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It is well known that obesity/high body mass index (BMI) plays a key role in the evolution of insulin resistance and Type-2
diabetes mellitus (T2DM). However, the exact mechanism underlying its contribution is still not fully understood. This work
focuses on an NMR-based metabolomic investigation of the serum profiles of diabetic, obese South Indian Asian subjects. 1H 1D
and 2D NMR experiments were performed to profile the altered metabolic patterns of obese diabetic subjects and multivariate
statistical methods were used to identify metabolites that contributed significantly to the differences in the samples of four
different subject groups: diabetic and non-diabetic with low and high BMIs. Our analysis revealed that the T2DM-high BMI
group has higher concentrations of saturated fatty acids, certain amino acids (leucine, isoleucine, lysine, proline, threonine,
valine, glutamine, phenylalanine, histidine), lactic acid, 3-hydroxybutyric acid, choline, 3,7-dimethyluric acid, pantothenic acid,
myoinositol, sorbitol, glycerol, and glucose, as compared to the non-diabetic-low BMI (control) group. Of these 19 identified
significant metabolites, the levels of saturated fatty acids, lactate, valine, isoleucine, and phenylalanine are also higher in obese
non-diabetic subjects as compared to control subjects, implying that this set of metabolites could be identified as potential
biomarkers for the onset of diabetes in subjects with a high BMI. Our work validates the utility of NMR-based metabolomics in
conjunction with multivariate statistical analysis to provide insights into the underlying metabolic pathways that are perturbed in
diabetic subjects with a high BMI.

1 Introduction

Diabetes has become an epidemic of the modern world and
caused 4.8 million deaths in 2012 alone. Current trends en-
visage a proportional increase of diabetic patients in develop-
ing countries and the past decade has witnessed a dramatic
increase in the diabetic population in these countries.1 While
it is well-known that the predominant triggers for T2DM are
related to lifestyle factors such as diet, lack of physical activ-
ity, obesity and stress, a detailed mechanistic picture of the
pathogenesis of T2DM is yet to emerge. Metabolomics is an
emerging science that can characterize the change in metabo-
lite patterns to identify multiple tissue pathophysiology un-
derlying diabetes. NMR spectroscopy based metabolomic in-
vestigations have led to a fuller understanding of the dys-
regulation in metabolism and the environmental factors that
contribute to complex diseases such as T2DM.2–6 The util-
ity of metabolomic profiling in the diagnosis and treatment of
obesity and diabetes has been comprehensively reviewed re-
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cently.7,8 Several NMR metabolomics studies have been pub-
lished that profiled multiple metabolites correlated with in-
sulin resistance,9 obesity 10 and T2DM.11–14 Recent NMR
studies of serum metabolites in diabetic rats have correlated
the time-varying metabolite levels with glycolysis, the TCA
cycle and branched-chain amino acid metabolism in the evo-
lution of diabetes.15,16

There have been several investigations that correlate phe-
notype and metabolism and helped in identifying serum or
plasma metabolic markers that are involved separately in obe-
sity17,18 and in diabetes.19,20 It is well known that obesity
(high BMI) plays a key role in insulin resistance and T2DM;
however the exact mechanism underlying this role is still not
fully understood. Several unifying hypotheses have identified
obesity as a risk factor for the development of T2DM: for in-
stance, “metainflammation” i.e. dysregulated adipokine pro-
file with chronic low grade inflammation due to excess adipos-
ity21 as well as “metabolic derangement” due to excess lipid
flux and ectopic fat storage exemplify such risk factors.22 De-
spite the increasing prevalence of diabetes in the South Asian
population, there have been only a few attempts at systematic
metabolic profiling in this population .23,24 The prevalence of
diabetes has been shown to be positively correlated with in-
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Fig. 1 Serum 1H 600 MHz 1D solution state NMR spectrum of (a) T2DM-High BMI, (b) T2DM-Low BMI, (c) Non-Diabetic High BMI and
(d) Non-Diabetic Low BMI subjects, with labeling of specific resonances of metabolites. Peaks numbering: 1,Lipid terminal CH3 (0.91ppm);
2,Isoleucine (0.94ppm); 3,Valine (0.98ppm); 4,3-hydroxybutyric acid (1.19ppm); 5,Alloisoleucine (1.29ppm); 6,Lactate (1.33ppm);
7,Chenodeoxycholic acid (1.49ppm); 8,Lysine (1.68ppm); 9,Glutamate (2.12ppm); 10,Ketoleucine (2.13ppm); 11,Glutamine (2.44ppm);
12,Creatinine (3.03ppm); 13,Choline (3.21ppm); 14,Ribitol (3.65ppm); 15,Lactate (4.12ppm); 16,-glucose (4.63ppm); 17,Tyrosine (6.87ppm);
18,Histidine (7.05ppm); 19,Tyrosine (7.18ppm); 20,Histidine (7.73ppm).

creasing BMI across multiple ethnic groups,25,26 while other
studies have divulged the positive correlation of visceral fat in
Asian Indians to dyslipidemia and insulin resistance even in
the non-obese BMI category.27

2 Results

2.1 Clinical characteristics

The subjects were grouped as non-diabetic, pre-diabetic (IFG :
FPG of ≥ 5.6−≤ 6.9 mM/l or ≥ 100−≤ 125 mg/dl and IGT :
2hr PPPG of ≥ 7.8−≤ 11.0 mM/l or ≥ 140 and ≤ 200 mg/dl)
and T2DM (FPG > 7.0 mmol/l and PPPG > 11.1 mmol/l)
based on clinical history and routine biochemical tests that
included FPG and PPPG (WHO definition). The population
consisted of 128 non-diabetics, 17 pre-diabetics and 165 di-
abetics with each group comprising equal numbers of both
sexes. All subjects were aged between 35 to 45 years. The
diabetics had a documented history of 5 years or more of the
disease. The subjects were further classified with respect to
their BMI into low BMI (18-23 kg/m2), moderate BMI (23-27
kg/m2) and high BMI (27-30 kg/m2) groups (Table 1). Both
T2DM and non-diabetic groups were divided into insulin-
sensitive and insulin-resistant groups, based on HOMA-IR.
The cut-off range for HbA1c and FBS in the T2DM group was

kept at > 8.0% and > 160 mg/dl respectively. HbA1C levels
between the T2DM insulin-resistant low BMI and high BMI
groups was statistically significantly different (p = 0.010).
Samples from a total of 55 subjects (both male and female)
were screened for NMR analysis, of which 26 were non-
diabetics and 29 were T2DM. A further classification of these
two groups was performed based on BMI, before proceeding
for the NMR experiments.

Table 1 Clinical characteristics of the study populations

Subjects Age (Yrs) BMI FBS HbA1c%
Non Diabetic 40.75 ± 21.23 ± 95.00 ± 6.37 ±
Low BMI-IS 1.96 1.38 0.00 1.09
Non Diabetic 40.46 ± 28.20 ± 93.31 ± 5.65 ±
High BMI-IS 2.63 0.79 6.24 0.31
T2DM 40.20 ± 20.86 ± 241.47 ± 9.40 ±
Low BMI-IR 2.86 1.49 70.50 0.24
T2DM 39.57 ± 28.46 ± 223.64 ± 10.83±
High BMI-IR 2.59 1.24 48.81 1.87
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Fig. 2 Serum 2D HMQC NMR spectrum of Non-Diabetic-Low
BMI subjects, showing metabolites with peaks labeled (as detailed
in text) in the regions 0-2.5 ppm, 3.0-4.5 ppm and 5.0-5.5 ppm
respectively.

2.2 NMR Analysis

Serum NMR spectra revealed the presence of a wide variety
of metabolites. Representative 600 MHz 1H NMR spectra of
serum samples from non-diabetic and T2DM subjects with
low and high BMI, are shown in Figure 1. The single pulse
proton experiment for serum has dominance of broad reso-
nances from lipoproteins and plasma proteins, masking and

making the identification and quantification of small molecu-
lar weight metabolites difficult. This problem was overcome
by using the CPMG pulse sequence to attenuate the broad res-
onances associated with macromolecules and other molecules
bound to them, that have shorter T2 relaxation times. CPMG
NMR spectra are useful for providing relative quantitative in-
formation for low molecular weight metabolites, when sam-
ples are recorded under identical experimental conditions.28

Metabolites were identified based on comparison with stan-
dard reference databases (HMDB, MMCD and BMRB) as
well as with 2D 1H-1H COSY and 1H-13C HSQC and HMQC
NMR experiments. The detailed validation of metabolite fin-
gerprinting using cross-peaks in 2D spectra is illustrated by
the representative serum 2D 1H-13C HMQC spectrum of Non-
Diabetic-Low BMI subjects shown in Figure 2: metabolites
are labeled with peak numbering in the region 0-2.5 ppm ac-
cording to (a): 1, Lipid terminal CH3; 2, Leucine; 3, Valine;
4, Lactate; 5, Leucine; 6, Lipid; 7, Isoleucine; 8, Lipid; 9,
Lipid; 10, Valine; 11, Glutamine/Glutamate; 12, Lipid; in
the region 3.0-4.5 ppm (b): 13, Asparagine; 14, Choline;
15, Leucine; 16, beta-glucose; 17, Glycerol; 18, Glycogen;
19, Histidine; 20, Isoleucine; 21, Proline; 22, Threonine; 23,
Phosphocholine; 24, Glycogen; 25, alpha-glucose; 26, beta-
glucose; 27, Myoinositol; 28, alpha-glucose; 29, Choline; 30,
Phosphocholine; 31, Ethanolanine; 32, alpha-glucose; and in
the region 5.0-5.5 ppm (c): 33, alpha-glucose; 34, Lipid. The
2D HSQC and COSY NMR spectra are given in Figures S1-
S2 of the Electronic Supplementary Information (ESI). The
results of the metabolite identification performed using 1D
and 2D NMR experiments is summarized in Table ST1 (Elec-
tronic Supplementary Information), which contains metabo-
lites broadly grouped according to the biomolecular groups to
which they belong. NMR metabolite fingerprinting was able
to identify a large number of amino acids and carbohydrates
along with lipids, keto acids, sugar alcohols etc. The presence
of glycerol in the serum samples was confirmed from 1D and
2D NMR spectra and 100% matching peak scores in Metabo-
hunter output. Glycerol peaks (3.78 ppm) overlap with some
of the peaks of glucose and we observed from the loading
plot and VIP scores that the bin containing these overlapping
peaks was significant in contributing to separation between the
groups. In order to identify the individual contributions of glu-
cose and glycerol to group separation, we determined the con-
centrations of both the metabolites. We followed the principle
that each metabolite could have more than one peak in the
NMR spectrum and the quantitative contribution of each peak
is determined by its stoichiometric properties and hence any
resolved, non-overlapping peak can be integrated for metabo-
lite quantification. If one metabolite in an overlapped region
has a well-resolved peak in some other spectral region, then a
simple arithmetic subtraction of its peak area (based on stoi-
chiometric ratio) from the total integral of overlapping region

1–14 | 3

Page 4 of 15Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



can give the integral and concentration of the other metabo-
lite in the overlapped region. The concentration of glucose
was first determined by using its isolated peak at 4.63 ppm
and then arithmetic subtraction of the peak area for glucose at
3.78 ppm from the total peak area was done to calculate the
concentration of glycerol.28,29

2.3 Multivariate Analysis

Multivariate analysis was performed to correlate diabetes and
obesity-induced changes in metabolism and to identify po-
tential metabolic pathways associated with onset of the dis-
ease. In order to identify metabolic markers associated with
both diabetes and obesity, the serum samples from T2DM-
High BMI subjects, were compared with the Non-Diabetic-
Low BMI group (used as control in our analysis). The binned
data was first analyzed by PCA, which enabled detection of
any outliers (located outside the 95% confidence region of
the model). Outliers were then removed from further anal-
ysis. This was followed by PLS-DA analysis. The PLS-
DA score plot (Figure 3(a)) with component one explaining
54.1% of the variation and component two accounting for
16.2% of the variation, shows a clear separation between these
two groups. The loadings plot given in Figure 3(b) displays
the variables (in bins) responsible for the clear separation in
the score plot. The metabolites in the bins were identified
from 1D and 2D NMR analysis. The negative regions in
the loading plot (below the baseline) correspond to metabo-
lite levels that are increased in the serum of the T2DM-High-
BMI group, whereas the positive regions (above the base-
line) correspond to metabolite levels that are decreased in the
serum of the T2DM-High-BMI group, as compared to the
serum of the control group. The VIP parameter was also
used to identify variables that explain most of the variance be-
tween metabolomic profiles of the T2DM-High BMI and Non-
Diabetic-Low BMI groups (Figure 3(d)). The T2DM-High
BMI group has higher concentrations of saturated fatty acids,
certain amino acids (leucine, isoleucine, lysine, proline, threo-
nine, valine, glutamine, asparagine, phenylalanine, histidine),
lactic acid, 3-hydroxybutyric acid, choline, 3,7-dimethyluric
acid, pantothenic acid, myoinositol, sorbitol, glycerol, and
glucose, as compared to the Non-Diabetic-Low BMI (control)
group. Validation of the PLS-DA model, performed using per-
mutation test showed that the PLS-DA model is robust and
credible (Figure 3(c)). The PLS-DA analysis showed distinct
separation (R2Y = 0.86) and good predictability (Q2=0.73). In
order to confirm that the variation in concentration of the iden-
tified metabolites in the loadings plot was statistically signifi-
cant, a t-test was done to identify the important features with
a threshold of p < 0.05. Of all the metabolites identified from
the loadings plot and VIP scores, the concentration variation
of 19 metabolites was found to be statistically significant be-

tween the groups and hence contributed significantly to group
separation (Table 2).

Table 2 Relative concentrations (normalized integrals (%)) of serum
metabolites present in T2DM-High BMI (DH), T2DM-Low BMI
(DL), Non-diabetic-High BMI (NDH) and Non Diabetic-Low BMI
(NDL) groups. Data are represented as mean ± SD and a t-test and
ANOVA analysis were performed to confirm statistical significance
(labels a−g explained in text)

Metabolite ppm DL DH NDL NDH

Saturated
fatty acids

0.91 3.20d 3.32b 2.79 2.97 f ,g

± 0.86 ± 0.81 ± 0.69 ± 0.64
Valine 0.98 1.69d 1.79b 1.37 1.43 f ,g

± 0.32 ± 0.44 ± 0.55 ± 0.41
3-hydroxy-
butyric acid

1.20 2.59c 2.72a 2.03 2.37e

± 0.44 ± 0.51 ± 0.54 ± 0.56
Isoleucine 1.24 1.98d 2.29b 1.59 1.77 f ,g

± 0.42 ± 0.46 ± 0.41 ± 0.50
Lactate 1.33 2.16d 2.27b 1.68 1.83 f ,g

± 0.61 ± 0.84 ± 0.49 ± 0.58
Lysine 1.46 1.25c 1.34a 0.84 0.98e

± 0.33 ± 0.49 ± 0.29 ± 0.35
Glutamine 2.14 1.48c 1.85a 0.98 1.27e

± 0.62 ± 0.69 ± 0.47 ± 0.34
Choline 3.19 1.06c 1.45a 0.98 0.85e

± 0.41 ± 0.47 ± 0.38 ± 0.38
Phenylalanine 3.30 1.95d 2.12b 1.54 1.71 f ,g

± 0.27 ± 0.47 ± 0.36 ± 0.34
Proline 3.34 1.16c 1.36a 0.92 0.97e

± 0.31 ± 0.35 ± 0.30 ± 0.34
3,7-dimethy-
luric acid

3.39 1.61c 1.83a 1.34 1.45e

± 0.56 ± 0.54 ± 0.48 ± 0.49
Pantothenic 3.43 1.24c 1.42a 0.91 1.02e

acid ± 0.43 ± 0.55 ± 0.32 ± 0.46
Myoinositol 3.52 1.58c 1.69 a 1.25 1.36e

± 0.35 ± 0.38 ± 0.18 ± 0.36
Threonine 3.58 1.40c 1.67a 0.91 1.13e

± 0.21 ± 0.28 ± 0.17 ± 0.31
Leucine 3.73 1.47c 1.65a 1.22 1.31e

± 0.41 ± 0.69 ± 0.46 ± 0.44
Sorbitol 3.75 1.77c 2.26a 1.07 1.17e

± 0.66 ± 0.79 ± 0.67 ± 0.70
Glycerol 3.78 2.22c 2.37a 1.26 1.44 e

± 0.68 ± 0.71 ± 0.61 ± 0.69
Glucose 4.63 5.38c 5.58a 4.55 4.83 e

± 0.78 ± 0.99 ± 0.87 ± 0.91
Histidine 7.73 1.80c 1.91a 1.53 1.67 e

± 0.38 ± 0.52 ± 0.36 ± 0.25

The list of 19 statistically significant metabolites (with rela-
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Fig. 3 (a) PLS-DA score plot of serum NMR spectra from T2DM-High BMI and Non-Diabetic-Low BMI subjects (R2Y=0.86, Q2=0.73). (b)
Loadings plot with metabolites marked below the baseline being present in greater amounts and those marked above the baseline being
present in lesser amounts in T2DM-High BMI subjects as compared to the control. (c) PLS-DA model validation by permutation tests based
on separation distance (p < 0.01). (d) (VIP) scores with the corresponding expression heat map. Green and red indicate increased and
decreased metabolite levels, respectively. The marked metabolites have t-test scores of p < 0.05.

tive integral concentrations) that contribute to differences be-
tween all four groups is tabulated in Table 2. The t test
and ANOVA analysis revealed the following differences (la-
beled in Table 2): a, b label metabolites with significant dif-
ferences between T2DM-High BMI and Non diabetic-Low
BMI groups (p < 0.01 and p < 0.05 respectively) using the
t-test; c, d label metabolites with significant differences be-
tween T2DM-Low BMI and Non diabetic-Low BMI groups
(p < 0.01 and p < 0.05 respectively) using ANOVA; e, f la-
bel metabolites with significant differences between T2DM-
High BMI and Non diabetic-High BMI groups (p < 0.01 and
p< 0.05 respectively) using ANOVA; and g labels metabolites
with significant differences between Non Diabetic-High BMI
and Non diabetic-Low BMI groups (p < 0.05) using ANOVA.

The 19 significant metabolites identified above, are asso-
ciated with both diabetes and with high BMI/obesity. In or-
der to identify metabolites that can be specifically correlated
with obesity (regardless of whether the subject is T2DM or
not), we looked at the clustering of the T2DM-High BMI and
Non-Diabetic-High BMI groups, with the Non-Diabetic-Low-
BMI group acting as control (Figure 4). The PLS-DA score
plot (Figure 4(a)) with component one explaining 50.4% of
the variation and component two accounting for 16.8% of
the variation, shows a clustering of both the Non-Diabetic
groupings with some separation from the T2DM High-BMI
group. However, there is some overlap of the Non-diabetic-
High BMI group with the T2DM-High BMI group as well,
indicating that BMI indeed contributes to group separation
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6 | 1–14

Page 7 of 15 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



and that the metabolic dysregulation occurring due to high
BMI/obesity can be correlated with dysregulation due to di-
abetes. The PLSDA model was validated using permutation
test and showed good separation (R2Y= 0.81) and predictabil-
ity (Q2 = 0.68). Since the number of groups were more
than two in this case, one-way ANOVA was performed to
see if the overall comparison is significant or not, followed
by post-hoc analysis to identify which two groups are differ-
ent (Table ST2, ESI). The post-hoc analysis showed that for
all the 19 previously identified metabolites, the concentration
differences between (i) T2DM-High BMI and Non diabetic-
Low BMI and (ii) T2DM-High BMI and Non diabetic-High
BMI groups were responsible for overall group separation.
However for some metabolites, the concentration differences
between (i) T2DM-High BMI and Non diabetic-Low BMI,
(ii) T2DM-High BMI and Non diabetic-High BMI and (iii)
Non diabetic-High BMI and Non diabetic-Low BMI groups
were responsible for overall group separations. The concen-
tration of five metabolites: saturated fatty acids, lactate, va-
line, isoleucine, and phenylalanine, varied significantly in all
three groups, with the highest concentrations in the T2DM-
High BMI group, followed by the Non diabetic-High BMI
group and lowest concentrations in the Non diabetic-Low BMI
group. These five metabolites also show up in the serum of
obese but non-diabetic subjects, and can hence provide in-
sights into the dysregulation of metabolic pathways during the
early onset of diabetes.

We also looked at the clustering of the T2DM-High BMI
and T2DM-Low BMI groups, with the Non-Diabetic-Low-
BMI group acting as the control (Figure 5). The PLS-DA
score plot (Figure 5(a)) with component one explaining 46.2%
of the variation and component two accounting for 19.6% of
the variation, shows a clustering together of both the T2DM
(High BMI and Low BMI) groups, with a clear separation
from the Non-Diabetic (control) group. The PLSDA model
was validated using permutation test and showed good sep-
aration (R2Y= 0.81) and predictability (Q2 = 0.63). The
high overlap between T2DM-High BMI and Low BMI groups
shows that after the onset of the disease, the impact of BMI is
less significant and disruption in metabolic pathways is more
due to the disease than due to BMI. The metabolites contribut-
ing significantly to the clustering of the T2DM groups and sep-
aration from Non-Diabetic-Low BMI group can thus be corre-
lated with dysregulation in the diabetic metabolism, with BMI
having a perceptible but concomitantly less significant effect.
ANOVA with a threshold of 0.05 was performed as before
and used to identify metabolites that were statistically signif-
icant in contributing towards group separations and the same
19 metabolites were found to be responsible for group separa-
tion (Table 2). Post-hoc analysis (Fisher’s LSD) for Figure 5
(Table ST3 ESI) showed that differences between (i) T2DM-
High BMI and Non diabetic-Low BMI groups and (ii) T2DM-

Low BMI and Non diabetic-Low BMI groups were respon-
sible for separations with not much differentiation between
both the T2DM groups, thus confirming that group separations
were impacted more by diabetes. The findings detailed in Fig-
ures 3-5 indicate that alterations in metabolism are dominated
by the diabetic state (the T2DM-High-BMI group is clearly
separated from the control Non-Diabetic-Low-BMI group in
all the score plots) and that BMI-related changes in the pro-
files, while contributing to group differences, are less obvious
in this study.

3 Discussion

The changes in the metabolic profiles of T2DM-High-BMI,
T2DM-Low-BMI and Non-Diabetic-High-BMI groups as
compared to the control group (Non-Diabetic-Low-BMI),
were used to make inferences about the alterations in
metabolic pathways associated with obesity and T2DM in
South Indian Asian subjects. Our analysis revealed a panel
of statistically significant 19 metabolites and their associated
metabolic pathways (Table 3), that clearly correlated with the
T2DM phenotype irrespective of the BMI background. Inter-
estingly, among these metabolites, a panel of 5 metabolites
which includes saturated fatty acids, lactate, valine, isoleucine
and phenyl alanine (Figures 4(a), 4(b)) shows significant cor-
relation with the BMI phenotype both in T2DM as well as
in non-diabetic subjects. Based on this observation we hy-
pothesize that these 5 metabolites could represent dysregula-
tion in metabolic pathways during early onset of diabetes in
obese subjects. Corroborating our hypothesis there are sev-
eral small scale clinical studies that reports similar alteration
in plasma levels of these metabolites in obese subjects.30–32

Figure 6 shows a coarse-grained picture of the metabolic
pathways to which these metabolites belong and their inter-
relationships identified using the Connexios Network Knowl-
edge Base. Figure 7 shows a schematic diagram of the pos-
sible correlation between the 19 significantly altered metabo-
lites detected by 1H NMR serum analysis, and their associ-
ated pathway, with obesity related chronic diseases such as
diabetes and cardiovascular disease. The clinical significance
of these 19 metabolites, based on previously published clinical
and pre-clinical observation, is discussed below.

3.1 Glucose and Polyol pathway

One obvious metabolite that was significant in the serum of
obese T2DM subjects in our list was D-glucose (Figures 3(b),
3(d), 4(b), 5(b)). Increased glucose is shown to increase the
flux of metabolite into polyol and other glycosylation path-
ways contributing to several aspects of diabetes complications.
Interestingly, we were also able to identify increased levels of
sorbitol in T2DM phenotype (Figures 3(b), 3(d), 4(b), 5(b)),
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indicating increased flux of glucose through the polyol path-
way. Plasma levels of sorbitol has been shown previously to
be high in T2DM subjects with an established contribution to
diabetic complications.33 The incomplete oxidative disposal
of glucose, a characteristic feature of T2DM phenotype due
to progressive development of insulin resistance, can also be
tracked using the plasma levels of lactate.34 Studies by Chen
et. al have shown that plasma lactate levels are high in non-
diabetic glucose intolerant obese subjects as well.32 In con-
gruence with these observations, we also report a positive cor-
relation between the elevated levels of plasma lactate with the
high BMI phenotype (Table 2, Fig 4(a)) which correlates with
impaired glucose metabolism due to insulin resistance.

3.2 Ketone Body synthesis

Enhanced ketone body production due to dysregulated fat
metabolism is a hall mark of advanced T2DM phenotype.
Increased level of 3-hydroxy butyric acid, a major plasma
marker of ketogenesis, is shown to be increased in insulin
dependent diabetics as well as obese subjects .35 More-
over norepinephrine infusion in obese T2DM subjects has
shown increased levels of ketone bodies which correlated
well with the insulin resistant phenotype .36 Consistent with
these studies, we also observed a positive correlation be-
tween 3-hydroxy butyric acid with the T2DM phenotype (Fig-
ures 3(b),3(d),4(b),5(b)), which could indicate dysregulated
whole body fat metabolism as a result of insulin resistance.

3.3 Amino acid metabolism

Recent cross sectional studies involving participants of STR-
RIDE study, a large cross-sectional study of Asian Indian
and Chinese men and a detailed study by Wang et. al,11

have identified branched amino acids (BCAA) and related
metabolites to be significantly correlated with insulin resis-
tance and diabetes development.37,38 In our study we were
also able to identify BCAA metabolism related metabolites
(such as isoleucine and leucine) as significantly contribut-
ing to the T2DM phenotype (Figures 3(b), 3(d), 4(b), 5(b)).
Other correlations previously reported between the altered
aminoacid metabolism and T2DM phenotype, such as im-
paired vasodilatory function due to high plasma arginase ac-
tivity,39,40 loss of lean mass,41–43 and associated increase in
amino acid metabolism,44 add credence to our analysis in
identifying a positive correlation between the increased levels
of proline, histidine, lysine and threonine respectively in the
serum of T2DM subjects with the diabetic phenotype (Fig-
ures 3(b), 3(d), 4(b), 5(b)). Hyperaminoacidemia, a state of
increased plasma levels of amino acids, is also a characteris-
tic feature of the obese phenotype.30 Recent metabolic profil-

Table 3 List of metabolites with significantly altered concentrations
associated with T2DM and high BMI (Obesity) and their related
metabolic pathway

Metabolic Pathway Key metabolites
Ketone body synthesis 3-hydroxy butyric acid
Purine degradation 3,7-dimethyl uric acid
Amino acid metabolism Threonine

Lysine
Histidine
Isoleucine
Leucine
Proline
Valine
Phenylalanine
Glutamine

Glucose and Polyol pathway D-glucose
Sorbitol

CoA metabolism Pantothenic acid
Choline metabolism Choline
Inositol metabolism Myo-inositol
Adipose lipolysis Glycerol
Glycolysis Lactate
Fatty acid metabolism Saturated fatty acids

ing studies11,45 have established a causal relationship between
the plasma elevation of branched chain amino acids and aro-
matic amino acids with progressive development of insulin re-
sistance and T2DM in obese subjects. In consonance with
these observations our study also highlights a significant cor-
relation between three amino acids namely, valine, isoleucine
and phenylalanine with the high BMI phenotype (Table 2, Fig-
ure 4(a)).

3.4 Purine Degradation

Increased levels of 3,7 dimethyl uric acid observed in the
serum of T2DM subjects (Figures 3(b), 3(d), 4(b), 5(b)), might
indicate an augmented purine metabolism in this phenotype.
Previously, semi-ischemic forearm test in T2DM subjects has
revealed augmented purine metabolism, especially hypoxan-
thine degradation and associated increase in serum uric acid
levels.46 This might be an adaptive mechanism to support cel-
lular energy in the absence of adequate glucose oxidation.

3.5 CoA metabolism

One of the metabolites in our list that has not been previously
reported in T2DM serum samples is Pantothenic acid (Figures
3(b), 3(d), 4(b), 5(b)). Studies in rodent models of T2DM
have shown an impaired uptake of pantothenic acid into skele-
tal muscle as well as a parallel increase in uptake and incor-
poration into Coenzyme A in liver tissue.47,48 This has been
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articulated as an adaptive mechanism in response to the dys-
regulation in fuel oxidation, switching from muscle to liver.
A similar mechanism might be cooperating in the T2DM sub-
jects we studied, which can be further substantiated by the
increase in serum glucose as well as ketone bodies observed
in this phenotype.

3.6 Inositol metabolism

Myo-inositol is one of the key intracellular signaling
molecules that can modulate key aspects of cell and tissue
function.49 Alteration in uptake of myo-inositol by cells can
lead to its serum elevation and at the same time tissue inositol
reduction can affect signaling cascades as observed in T2DM
subjects.50 In our study we observed an increase in serum
myo-inositol levels in T2DM subjects, indicating a possible
impairment in tissue inositol signaling pathways.

3.7 Adipose Lipolysis

Large population based studies have shown that increased lev-
els of plasma glycerol correlate well with development of hy-
perglycemia and T2DM.51 One of the primary sources for this
elevated level of plasma glycerol is adipose tissue. Insulin
resistance that develops in adipose tissue during the diabetic
condition, results in altered ability of insulin signaling cascade
to store triglyceride in adipose tissue and leads to uncontrolled
release of free fatty acids (NEFA) and glycerol.52 An elevated
level of glycerol, observed in our study (Figures 3(b), 3(d),
4(b), 5(b)), correlates well with established T2DM phenotype
and indicates peripheral insulin resistance in these subjects.
Interestingly, in our study saturated fatty acids also show a
significant correlation with the High BMI category in addi-
tion to the T2DM phenotype (Table 2, Fig 4(a)). Previous
studies have clearly correlated the rise in plasma levels of sat-
urated fatty acids or NEFA, to the insulin resistant state in
adipocytes under obese and type 2 diabetic conditions,10 and
it is one metabolite that has an established causal relationship
with obesity to the T2DM phenotype.53
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Fig. 6 Coarse-grained pictorial depiction of the metabolic pathways and their inter-relationships, useful in locating key metabolites
significantly expressed in the serum of T2DM subjects.

Fig. 7 Schematic diagram of the dysregulated metabolic pathways associated with the T2DM high-BMI phenotype and significant
metabolites (identified from serum 1H NMR).
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3.8 Choline Metabolism

Choline is one of the major precursors for synthesis of
phospholipids as well as for betaine (a metabolite involved
in methylation). Elevation in choline to betaine ratio has
been positively correlated with components of metabolic syn-
drome.54 In our study an elevated level of choline was ob-
served in T2DM subjects, which might indicate an alteration
in phospholipid metabolites as well as an increased cardio-
vascular risk in T2DM subjects55 due to defective choline
metabolism.

4 Experimental

4.1 Ethics Statement

The study protocol was approved by a local Ethics Commit-
tee, Bangalore (ChairPerson, Dr Manorama Thomas) and all
subjects provided their informed consent before entering the
study.

4.2 Study Setting

The study was conducted at an out-patient stand-alone clinic
set-up specifically for screening, examining and documenting
study subjects and performing phlebotomy.

4.3 Study Population

A total of 316 subjects (South Indian Asians) were enrolled
in the study. Subject recruitment was done by a combination
of advertisement at diagnostic centers, and through the clin-
ics of general practitioners. The subjects were invited to come
to the facility of the sponsor. The first step was the consent
process. After explaining the details of the study, a compre-
hensive case history was recorded on a semi-structured, close-
ended pro forma. All subjects with Type-1 diabetes and Type-
2 diabetics on insulin therapy were excluded from the study.
Basic data on age, sex, education, occupation, smoking and
tobacco-chewing status, alcohol consumption, diet, and phys-
ical activity were collected from all the subjects. Blood and
urine samples were collected for routine laboratory assess-
ment. The clinical manager, a physician, scrutinized the re-
sults of the clinical examination as well as the biochemical
tests to determine whether they matched the inclusion and ex-
clusion criteria in order to formally enroll the subjects into the
study. For the diabetic subjects, no lifestyle or drug interven-
tions were introduced prior to obtaining the blood samples.

4.4 Anthropometric Parameters and Biochemical Tests

A detailed clinical history including significant past medical
and surgical history, personal history including dietary and

exercise habits, a detailed family history with particular em-
phasis on indicators of the metabolic syndrome, cardiovas-
cular disease, and cerebrovascular disease in first degree rel-
atives, and list of current medications were recorded. This
was followed by a complete physical examination by a physi-
cian. Baseline ECG and Chest-X ray were done within a
week of the physical examination at a designated diagnostic
centre. All subjects had an extensive biochemical examina-
tion of their blood. These tests were performed in a desig-
nated diagnostic laboratory. The blood sample was initially
screened serologically for HIV, hepatitis B, hepatitis C. If the
sample tests were negative for all the three viral antibodies,
then subsequent biochemical and hematological testing were
performed. These included liver function tests, TSH, fasting
blood glucose, post-prandial blood glucose, fasting insulin,
fasting lipid profile (triglycerides, HDL, LDL and total choles-
terol), BUN, creatinine, C-reactive protein, lipoprotein A, ho-
mocysteine, HbA1c, serum insulin, uric acid, PT and PTT. In-
sulin resistance (IR) was calculated by the homeostasis model
assessment (HOMA) using the following equation: IR = [fast-
ing insulin (µIU/mL) × fasting glucose (mmol/L)]/22.5. A
complete hemogram was obtained and routine urine exami-
nation and estimation of micro albumin/creatinine ratio was
performed. Female subjects had their FSH and LH levels esti-
mated.

4.5 NMR Sample Preparation

NMR studies were conducted by collecting blood from sub-
jects in serum separator tubes and keeping the blood for
30 min to allow for clot formation. Serum was then sepa-
rated from the blood clot and collected in a fresh clean tube,
followed by further centrifugation at 5000 rpm for 5 min.
Aliquots of serum samples were then stored under identical
conditions at -80 deg C until the NMR experiments were per-
formed. Prior to NMR analysis, serum samples were thawed
and 400 micro liters aliquots were mixed with 200 micro liters
of 0.9% saline solution. The saline solution of 0.9% NaCl
(wt/vol) was prepared by weighing 0.9g of NaCl into a 250ml
volumetric flask. To this, 10 ml of D2O (as a field lock) was
added and the volume made up to 100 ml with H2O and shaken
till the salt had completely dissolved. Each sample was then
transferred into a 5 mm high quality NMR tube. NMR ex-
periments were carried out over four consecutive days with
approximately 13-14 samples being recorded per day. Sample
coding (with no other information) was performed to allow
samples to be randomly picked for NMR experiments. The
information about the samples was collated at the end of all
the NMR experiments and samples were grouped on the basis
of diabetes and/or obesity to allow for fair random sampling.
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4.6 NMR spectroscopy

NMR spectra were recorded on a Bruker Biospin 600 Avance-
III spectrometer operating at a 1H frequency of 600.13 MHz at
300 K using a 5 mm QXI probe. Gradient shimming was per-
formed prior to signal acquisition. 1D 1H NMR spectra were
acquired using the water suppressed Car-Purcell-Meiboom-
Gill (CPMG) spin-echo pulse sequence optimized with a spin-
echo delay τ of 300µs and n = 400 and a total spin-spin re-
laxation delay (2nτ) time of 240 ms to achieve attenuation of
fast-relaxing broad signals from larger molecules. The pro-
ton spectra were collected with a 90 degree pulse width of
9.15 µs, a relaxation delay of 2 s, 16 scans, 16K data points
and a spectral width of 7211.54 Hz. Data were zero-filled by
a factor of 2 and the FIDs were multiplied by an exponen-
tial weighting function equivalent to a line broadening of 1
Hz prior to Fourier transformation. The spectra were phase
and baseline corrected and referenced to an internal methyl
peak of lactate at 1.33 ppm. For resonance assignment and
metabolite identification, two-dimensional NMR spectra were
recorded, including 1H-1H correlation spectroscopy (COSY)
and 1H-13C heteronuclear and homonuclear single quantum
coherence spectroscopy (HSQC, HMQC). 2D 1H-13C HMQC
and HSQC spectra were obtained with a spectral width of 12
ppm and 280 ppm in the proton and carbon dimensions re-
spectively, 1K data points, 32 scans, 256 t1 increments and a
recycle delay of 1.5 s. The COSY spectra were acquired with
a spectral width of 12 ppm in both dimensions, 2K data points,
32 scans and 128 t1 increments.

4.7 Pattern recognition and statistical analysis

The NMR variables used for statistical analysis were pro-
cessed using the software package Mnova from the MestRe-
C Lab (http://www.mestrec.com). Spectra were seg-
mented into 0.04 ppm chemical shift “bins” between 0.6 ppm
and 8 ppm. Spectral regions between 4.66 and 4.8 ppm were
excluded from the analysis to mitigate errors due to any resid-
ual peak from the suppressed water signal. Data were nor-
malized to a total integral of 100 to compensate for possible
differences in signal-to-noise ratios between spectra.

Univariate and multivariate statistical analy-
sis was done using the Metaboanalyst web portal
(www.metaboanalyst.ca) and MetaboAnalyst 2.0,
a web-based suite for high-throughput metabolomic data
analysis.56 The binned NMR spectra were divided into
the classes of interest for identification of significant bins.
Metaboanalyst was used to get the required Discriminant
Analysis between the four groups: T2DM-High BMI,
T2DM-Low BMI, Non-Diabetic-High BMI and and Non-
Diabetic-Low BMI. Principal component analysis (PCA)
and partial least-squares discriminant analysis (PLS-DA)
were performed on the binned data. Outliers in the data

defined as observations located outside the 95% confidence
region of the Hotelling’s T2 ellipses in the PCA score plots
were excluded from further analysis. PCA was followed
by supervised PLS-DA; PCA detects intrinsic clusters and
outliers within the data set whereas PLS-DA maximizes
the class discrimination. The PLS-DA model was validated
using the leave one out cross-validation (LOOCV) method
and the quality of the model was assessed based on R2 and
Q2 scores, representing the predictive capability and the
explained variance respectively. Permutation analysis was
further performed on the best model using 1000 permutation
tests with a threshold p value of < 0.01 indicating that none
of the results are better than the original one. Significant
metabolites were ranked according to their variable influence
on the projection (VIP) score, which is a weighted sum of
squares of the PLS weights, accounting for the Y variance
in each dimension. VIP analysis displays the metabolites
ordered according to their influence on group separation, with
metabolites arranged according to their VIP values, and the
y-axis denoting their relative intensities. After the significant
metabolites were identified from the PLS-DA loadings plots,
the data for two-group analysis were analyzed using unpaired
t-tests (for comparison of the means of two samples with
equal variances) to determine the relative intensities of the
significant metabolites that contribute to group separation.
The data were presented as mean ± SD and a p-value
< 0.05 was considered to be statistically significant. In order
to determine diabetes and BMI correlations, Analysis of
Variance (ANOVA) was performed. ANOVA can determine
whether the comparison between multi-group analysis is
significant or not. Input variables for ANOVA was based
on VIP scores, where VIP > 1 indicated contribution to the
model. This was followed by post-hoc analysis in order to
perform all pairwise comparisons between group means by
least significant difference (LSD) t-test.

4.8 Metabolite identification

The significant bins were identified and the corresponding
peak lists and intensities were obtained from TopSpin2.0
(Bruker Biospin). The peak and intensities list were input to
MetaboHunter,57 for metabolite identification. MetaboHunter
is a web server application that can be used for automatic as-
signment of 1H-NMR spectra and identification of metabolites
based on three different search methods and with possibility of
peak drift in a user defined spectral range. The results of the
search were matched with the compound libraries (HMDB)
for samples in the pH range of 6-8. For every identified
metabolite, its corresponding 2D NMR experimental (HSQC,
HMQC and COSY) plot and peak/intensity value was cross-
validated by visual inspection with the reference 2D lists from
HMDB.
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4.9 Metabolic Pathway Mapping

The identified metabolites were mapped to their respective
pathways using the Connexios Network Biology Platform.58

The Connexios Network Biology Platform is an integrated
repository of molecular events spanning numerous cellular
pathways across core metabolic tissues.

5 Conclusions

Using our Connexios Network Knowledge Base and literature
evidence, we linked altered metabolites in the serum of T2DM
obese subjects (identified using 1H NMR), to key cellular pro-
cesses which are dysregulated in diabetic conditions. We hy-
pothesize a correlation between these 19 significant metabo-
lites and the associated metabolic pathways with cardiovascu-
lar risk and complications underlying the diabetic condition.
Increased levels of valine, isoleucine, lactate and saturated
fatty acids were observed in the Non-Diabetic-High BMI cat-
egory, which represent alterations in fuel oxidation that cor-
relate well with vascular dysfunction in diabetic phenotype
and could indicate an early dysregulation in amino acid, glu-
cose and lipid metabolic pathways. Our results match well
with previous studies2 which have also noted increased lev-
els of branched chain amino acids and pantothenic acid in
diabetic subjects. Since our observations correlate well with
previously reported metabolic alterations in T2DM subjects,
we conclude that our study provides a robust metabolic fin-
gerprinting of diabetic phenotype independent of ethnicity.
NMR-based metabolomics of serum in conjunction with mul-
tivariate statistics is hence a viable approach to understand
the underlying dysregulation of metabolic pathways associ-
ated with both diabetes and obesity. Further molecular studies
are required to provide a detailed mechanistic basis for these
observed dysregulations.
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