evaluated using 10-fold cross-validation tests. 
Fold RFCoil 

(all features) 
RFCoil  
(selected features) 

SCORER2.0 PrOCoil PrOCoil_blasta 

1 0.612 0.691 0.773 0.882 0.882 
2 0.801 0.817 0.776 0.967 0.935 
3 0.750 0.835 0.625 0.581 0.681 
4 0.885 0.875 0.810 0.830 0.850 
5 0.971 0.957 0.833 0.848 0.867 
6 0.869 0.865 0.808 0.741 0.842 
7 0.908 0.961 0.875 0.809 0.724 
8 0.803 0.769 0.735 0.744 0.744 
9 0.698 0.825 0.651 0.738 0.702 
10 0.890 0.895 1.000 0.943 0.957 
Average 0.819 0.849 0.789 0.808 0.818 

                          aPrOCoil_blast denotes the model trained using the augmented PrOCoil dataset by blast search against NCBI-NR database. 

 
Table 2 Statistics of the selected features 

Heptad register a b c d e f g 
Number of features 13 5 8 10 9 5 8 
Sum of the gini decrease 35.6 5.8 12.5 16.6 18.4 7.8 11.8 

 45 

Prediction performance on the independent tests 
In addition to the performance evaluation using the PrOCoil 
benchmark dataset, we also curated an independent test dataset to 
comprehensively compare the performance of our method RFCoil 
for predicting coiled-coil oligomerization state with four existing 50 

predictors SCORER 2.0, PrOCoil, Multicoil2 and LOGICOIL. In 
particular, we used the PrOCoil dataset as the training set to build 
the two types of predictive models of RFCoil (denoted as 
“RFCoil (all features)” and “RFCoil (selected features)” which 
used all features and final selected features as the respective 55 

inputs to build the models) to classify coiled-coil sequences in 
this independent test dataset. LOGICOIL and SCORER 2.0 were 
trained on the coiled-coil sequences no shorter than 15 amino 
acids, while Multicoil2 could only predict coiled-coil sequences 
longer than 21 amino acids. In the case of PrOCoil, it requires a 60 

minimum length of coiled-coil sequences of 8 amino acids. In 
this study, we reported the results by performing the independent 
test using the PrOCoil dataset. 

The output scores were selected from two prediction categories 
of LOGICOIL (i.e., parallel dimer and trimer) and normalized to 65 

[0,1] before plotting the ROC curve. Instead of providing an 
overall prediction score for the input sequence, Multicoil2 
provides predicted probabilities for each individual residue in the 
sequence of forming dimers, trimers or non-coiled-coils. 
Accordingly, to compare with other methods, we calculated the 70 

average of the predicted probabilities of Multicoil2, normalized 
them into the range of [0,1] and removed the predicted non-
coiled-coils from the results (with the prediction threshold set at 
0.5). 
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The ROC curves and the corresponding AUC values of RFCoil, 
SCORER 2.0, PrOCoil, LOGICOIL and Multicoil2 on the 
independent tests are shown in Fig. 3. The AUC values of the two 
types of RFCoil models that used all features and the final 
selected features as inputs were 0.855 and 0.851, respectively. 5 

These represent the overall best AUC scores among different 
predictors. In contrast, Multicoil2 achieved an AUC value of 
0.689, while SCORER 2.0 achieved an AUC score of 0.776. 
PrOCoil achieved an AUC value of 0.736 and the PrOCoil_blast 
model trained using the augmented dataset achieved an AUC of 10 

0.723, both of which decreased considerably compared to that on 
the 10-fold cross validation. In contrast, LOGICOIL achieved an 
AUC value of 0.757. We also noted that augmenting the training 
set in this case did not help improve the performance of PrOCoil, 
as reflected by a lower AUC of 0.723 by the latter model. 15 

 
Fig. 3 The ROC curves of different methods on independent test dataset. 

Analysis of final selected features based on the PrOCoil 
dataset 

Application of the Kendall correlation coefficient set at ≤ 0.4 20 

resulted in a subset of top 95 features selected (see Table S3, 
ESI†). The average AUC of the RFCoil model trained using this 
selected feature set reached its maximum value of 0.849 on the 
10-fold cross validation tests using the PrOCoil benchmark 
dataset (Table 1). We further calculated the number of features at 25 

each heptad register, as well as the sum of the gini decreases for 
the features at each heptad register. Table 2 shows that the 
position a is the most important position for the discrimination 
between parallel dimers and trimmers, as determined by the sum 
of the gini decreases. The other positions d, e, c, g are less 30 

important compared with the position a, while positions f and b 
are the least important positions. 

Significant rules extracted from the PrOCoil dataset 

Using the method of rule extraction described in the Methods 
section, we extracted 10 significant rules covering all the 382 35 

dimers, and another 10 significant rules covering all the 92 
trimers in the PrOCoil dataset. The description of each specific 

rule and the numbers of dimers and trimers covered by the 
corresponding rule are given in Tables 3 and 4, respectively. Note 
that it is likely that a sample in the dataset may be identified by 40 

more than two rules, as shown in the tables. 
 Each rule is a combination of useful amino acid indices at 
certain heptad registers. The RF algorithm is particularly 
powerful in making use of the correlations between different 
heptad registers for efficient classification. In contrast, 45 

SCORER2.0 only uses residue frequencies at each heptad register, 
failing to take into account the potential interactions between 
different heptad-repeat positions, while PrOCoil employs the 
frequencies of each amino acid pair in each pair of heptad 
registers. An important advantage of RF is that it can make use of 50 

the correlations between two or more heptad registers. This might 
explain why our method outperformed the other four methods 
PrOCoil, Multicoil 2, SCORER 2.0 and LOGICOIL. 

Case studies 

Using the selected 95 features on the PrOCoil dataset, we built 55 

the RF model and illustrated the performance of this model on 
two parallel coiled-coil structures from the independent test 
dataset (see Fig. S1 for structural information of these two 
proteins, ESI†). The first one is a coiled-coil parallel dimer from 
the Rho-associated protein kinase 1 (PDB ID: 3O0Z). This 60 

protein is involved in a variety of cellular processes including 
muscle contraction, cell migration and stress fiber formation46. Its 
predicted probability for being dimeric by the RF model was 
0.872. The other is a trimer from the avian reovirus S1133 fibre 
(PDB ID: 2VRS), a minor component of the avian reovirus outer 65 

capsid47. Its probability for being parallel trimer predicted by the 
RF model was 0.759. The coiled-coil oligomerization states of 
both proteins were correctly predicted by RFCoil. 
 In addition, we found that the dimeric coiled-coil in the Rho-
associated protein kinase 1 conformed to the significant rules 1, 2, 70 

5 and 10, as listed in Table 3. Further, the trimeric coiled-coil in 
2VRS conformed to the significant rules 1 and 5 listed in Table 4. 
Altogether, these results showcase the predictive ability of the 
constructed RFCoil model and usefulness of the extracted rules 
based on the selected effective amino acid indices. 75 

Conclusions 

In this article, we addressed the challenging task of distinguishing 
parallel dimeric from trimeric coiled-coils by developing an RF-
based approach termed as RFCoil, which used effective amino 
acid indices to build the predictive models. To remove redundant 80 

and irrelevant features and improve the classification 
performance, we combined the gini index calculated by RF and 
the correlation coefficients between the amino acid indices at 
different positions of heptad registers to select the most 
meaningful features. The model trained using the selected 85 

features indeed improved the prediction performance. We further 
analyzed the selected features and proposed a rule extraction 
method to identify significant rules from the RF model to better 
understand important rules that underlie the organization of 
dimeric and trimeric coiled-coils. The rules provide useful 90 

insights into the design of coiled-coil proteins. In addition, our 
method can be readily extended to predict coiled-coils of higher 
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order oligomerization states, provided that more solved structures 
are available in the near future. Benchmarking experiments 
indicate that RFCoil outperforms the other four exisitng tools. It 
is expected to become an efficient tool to facilitate the studies of 
coiled-coil structures. Finally, as an implementation of our 5 

method, an online prediction server of RFCoil is made freely 
available at http://protein.cau.edu.cn/RFCoil. The source code 
can be downloaded for interested users to build their specific 
models using their own datasets. 
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Table 3 The extracted rules for coiled-coil dimers 

No. Description of the rulea Number of samples 
covered by the rule 

1 I(c, 260)<=0.2825 & I(d, 17)>4.2435 & I(f, 16)>7.213 & I(f, 240)>-3.3475 & I(a, 294)>-0.2925 & 
I(a, 400)<=14.183 225 

2 
I(c, 340)<=5.83 & I(d, 17)>4.2315 & I(d, 195)>2.1225 & I(e, 74)>-62.35 & I(f, 16)<=8.676 & I(f, 
73)>240.0835 & I(g, 50)<=0.088 & I(g, 201)<=1.654 & I(g, 408)>1.1735 & I(b, 18)<=7.3085 & I(b, 
273)>-0.375 

173 

3 I(c, 371)>0.355 & I(d, 220)<=2.9275 & I(e, 372)<=2.202 & I(e, 495)<=0.9795 & I(g, 61)>0.3625 & 
I(a, 386)<=0.388 128 

4 I(e, 299)<=1.165 & I(a, 275)>0.1125 & I(a, 374)<=0.7665 58 

5 I(c, 194)>-1.4475 & I(c, 293)<=0.4225 & I(c, 340)<=4.169 & I(d, 342)>-1.2415 & I(d, 401)<=1.22 & 
I(f, 338)<=1.4625 & I(g, 155)>107.1895 & I(g, 201)>0.759 & I(a, 44)>0.5575 & I(b, 529)>-3.1775 201 

6 I(c, 303)<=1.2345 & I(d, 17)>4.279 & I(d, 342)>-0.425 & I(e, 110)>0.3625 & I(g, 336)<=0.8415 & 
I(a, 386)<=0.1705 & I(a, 506)>1.4695 34 

7 I(c, 18)<=6.9585 & I(c, 361)>-0.177 & I(e, 296)<=0.2385 & I(a, 400)<=16.35 & I(a, 506)<=1.7425 & 
I(b, 185)<=4.195 & I(a, 99)<=1.54 183 

8 I(a, 107)>0.7325 & I(d, 401)<=1.21 & I(a, 1)<=4.7025 & I(a, 294)>-0.335 & I(g, 370)<=0.773 & I(b, 
185)<=4.195 185 

9 I(c, 326)<=1.5165 & I(e, 296)<=0.28 & I(e, 495)<=0.9985 & I(g, 408)<=1.171 60 

10 I(c, 18)>6.89 & I(c, 141)>0.45 & I(d, 94)>0.8835 & I(d, 275)<=0.097 & I(e, 296)>0.161 & I(f, 
331)<=1.2875 & I(g, 61)<=1.056 & I(a, 337)>0.7415 9 

                   a “&” denotes the conjunction word “and”, while I(r, n) represents the n-th amino acid index at the heptad r. 

 
Table 4 The extracted rules of coiled-coil trimers 

No. Description of the rulea Number of samples 
covered by the rule  

1 I(c, 236)>0.795 & I(c, 361)<=0.123 & I(d, 326)<=0.7415 & I(e, 219)>0.945 & I(e, 299)>1.1665 & 
I(g, 201)>0.536 & I(g, 309)>0.8665 & I(a, 400)>14.1515 & I(a, 506)>1.464 44 

2 
I(c, 293)>-0.324 & I(c, 361)<=0.123 & I(c, 405)<=1.2725 & I(d, 175)<=0.8575 & I(e, 110)>0.3725 
& I(f, 16)<=8.5555 & I(g, 408)>0.655 & I(a, 374)<=0.826 & I(b, 529)<=-3.167 & I(b, 273)>-
0.1685 

43 

3 I(c, 340)>0.096 & I(a, 176)>0.675 & I(d, 195)>5.3525 & I(f, 73)<=245.6 & I(f, 385)>-0.0975 & 
I(a, 386)<=0.1365 & I(b, 18)>5.85 17 

4 I(d, 94)<=1.154 & I(a, 18)>5.125 & I(g, 336)>0.8415 & I(a, 374)<=0.765 & I(a, 400)>12.6765 & 
I(b, 18)<=7.7415 & I(b, 273)>-0.104 30 

5 I(c, 361)<=-0.176 & I(d, 94)<=1.2915 & I(a, 176)<=0.8375 & I(e, 360)<=0.2115 & I(b, 
329)<=1.325 19 

6 I(c, 141)>0.655 & I(e, 296)>0.2665 & I(g, 408)<=0.9935 & I(a, 374)>0.7135 8 

7 I(a, 107)>0.7505 & I(d, 220)<=2.9275 & I(d, 240)<=-2.141 & I(e, 495)>0.9795 & I(a, 294)<=-
0.245 5 

8 I(d, 195)<=9.1325 & I(d, 422)>-0.501 & I(e, 295)>-0.061 & I(e, 372)>0.1965 & I(f, 
73)<=267.9165 & I(a, 374)>0.6285 & I(a, 400)>14.385 & I(a, 99)<=1.2675 16 

9 I(c, 340)>-0.0625 & I(c, 371)>1.061 & I(f, 16)>8.481 & I(g, 12)>-4.7165 & I(b, 284)>-0.06 14 

10 I(b, 478)>1.6165 & I(c, 361)>-0.1935 & I(d, 74)>-25.1175 & I(d, 422)>-0.3215 & I(g, 98)>1.0125 
& I(g, 370)<=0.773 3 

                               a See the footnote in Table 3 for the notations of each symbols in the rules. 15 
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