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Understanding cellular adaptation to environmental changes is one of the major challenges in systems biology. To understand

how cellular systems react towards perturbations of their steady state, the metabolic dynamics have to be described. Dynamic

properties can be studied with kinetic models but development of such models is hampered by limited in vivo information,

especially kinetic parameters. Therefore, there is a need for mathematical frameworks that use a minimal amount of kinetic

information. One of these frameworks is dynamic flux balance analysis (DFBA), a method based on the assumption that cellular

metabolism has evolved towards optimal changes to perturbations. However, DFBA has some limitations. It is less suitable for

larger systems because of the high number of parameters to estimate and the computational complexity. In this paper, we propose

MetDFBA, a modification of DFBA, that incorporates measured time series of both intracellular and extracellular metabolite

concentrations, in order to reduce both the number of parameters to estimate and the computational complexity. MetDFBA can

be used to estimate dynamic flux profiles and, in addition, test hypotheses about metabolic regulation. In a first case study, we

demonstrate the validity of our method by comparing our results to flux estimations based on dynamic 13C MFA measurements,

which we considered as experimental reference. For these estimations time-resolved metabolomics data from a feast-famine

experiment with Penicillium chrysogenum was used. In a second case study, we used time-resolved metabolomics data from

glucose pulse experiments during aerobic growth of Saccharomyces cerevisiae to test various metabolic objectives.

1 Introduction

Organisms are capable of adapting to changing environmen-

tal conditions while maintaining essential functions for sur-

vival.1,2 The consequences of these metabolic adaptations are

important to study from an economic perspective but can

also play crucial roles in health and disease. A well-known

example of such a consequence from biotechnology, is the

loss of biomass or product formation due to changes in sub-

strate availability during fermentation processes.3 Examples

of changing conditions related to health and disease in human

include changes in diet or drug.4,5 Understanding the princi-
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ples of adaptation is therefore one of the major challenges in

systems biology.6–9

One manifestation of adaptation on the molecular level is

the alteration of fluxes in metabolic networks. This occurs

when the availability of substrates changes, which results in

changes in fluxes in the affected metabolic pathways.1,10 The

(change in) flux can provide important information about cel-

lular physiology, product yield, and response mechanisms to

perturbations. Unfortunately, intracellular fluxes cannot be

measured directly but have to be estimated from concentra-

tion measurements.11,12 Various experimental and associated

computational methods have been developed to estimate dy-

namic fluxes through metabolic networks including kinetic

models,13 13C-metabolic flux analysis (MFA),14–16 and dy-

namic flux balance analysis (DFBA).17,18 The development of

kinetic models is hampered by limited availability and accu-

racy of information about condition-specific (in vivo) kinetic

parameters,19 13C MFA is expensive and tracer availability is

limited.20

Flux balance analysis (FBA) is a constraint-based mod-

elling approach to determine fluxes in steady state. Mass

balance constraints imposed by the stoichiometry of the

metabolic network define an under-determined system of lin-

ear equations because the network contains more reactions
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ical system. We first demonstrate the validity of our method

by comparing our results to flux estimations based on dy-

namic 13C experiments, which we consider as a experimental

reference. For these estimations time-resolved metabolomics

data from a feast-famine experiment with Penicillium chryso-

genum was used. We only used the metabolite concentration

measurements to estimate fluxes based on a single objective

function. Subsequently, we compared our flux estimations

to 13C MFA estimates from the 13C mass isotopomer mea-

surements, which shows that our method approximates the

benchmark estimates. With a second case study we demon-

strate that MetDFBA can be used to generate hypotheses

about cellular objectives by comparing different putative ob-

jective functions.23 For this application we used time-resolved

metabolomics data obtained from glucose pulse experiments

during aerobic growth of Saccharomyces cerevisiae. The re-

sults are compared with known information about physiology

and results from previous kinetic models to determine the most

reasonable objective function.

2 Methods

The mathematical framework for integrating time-resolved

metabolomics data in DFBA is depicted in Figure 1. Steady

state fluxes are calculated applying FBA on a genome scale

model (right box Figure 1). These steady state fluxes deter-

mine the flux distribution before the perturbation (t = 0). Fur-

thermore, some of the objective functions described in this

paper (for example Minimization Of Metabolic Adjustment

(MOMA)) are dependent on the steady state flux distribution.

Variability (upper and lower bounds) of the steady state fluxes

at the optimal solution is calculated with flux variability anal-

ysis (FVA). Time-resolved metabolomics data are combined

with the (genome-scale) metabolic network stoichiometry to

formulate an optimization problem over a period of time, also

called a dynamic optimization problem, which describes the

dynamic behavior after the perturbation. Solving the opti-

mization problem results in dynamic reaction rate profiles, to-

gether with their upper and lower bounds (left box Figure 1).

In case of estimating dynamic fluxes given an assumed objec-

tive, the results are compared with flux estimations based on

concentration measurements in time and 13C mass isotopomer

measurements. In contrast to 13C MFA, our method only uses

metabolite concentration measurements (and not 13C mass

isotopomer measurements) to estimate the fluxes.

In case of testing hypotheses, different objective functions

are implemented. For each objective function, the result-

ing fluxes are plotted and compared with external informa-

tion from the literature to decide which hypotheses can be re-

jected. The different steps in the mathematical framework are

described below and details can be found in25.

2.1 MetDFBA Mathematical framework

2.1.1 Flux balance analysis (FBA). Using an appropri-

ate objective function Z, mass balances and reaction rate con-

straints, Flux Balance Analysis17 is applied on a genome scale

model to obtain the steady state flux (reaction rate) distribution

before the perturbation. Fluxes of reactions supposed not to

occur under the given experimental conditions (e.g. because

a certain substrate is not in the medium) are set to zero. The

fluxes are constrained by upper and lower bounds, which have

the same sign for irreversible reactions and different sign for

reversible reactions. Solving the optimization problem results

in optimal steady state fluxes and an optimal value for the ob-

jective function Zopt .

2.1.2 Flux variability analysis (FVA). Because the opti-

mization problem described above is convex the optimal value

Zopt is the global optimum26. Nevertheless, the optimal fluxes

determined in the FBA solution are not always unique. It is

possible that the same optimal value Zopt is achieved by dif-

ferent flux distributions satisfying the constraints27. This vari-

ability of the fluxes at the optimal solutions can be studied

with Flux Variability Analysis (FVA).28 Hereto each flux is

minimized and maximized, given mass balances, reaction rate

constraints and the objective function equal to its optimum. In

this way we obtain lower and upper bounds for each flux.

2.1.3 Calculation of derivatives. To avoid large fluctu-

ations in the derivatives due to noise of the metabolite con-

centration data (C), we used B-splines smoothing.29 Subse-

quently, the derivatives (dC/dt) are calculated from the splines

at equidistant (10 s) time points within the window of obser-

vation of the experiments. In the case of multiple metabolite

measurements (e.g. both LC/MS and GC/MS measurements,

biological replicates), the average of the derivatives was cal-

culated. The results are gathered in an (m× n)-matrix dC/dt

(m metabolites, n time points).

2.1.4 Lumping of reactions. Often, not all metabolites

in the genome scale model are measured. Therefore, we need

to construct a lumped model from the genome scale model

that only includes measured metabolites. We use two types of

lumping. Type I is done as follows. If there are two reactions

A
v1
→ B and B

v2
→C, and B is not measured, we lump the reac-

tions by adding them stoichiometrically into A+B
v3
→ C+B.

Now B can be omitted resulting in A
v3
→C. For type II lumping,

two reactions A
v1
→ B and C

v2
→ B with A and C not measured

are combined to one arrow, not measured
v3
→ B. The steady

state flux distribution of the lumped model is calculated from

the steady state flux distribution of the genome scale model us-

ing the following rules that are valid under steady state. When

A
v1
→ B

v2
→ C is lumped to A

v3
→ C, then v3 = v1 = v2. When

A
v1
→ B and C

v2
→ B with A and C not measured are lumped
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to not measured
v3
→ B, then v3 = v1+ v2. The rule for type I

lumping is not valid for the dynamic situation where the time

derivatives of the concentrations are not equal to zero. Consid-

ering type I lumping, the concentration of B is likely to change

temporarily after a perturbation. In this situation fluxes v2 and

v1 will be unequal. Since B was not measured we cannot esti-

mate v1 and v2 but we can estimate v3 of the lumped reaction.

Because we use a least squares method, v3 will have a value

that attempts to estimate the concentration changes of A and C

as good as possible in a quadratic sense. So, the magnitude of

v3 is a compromise between v1 and v2 and its value will there-

fore be between the magnitudes of v2 and v1. In what follows,

we will describe a new method to determine the dynamic be-

haviour of the fluxes through the lumped reaction scheme.

2.1.5 MetDFBA. MetDFBA is an extension of

DFBA.18,30–32 The dynamic mass balance constraints

are of the form dC/dt = S · v. When using both external

and internal metabolite balances, it has to be taken into

account that the balance space is different (bioreactor and

intracellular volume).33 Therefore, the left-hand side of the

mass balances for the external metabolites is multiplied by a

factor Vext/Vint ,
34 where Vint and Vext are the intracellular and

extracellular volume respectively.

In DFBA, the differential equations are rewritten as linear

equations using a finite collocation method18. For larger

systems DFBA takes an unreasonable amount of computa-

tional time. When metabolite concentration measurements

are available, the time derivatives dC/dt in the mass balances

can be substituted by time derivatives calculated from the

data. In this way the differential equation constraints become

linear constraints. This makes MetDFBA a computational

much simpler problem than DFBA. Consider

A =















Sl 0 · · · 0 0

0 Sl · · · 0 0
...

...
. . .

...
...

0 0 · · · Sl 0

0 0 · · · 0 Sl















and b = vec(dC/dt),

where Sl is the stoichiometric matrix of the lumped model and

dC/dt are the time derivatives calculated from the measured

data. For n time points, r reactions and m metabolites, A is

an (n ·m× n · r)-matrix and b an (n ·m× 1)-vector. A linear

optimization problem of the following form is solved:

minimize or maximize F

subject to

A · vt = b

vmin ≤ vt ≤ vmax

where F is the objective function after the perturbation;

vt = (v1 (t1) , · · · ,vr (tn))
T

is the (n · r×1)-vector of r reactions

rates in the lumped model at each of the n time points; vmin

and vmax are vectors of lower and upper bounds for the fluxes

respectively. An optimum Fopt for the objective function and

optimal reaction rate profiles are obtained.

In DFBA with the Dynamic Optimization Approach

(DOA),18 an objective function has the form
∫ t f

t0
f (t)dt where

t0 and t f are the start (steady state) and the end time of the ex-

periment respectively. The integral is approximated with the

finite collocation method. In MetDFBA, we write the integral

as a sum of integrals over intervals between subsequent time

points t0, t1, · · · , tn = t f :
∫ t f

t0
f (t)dt =

∫ t1
t0

f (t)dt+
∫ t2

t1
f (t)dt+

· · ·+
∫ tn=t f

tn−1
f (t)dt. We apply the trapezoidal rule on each inte-

gral, which means that we approximate the integral (area un-

der the curve) of f(t) by the area of a trapezoid in order to

reduce computational complexity.

2.1.6 Dynamic FVA. To study the variability of the op-

timal fluxes leading to the same optimal value Fopt , a variant

of FVA taking into account the non steady state condition is

performed. In this variant, the constraints on the fluxes are:

A · vt = b and vmin ≤ vt ≤ vmax. Furthermore, dynamic FVA is

the same as FVA.

3 Results

3.1 Adaptation of Penicillium chrysogenum during feast-

famine cycles

The physiology, growth and product formation of a cellular

system is the result of a complex interaction between the ex-

tracellular environment and the cellular metabolic and regu-

latory mechanisms. The production capacity of an organism

thus strongly depends on the environmental conditions which

might be a reason for unexpected scale-up behaviour observed

in large-scale fermentation processes and which can lead to

reduced biomass yield and reduced product formation.3,35–39

Estimations of fluxes from intermittent glucose feeding cy-

cles during Penicillium chrysogenum cultivation may lead to

new hypotheses on the regulation of metabolism to cope with

dynamic environmental conditions and lead to the develop-

ment of metabolic engineering strategies to improve the prod-

uct yield.

We compared our estimated fluxes from MetDFBA to fluxes

based on isotopomer measurements from de Jonge et al.3 to

validate our method, using an assumed objective: the mini-

mization of the sum of squared fluxes. We believe that mini-

mizing the cells total enzyme usage is a reasonable objective

during constantly changing environmental conditions (e.g. in-

termittent feeding). We focused on the upper glycolysis, the

pentose phosphate pathway (PPP) and storage metabolism.

See Supplementary Tables 1 and 2 for an overview of the
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Fig. 2 Estimated dynamic fluxes in nmol/gDW/s through the upper

glycolysis in Penicillium. Black indicates the experimental reference

(13C MFA), green indicates MetDFA estimations, red indicates the

MetDFBA fixing the conversion of G6P into 6PG (reaction r2 1).

metabolic network and used abbreviations. Intracellular and

extracellular metabolite concentrations were measured over

time during one feast-famine cycle. Time-series of 17 metabo-

lites, participating in 22 reactions were used to apply our

method. The dataset is described in more detail in the Sup-

plementary Material, section 1. Since xylitol 5-phosphate was

not measured we lumped four reactions. We constrained the

optimization problem by assuming that most reactions are ir-

reversible (Supplementary Table 2). The feed rate was set ex-

perimentally. We aim to test whether MetDFBA, with only

concentration measurements in time as input, is capable of es-

timating dynamic fluxes.

3.1.1 Estimating dyamic flux profiles. The green lines

in Figure 2 show the estimated dynamic fluxes through the

upper glycolysis during one feast-famine cycle. Most esti-

mated fluxes through the upper glycolysis approximated the

profiles obtained by 13C MFA3(black line Figure 2) except for

the second reaction, the conversion of glucose-6-phosphate

(G6P) into fructose-6-phosphate (F6P). Although the shapes

of the MetDFBA and 13C MFA profiles were similar for this

reaction, the MetDFBA flux was significantly lower. This was

caused by a too high estimation of flux going into the PPP

via the conversion reaction of G6P into 6-phospho-gluconate

Fig. 3 Estimations of the average fluxes through the considered

metabolic network in nmol/gDW/s including upper glycolysis (r1 2

: r1 5), pentose phosphate pathway (r2 1 : r2 7) and storage

metabolism (trehalose, glycogen and mannitol) in Penicillium. See

caption Figure 2 for a description of the legend.

(P6G, see Supplementary Figure 1) which was roughly 25

times higher for MetDFBA compared to the 13C MFA based

flux estimation. Also when considering the distribution of the

average fluxes during one feast-famine cycle (See Supplemen-

tary Figures 3-6) it became obvious that the reduction in flux

going through the conversion reaction of G6P into F6P, was

caused by the high flux through the oxidative PPP. Because

this pathway is more or less circular this flux is going back

to the upper glycolysis at nodes F6P and PG3, which explains

the better estimations for the fluxes of the upper glycolysis

after node F6P. The MetDFBA and 13C MFA based fluxes

for storage metabolism (See Supplementary Figure 2) were

also comparable except for the conversion reaction of uridine

diphosphate glucose (UDP Glc) into glycogen (Glyc), and the

degradation of Glyc into G6P and glucose-1-phosphate (G1P),

which had the same order of magnitude but different shapes.

3.1.2 Using prior knowledge to improve flux estima-

tion. MetDFBA overestimated the flux through the PPP. The

results showed that the chosen objective has the property to

divide the flux too equal, within the solution space, between

the PPP and the rest of the glycolysis. If prior knowledge

like kinetic parameters are available the distribution of fluxes

at split nodes could be forced towards more realistic ratios.

This could be done by calculating the flux for one reaction

for which kinetic parameters are available and fix this flux by

setting upper and lower bounds of this flux according to the

calculated values. To illustrate this we added an additional

constraint to the conversion reaction of G6P into 6PG (reac-

tion r2 1). The flux through this reaction was constrained by

setting the upper and lower flux bounds for the entire feast-

famine cycle to the estimation obtained with the 13C MFA ap-

proach for this reaction. Subsequently, we recalculated the

fluxes. As expected, this resulted in a significant decrease of
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the fluxes of the entire PPP (red bars in Figure 3 and red lines

in Supplementary Figure 1). The magnitude and shape of the

flux profiles of the conversion reaction of 6PG into Rib5P, and

the conversion of 3PG and Sed7P into F6P and E4P, now were

comparable to results of the 13C estimations.3 In addition, the

conversion reaction of G6P into F6P, the first reaction of the

glycolysis after the G6P-node, where the flux branches to-

wards the PPP, was now in the same order of magnitude (red

line in Figure 2). The remaining reactions of the PPP were

lumped and therefore they could not be compared (Supple-

mentary Figure 7). Fluxes through storage metabolism were

unaffected by the additional constraints. The average fluxes

during one feast-famine cycle confirm this observation (Sup-

plementary Figures 3-6).

3.2 Response of Saccharomyces cerevisiae to a glucose

pulse

To demonstrate how MetDFBA could be used to test hypothe-

ses about optimality principles we applied our method to time-

resolved metabolomics data of the central carbon metabolism

in S. cerevisiae grown under aerobic conditions. Short-term

perturbation-response experiments were carried out by an ex-

tracellular glucose pulse.24,40,41 Extracellular and intracellular

metabolite concentration levels were measured over time. The

dataset is described in more detail in the Supplementary Ma-

terial, section 2.

A steady state flux distribution required for MetDFBA with

minimal glucose uptake as objective, was obtained from FBA

applied on a genome scale model of S. Cerevisiae.42 When

glucose is limited it is realistic to suppose that the glucose up-

take is minimal, which was used as objective to obtain the

optimal steady state flux distribution. The lower bound of

the growth rate was set equal to the dilution rate. The lower

and upper bounds of the remaining fluxes were taken from the

genome scale model. After lumping and removing reactions

that did not occur under the given experimental conditions, the

model consisted of 33 metabolites and 62 reactions. The re-

action scheme and a detailed list of the reactions are given in

Supplementary Figure 11 and Supplementary Table 5.

We applied MetDFBA in conjunction with seven objective

functions to establish the most likely response of the organism.

Results from MetDFBA were evaluated against the following

five criteria:

1. The solution space of optimal flux estimates should be

significantly reduced (compared to the solution space de-

fined by the capacity constraints);

2. The directionality of the metabolic reactions should be in

agreement with literature;43

3. After a glucose pulse, S.cerevisiae switches from respi-

ratory to respiro-fermentative conditions.44 The activity

of the TCA cycle, crucial for ATP production under res-

piratory conditions, becomes low when switching to fer-

mentation;45

4. The fluxes for the upper glycolysis (G6P → F6P → FBP

→ GAP + DHAP) are lower than for the lower glycolysis

(GAP → 3PG → PEP → PYR);45

5. The qualitative behavior of the fluxes corresponds with

the kinetic model simulations of Vaseghi et al. of the

pentose phosphate pathway (PPP) in which the reactions

rates show a fast increase immediately after the pulse,

followed by a very slow decrease.46

Objective functions are rejected if the flux profiles do not fit

cell physiology.

3.2.1 Optimizing a single objective function. We com-

pared seven objective functions (Supplementary Table 7) on

their ability to give biologically meaningful estimates of the

flux profiles. These seven functions have the following objec-

tives: maximize biomass production, maximize ATP produc-

tion, maximize the ATP production in the cytosol, maximize

the glucose uptake, maximize the ethanol production, mini-

mize the sum of absolute fluxes and minimize the squared

difference of the reaction rates with steady state (MOMA).

Each of the seven objective functions is further explained in

the Supplementary Material, section 2.1.

Supplementary Table 8 shows the results of the evaluation

of the five conditions for each of the seven optimization prob-

lems shown in Supplementary Table 7. None of the objectives

satisfied all the five criteria mentioned in the previous section.

3.2.2 Multi-objective optimization. It has been pro-

posed that flux changes after a perturbation occur as a re-

sult of a combination of maximal metabolic or energetic ef-

ficiency under the given conditions, and minimization of ad-

justment47,48 or minimization of the sum of absolute fluxes.49

Previous studies showed that objective functions compete

against each other.27,47,50 This means that one objective func-

tion can only be improved if another is worsened. Optimal so-

lutions for competing objectives are called Pareto optimal.47

The set of Pareto optimal solutions is called the Pareto front.51

A method to calculate Pareto optima is optimizing a weighted

sum of the objectives.52 The following multi-objective opti-

mization problem is solved:

minimize F = F1 −w ·F2

subject to

A · vt = b

vmin ≤ vt ≤ vmax

where F1 is MOMA or the sum of absolute fluxes and F2 is one

of the other objective functions of Supplementary Table 7. An
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the five evaluation criteria (see section 3.2.) were fulfilled.

These results show that maximizing ethanol yield is very

important compared to MOMA, but only maximizing ethanol

did not lead to results satisfying all five evaluation criteria

(see Supplementary Table 7). The results of this case study

show that optimizing the yield or uptake of a single compound

was insufficient to significantly reduce the solution space of

reaction rate profiles determined by the capacity constraints.

A reduced solution space could only be obtained from at least

two objectives or from one objective that is a function of all

the fluxes. From this case study it can be concluded that both

the objectives MOMA and ethanol production are important.

In biological terms this means that yeast converts the glucose

to ethanol with as little as possible adaptations to the steady

state fluxes.

MetDFBA requires the measurement of (all) extracellular

and intracellular metabolite concentrations in response to

perturbations. Because of the low intracellular amounts

and high flux, methods for rapid sampling and quenching

are required. With current, quantitative metabolomics ap-

proaches using MS technologies about 100-150 metabolites,

especially of central carbon metabolism can be obtained.

Computationally, MetDFBA is a linear programming problem

with can easily scale to genome scale models. For dynamic
13C flux identification, the microorganism is supplied with

labeled substrate. Next to the metabolite concentrations,

the labeling enrichment of the metabolites is measured.

This results in the double amount of samples and mass

isotopomer measurements. Generally, if the concentration

can be measured, also the mass isotopomer enrichments can

be measured. Computationally, flux identification using 13C

metabolic flux analysis requires to balance metabolites as

well as labeling states. In contrast to metabolite balances,

the labeling balances lead to non-linear differential equation

systems that require advanced computation, even at metabolic

steady-state.58,59 The parameter identification, and especially

obtaining the global optimum are challenging already for

medium sized networks (order of 100 metabolites). In general

dynamic 13C metabolic flux analysis is experimentally and

computationally more intensive than MetDFBA.

We presented the incorporation of time-resolved

metabolomics data into DFBA. Considering the upcom-

ing availability of high-throughput expression data of the last

decade, it is probably a logical next step to further develop

MetDFBA to make it also suitable for the integration of

expression data. Several methods that combined expression

data with FBA were recently published.60–62 They all have in

common that they try to further reduce the flux distribution

solution space. Some use an arbitrary threshold above

which corresponding reactions are assumed to be inactive

and excluded. For MetDFBA the ones that constrain the

maximum possible flux through the reaction, according to

the expression levels of the corresponding enzymes, are

probably most suitable because MetDFBA uses a predefined

network. More tight constraints will probably result in

more accurate solutions and with a smaller solution space,

a smaller (more lumped) network might be satisfactory

and thus fewer metabolite measurements might be needed.

Another potentially interesting approach to further reduce

the solution space is the addition of extra energy balance

constraints, as described by Beard et al.63, which ensures

that all estimated fluxes are thermodynamically feasible.

Finally, when available, kinetic descriptions about metabolic

regulation (e.g. allosteric activation or inhibition) can be

easily incorporated into the constraints in a similar way as

described by Chowdhury et al.64 for classical FBA.

6 Conclusion

Studying dynamic fluxes and optimization principles is

important to understand cellular functioning and adaptation

to changing environments. In this study, we proposed a new

method, MetDFBA, that combines DFBA with time-resolved

metabolomics experiments to overcome the limitations of

classical DFBA. In this paper, we discussed two applications

of MetDFBA. When it is known which objective drives an

organism under certain perturbations, MetDFBA can be used

to estimate dynamic flux profiles. A second application of

MetDFBA is testing hypotheses about objectives driving

cellular behaviour under perturbations. MetDFBA does

not require detailed kinetics but, when available, kinetic

information can be easily incorporated in the constraints.

MetDFBA can include multiple objective functions by using

a weighted sum of the objective functions. Method validation

with 13C mass isotopomer measurements confirmed that

MetDFBA can accurately estimate dynamic flux profiles

using a minimal amount of kinetic information, given the

objective driving the organism under the conditions in the

experiment. Evaluation with prior information from the

literature confirmed that MetDFBA is also suitable for testing

hypotheses about objectives driving cellular behaviour under

changing environments.
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59 K. Nöh, A. Wahl and W. Wiechert, Metabolic engineering, 2006, 8, 554–

77.

60 A. Navid and A. E., BMC Systems Biology, 2012, 6, 150.

61 E. Resnik, P. Metha and S. D., PloS Computational Biology, 2013, 9,

e1003195.

62 A. S. Blazier and P. J. A., Frontiers in physiology, 2012, 3, 299.

63 D. A. Beard, S.-d. Liang and H. Qian, Biophysical journal, 2002, 83,

79–86.

64 A. Chowdury, A. R. Zomorrodi and C. D. Maranas, PLoS Comput Biol,

2014, 10, e1003487.

10 | 1–10

Page 10 of 10Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t


