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Graphical abstract 

 

 

 

The highlighting the novelty of the work: 

We developed novel method to predict human-HCV protein-protein interaction that is the most 

comprehensive study of this type. 
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Predicting of protein–protein interactions 

between human and hepatitis C virus via an 

ensemble learning method 

 

Abbasali Emamjomeh, a Bahram Goliaei,*a Javad Zahiriba and Reza Ebrahim-
pourc, 

An estimated 170 million people, approximately 3% of the world population, are chronically infected 

with the Hepatitis C virus (HCV). More than 350,000 deaths are reported annually, which are caused by 

HCV. HCV, similar to a variety of viruses, causes disease in humans by altering protein– protein  

interactions within the host cells. Experimental approaches for the detection of host–virus PPIs have 

many inherent limitations. Computational approaches to predict  these interactions are therefore of  

significant importance. While many studies have been developed to predict intra-species PPIs in the last  

deca de, predictions of inter-species PPIs such as human- HCV PPIs are rare. In this study, we developed 

an ensemble learning method to predict PPIs between human and HCV. Our model utilises four well-

established diverse learners as base classifiers including random forest (RF), Naïve Bayes ( NB), support  

vector machine (SVM) and multila yer perceptron (ML P). In addition, an ML P was used as a meta-learner  

to com bine base learners’ predictions to produ ce the final prediction. To encode hu man and HC V 

proteins as feature vectors, we used six different descriptors as follows: a mino acid com position (ACC), 

pseudo amino acid composition (PAC), evolutionary information feature, network centrality measures, 

tissue information and post-translational modification information. To assess the prediction power of  

the proposed method, we assembled a benchmark dataset composed of confident positive and negative 

PPIs. In a 10-fold cross-validation experiment, our prediction method achieved an accuracy and a 

specificity as high as 83% and 94%, respectively. Further, in an independent test set the proposed 

method achieved an accuracy of 84% and a specificity of 92%. When com pared with the existing 

method, our method showed a better performance. These results revealed that our method is suitable  

for performing PPI prediction in a host– pathogen context. 

Introduction 

Hepatitis C virus (HCV), an enveloped positive stranded RNA 

virus, is a major cause of liver disease in chronically infected 

individuals.1 An estimated 170 million people are chronically 

infected with the HCV and more than one million new infection 

cases and about 350,000 deaths are reported annually.2-5 Virus 

proteins manipulate host cell machinery by competing with host 

proteins in the host PPIs.6-8 Considering the limitations of 

experimental approaches for detection of PPIs in the host–

pathogen context,9,10 computational methods for predicting 

these interactions are of significant importance. Computational 

PPI prediction approaches provide opportunities for identifying 

specific targets for further experimental work,1 especially for 

drug design and developing more effective treatments.11-13  

While many studies have been performed on intra-species PPI 

prediction in the last decade,14 predictions of inter-species PPI 

are rare,1 and are especially so for host–pathogen PPIs like 

human-HCV. Existing methods for host–pathogen PPI 

prediction can be roughly categorised into four different 

divisions:13 homology-based methods;15,16 methods based on 

structural information;9,17 using sequence information6,18 and 

machine learning-based methods.19-21 

In this study, we propose an ensemble learning method, which 

exploits six different features to predict PPIs between humans 

and HCV, including: 1, amino acid composition (ACC); 2, 

pseudo amino acid composition (PAC); 3, evolutionary 

information feature; 4, network centrality measures; 5, tissue 

information feature and 6, post-translational modification 
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information. Our method achieved an accuracy of 0.83 in a 

cross validation analysis and 0.84 in an independent test set. 

Material and methods 

BENCHMARK DATASET 

To assess the proposed method, two datasets were constructed: 

Positive dataset and negative dataset. 

POSITIVE INTERAC TIONS 

For constructing positive human-HCV PPIs, we extracted all 

hepatitis C virus interactions from the IntAct database.22 Then, 

interactions between HCV and other organisms except human 

were removed. Finally, those interactions that annotated as 

‘physical association’ or ‘direct interaction’ were considered as 

positive interaction set (PS). PS contained 657 interactions. 

NEGATIVE INTER ACTIONS 

Selecting appropriate negative PPIs is very challenging in PPI 

prediction problem.23,24 To select confident negative PPIs, we 

paired all human proteins with all HCV proteins that had been 

examined in a specific experiment (according to PubMed IDs 

of publications), and then all protein pairs that were not 

reported as an interaction in the PS were considered as negative 

interactions (Figure 1).  

 
Figure 1: Schematic view of constructing positive and negative interactions.  

Obtained negative interactions of all the experiments 

constructed the negative interaction set (NS); the total number 

of negative interactions was 2910. Last, PS and NS constructed 

our benchmark dataset. 

ENCODING PROTEINS AS FEATURE VECTORS 

We used different features to encode human and HCV proteins 

as feature vectors. These features included: amino acid 

composition (ACC), pseudo amino acid composition (PAC), 

evolutionary information feature, network centrality feature, 

tissue information feature and post-translational modification 

feature. These features have been described below. 

AMINO ACID COMPOSITION 

For computing amino acid composition (ACC), we clustered 

twenty naïve amino acids into eight clusters, C1–C8, regarding 

544 physicochemical and biochemical properties of amino 

acids that exist in the AAindex database.25 So, each protein was 

coded as an 8-dimentional feature vector. The details of the 

clustering procedure described below. 

Firstly, to prevent outweighing indices with larger magnitude 

over indices with smaller magnitude, the values of each index 

were standardised according to the mean and variance of the 

index. Then, k-means method was used as the clustering 

algorithm by varying the number of clusters from three to nine. 

To find an appropriate clustering, the k-means was run 1000 

times for each cluster number, and the Dunn index26 was used 

to measure the validity of the obtained clustering.  

Suppose C = {c1, c2,…cN} shows a clustering that consists of 

c1…cN as clusters, then the Dunn index for this clustering is 

computed as follows:  

 

Where, dist(ci, cj) is the distance between clusters ci and cj, and 

diam(cl) is diameter of the cluster cl:  
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According to the values of the Dunn index, the best clustering 

is as follow: 

C1= {A, E}; C2={R, Q, K, H}; C3= {N, D, S, T}; C4= 

{G}; C5= {P}; C6= {I, L, M, F, V}; C7= {W, Y}; C8= 

{C} 

PSEUDO AMINO ACID COMPOSITION 

The concept of pseudo amino acid composition (PAC) was 

originally introduced in order to predict protein subcellular 

localisation and membrane protein type.27 Despite the ACC, 

PAC uses the sequence-order information (for precise 

definition of what PAC refers to).28 

The PAC has been used in various protein annotation 

predictions such as post-translational modification,29 secondary 

structure prediction,30 protein folding rates prediction,31 and 

identifying bacterial secreted proteins.32 We used the PseAAC 

webserver33 to compute two types of PAC features for each 

protein.  
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We used recently proposed evolutionary features by Zahiri et 

al.34 that have been extracted from Position-Specific Scoring 

Matrices (PSSM) and have been successfully exploited for 

human PPI prediction. The PSSM matrix is composed of L × 20 

entries, where L is the length of the protein of interest. The 

rows and columns of the matrix are indexed by the protein 

residues and the 20 naive amino acids, respectively, and entries 

of the matrix represent the log odds scores of the occurrences of 

different amino acids at the different positions of the protein 

sequence.  

To compute PSSMs, we used the Position Specific Iterated 

BLAST (PSI-BLAST) tool,35 with three iterations and the e-

value of 0.0001, against the NCBI non-redundant dataset on a 

local machine for human proteins. 

NETWORK CENTRALITY FEATURE 

It has been shown that centrality of host proteins are important 

for being targeted by pathogen proteins.1 In this study, different 

centrality measures for human proteins have been computed 

using NetworkAnalyzer,36 which is a cytoscape37 plugin. We 

used the BioGrid38 database to construct a human protein–

protein interaction network (PPIN) for computing centrality 

measures. Topological measures that were computed for each 

protein, denoted by P, in human PPIN are briefly described 

below. 

Degree: the degree (or connectivity) of a protein is the number 

of its interacting partners. Neighborhood connectivity: the 

average degree (discarding self-interactions) of all neighbours 

of P. Average shortest path length: the average length of all 

shortest paths from P to any other protein. Stress: the number of 

shortest paths between all protein pairs in the human PPIN that 

pass through a particular protein. This centrality represents the 

workload the protein carries in a graph.39 Eccentricity: the 

greatest distance between P and any other protein in the human 

PPIN. Closeness: the reciprocal of the total distance from P to 

all the other proteins in the human PPIN. Betweenness: this 

centrality is a semi-normalised version of the stress centrality39 

and addresses the limitations of some classical centralities.40 

Betweenness for a protein P is the ratio of the number of 

shortest paths passing through P to the number of all shortest 

paths between all protein pairs in the human PPIN. Radiality: 

Computed by subtracting the average shortest path length of P 

from the length of the longest path of the connected component, 

plus 1. Finally, for normalisation the radiality of each protein is 

divided by the length of the longest path of the connected 

component. Clustering coefficient: the ratio of the number of 

edges between the neighbours of P to the number of edges that 

could possibly exist among them. The clustering coefficient 

measures the density in the local region of a protein. 

In addition to the above-mentioned topological features, all 

computed for human proteins, we also considered the number 

of interactions for each HCV protein as a new feature. The 

numbers of interactions for HCV proteins were extracted from 

the IntAct database using uniprot IDs of proteins. 

TISSUE INFORMATION FEATURE 

Considering the importance of tissue information in human-

pathogens PPI,41 we used 582 different tissue terms of human 

proteins that were mentioned in the HPRD database.42 Each 

human protein was coded as a 582-dimentional binary feature 

vector; each element of this vector shows whether the protein 

expressed is in a specific tissue or not. 

POST-TR ANSLATIONAL MODIFICATION 

There is increasing evidence that shows post-translational 

modifications (PTM) are crucial for the control of protein 

functions and specially affect the PPIs.43,44 Considering the 

importance of PTMs, we used 31 PTM types (e.g. 

deacetylation, phosphorylation, glycosylation and others) that 

were mentioned in the HPRD database to represent human 

proteins. Each 20 amino acids may undergo 31 PTM types, so 

each human protein was represented as a 620-length binary 

feature vector; each element of this vector, for a protein of 

interest, shows whether a specific amino acid is modified with a 

specific PTM type or not. 

PREDICTION ALGORITHM  

It is shown that in challenging prediction problems, combining 

diverse classifiers (ensemble learning) can lead to better 

performance.45,46 In this study, we used an ensemble learning 

method to predict human-HCV PPIs. Our base classifiers are 

random forest (RF), Naïve Bayes (NB), support vector machine 

(SVM) and multilayer perceptron (MLP); these classifiers had 

successful applications in similar problems.13,14 Here, we used 

stacking,47 also called stacked generalisation, to combine base 

classifiers in order to predict human-HCV PPIs (Figure 2).  

 
Figure 2: The ensemble learning method that was used for predicting protein–

protein interactions between human and Hepatitis C virus. A stacking method 

was used to combine four diverse base classifiers including: random forest (RF), 

Naïve Bayes (NB), support vector machine (SVM) and multilayer perceptron 

(MLP). Input feature vector contains six different feature types for each protein 

pair: amino acid composition (ACC), pseudo amino acid composition (PAC), 

evolutionary information (EVO), network centrality measures (CNT), tissue 

information feature (TSU) and post-translational modification information 

(PTM). 

In stacking, the output of the base classifiers was considered as 

input of a meta-learner. The meta-learner tries to learn how best 

to combine the base classifiers’ outputs to produce the final 

output. Herein, an MLP was used as meta-learner. 

PERFORMANCE ASSESSMENT MEASURES 

After construction of a benchmark dataset, the prediction 

performance of human-HCV PPI can be evaluated in terms of 
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different measures based on four basic parameters: TP (True 

Positive) that denotes the number of interacting proteins 

correctly predicted, TN (True Negative) that is the number of 

non-interacting proteins correctly predicted, FP (False Positive) 

that denotes the number of non-interacting proteins incorrectly 

predicted as interacting proteins and FN (False Negative) that is 

the number of interacting proteins incorrectly predicted as non-

interacting proteins. Having these basic parameters, we used 

precision, recall, accuracy and area under the ROC curve 

(AUC) to assess the performance of the proposed model. Recall 

is a fraction of real interactions correctly identified by the 

model; precision is a fraction of interaction predictions that are 

correct and the accuracy is the proportion of correct predictions. 

The area under the ROC curve, which plots sensitivity vs. one 

minus the specificity, is an important measure of prediction 

performance.  

FNTP

TP
ySensitivit

+
=   .4

 

FPTN

TN
y  Specificit

+
=   .5  

FNTNFPTP

TNTP
Accuracy 

+++

+
=   .6  

Results and discussion 

To estimate the performance of the proposed prediction 

method, we used a 10-fold cross validation and an independent 

test. For cross-validation analysis, the PPIs that reported after 

2012 have been excluded from the benchmark dataset to be 

used as an independent test set. 

Cross-validation analysis 

In the 10-fold cross validation, the dataset is randomly 

partitioned into 10 equal sets, out of which nine sets are used 

for training and the remaining one for testing. The subsets were 

rotated 10 times, such that each subset was used for both 

training and testing, and each protein pair was used for testing 

exactly once. The final prediction result is the average of the 10 

testing sets. Table 1 shows the performance of our method in 

predicting human-HCV PPIs: sensitivity, specificity and 

accuracy are 0.79, 0.94 and 0.83, respectively. 

Independent test set 

We used those PPIs from the benchmark dataset that reported 

after 2012 as an independent test set. This dataset contained 

139 interacting and 555 non-interacting protein pairs.  

The performance of our model in the 10-fold cross-validation 

procedure is shown in Table 1.  

As we can see, the proposed method achieved a sensitivity of 

0.73, a specificity of 0.94 and an accuracy of 0.84 in the 

independent test set. 

 

Table 1: Prediction performance of the proposed method in 10-fold cross 

validation and independent test set and details about used data sets. 
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Cross-validation 0.79 0.94 0.83 518 2355 

Independent test 0.73 0.92 0.84 139 555 

 

Comparison with the current state-of-the-art methods 

Computational prediction of PPIs between human and HCV is a 

new problem in bioinformatics and computational biology. 

Recently, Cui et al.21 proposed a prediction method using an 

SVM model to address the problem. Cui et al. used three 

different pairs of train-test set to evaluate the performance of 

the method. 

 To compare with Cui’s method, we also run our method using 

their train-test sets. As shown in Table 2, our method 

outperformed Cui’s method considering all performance 

measures. 

Table 2: Comparison of our method with the method previously proposed
21

 

for predicting protein–protein interaction between human Hepatitis C virus. 

 Sensitivity Specificity Accuracy 

Our method 0.84 0.87 0.83 

Cui’s method 0.78 0.85 0.81 

 

Table 3: Feature importance: to compute the importance of the different 

features, we removed each feature type in turn and then computed the 

accuracy of the proposed prediction model. The highest loss of accuracy 

shows the most important feature. 

Feature 
Accuracy of our method 

when removing the feature 
Loss of accuracy 

ACC 0.69 0.14 

PAC 0.76 0.07 

EVO 0.74 0.09 

CNT 0.75 0.08 

TSU 0.78 0.05 

PTM 0.72 0.11 

Feature importance 

In this study, we used heterogeneous descriptors for proteins to 

predict PPIs between human and HCV. To compute the 

contribution of the different descriptors in prediction, we 

removed each feature type in turn and then computed the 

accuracy of the proposed prediction model (Table 3); the higher 

the loss of accuracy, the more important the feature. 
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Accordingly, we can say amino acid composition and post-

translational modification are the most important features in 

predicting PPIs between human and HCV. 

Table 4: Enriched pathways and GO (Gene Ontology) terms in the set of 

interacting human proteins with HCV (a term was considered significantly 

enriched if the Benjamini corrected P-value was less than 0.005). 

 Type of data              Enriched feature  

Benjamini 

corrected 

P-value 

G
O

 4
8
 

Biological 

process  

multi-organism process 

(GO:0051704) 
1.3E-12 

cellular component 

organization (GO:0016043) 
2.5E-08 

cellular process (GO:0009987) 7.2E-08 

biological regulation 

(GO:0065007) 
3.5E-06 

death (GO:0016265) 1.7E-05 

biological adhesion 

(GO:0022610) 
7.9E-05 

Molecular 

function  

binding (GO:0005488) 1.2E-10 

structural molecule activity 

(GO:0005198) 
1.3E-03 

enzyme regulator activity 

(GO:0030234) 
1.2E-03 

Cellular 

component  

organelle part (GO:0044422) 3.6E-07 

organelle (GO:0043226) 2.6E-07 

extracellular region part 

(GO:0044421) 
1.9E-06 

macromolecular complex 

(GO:0032991) 
3.7E-06 

membrane-enclosed lumen 

(GO:0031974) 
2.6E-04 

P
a
th

w
a
y

 

KEGG 

pathway 
49

  

Focal adhesion (hsa04510) 4.5E-05 

Pathways in cancer (hsa05200) 3.7E-03 

REACTOME 

pathway 
50

  

Hemostasis (REACT_604) 2.3E-04 

Integrin cell surface 

interactions (REACT_13552) 
3.1E-04 

Apoptosis (REACT_578) 3.3E-03 

Individual classifier’s contribution to the whole ensemble 

The most accurate individual classifiers are not necessarily the 

most important contributors to the ensemble performance.51 

Therefore, to evaluate each individual classifier’s contribution 

to the whole ensemble, we removed each classifier in turn and 

then computed the accuracy of the ensemble model. The loss of 

accuracy was 0.09, 0.07, 0.04 and 0.03 for MLP, RF, SVM and 

NB, respectively. According to the results, the individual 

classifiers which made most contribution to the ensemble, in 

order, are: MLP, RF, SVM and NB. 

Enrichment analysis 

We used “Database for Annotation, Visualization and 

Integrated Discovery (DAVID)”52 for enrichment analysis in 

the set of interacting human proteins with HCV. Table 4 shows 

Gene Ontology (GO) terms and pathways that significantly 

enriched (a term was considered significantly enriched if the 

Benjamini corrected P-value53 was less than 0.005). The 

analysis highlights GO terms and pathways, such “as binding 

(GO:0005488)”; “extracellular region part (GO:0044421)” and 

“Pathways in cancer (hsa05200)”, which have been reported 

previously as important features of the proteins that interact 

with the HCV.8,54 Furthermore, table 5 shows the enriched 

domains in the set of predicted interacting human proteins with 

HCV. Some of the enriched domains, such as “Spectrin repeat”, 

have been reported in experimental studies.8 In addition, the 

results highlight some new features of human proteins that 

significantly enriched and can be used in the future 

experimental and computational studies [Supplementary 

file.xlsx]. 

Table 5: Enriched domains in the set of interacting human proteins with HCV 

(a term was considered significantly enriched if the Benjamini corrected P-

value was less than 0.005). 

Database 

name 
                 Enriched feature  

Benjamini 

corrected 

P-value 

S
M

A
R

T
 5

5
 

EGF_CA (SM00179) 
3.1E-11 

EGF (SM00181) 
1.6E-08 

SH3 (SM00326) 
9.1E-04 

SPEC (SM00150) 
2.1E-03 

B
L

O
C

K
S

5
6
 

EGF-like calcium-binding (IPB001881) 
1.4E-04 

Spectrin repeat (IPB002017) 
9.0E-04 

Aspartic acid and asparagine hydroxylation site 

(IPB000152) 
1.9E-03 

P
F

A
M

5
7
 

EGF_CA (PF07645) 
1.1E-08 

EGF (PF00008) 
1.9E-07 

SH3_1 (PF00018) 
8.6E-04 

Intermediate filament head (PF04732) 
2.4E-03 

Spectrin (PF00435) 
3.9E-03 

Filament_head (PF04732) 
3.6E-03 

P
R

O
S

IT
E

5
8
 

EGF_CA (PS01187) 2.6E-11 

Calcium-binding EGF-like domain signature 

(PS01187) 
1.5E-11 

ASX_HYDROXYL (PS00010) 1.1E-11 

Aspartic acid and asparagine hydroxylation site 

(PS00010) 
2.1E-11 

EGF_1 (PS00022) 3.3E-11 

EGF_2 (PS01186) 3.3E-11 

EGF-like domain signature 2 (PS01186) 9.7E-10 

EGF-like domain profile (PS50026) 1.4E-09 

EGF-like domain signature 1 (PS00022) 4.5E-08 

Src homology 3 (SH3) domain profile (PS50002) 5.6E-04 

Conclusions 

In this study, we have proposed an ensemble learning method 

in order to predict PPI between human and hepatitis C virus 
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(HCV). Six different descriptors include: amino acid 

composition, pseudo amino acid composition, evolutionary 

information, network centrality measures, tissue information 

feature and post-translational modification information have 

been used to encode protein pairs. Four diverse classifiers: 

random forest, Naïve Bayes, support vector machine (SVM), 

and multilayer perceptron (MLP) are used as base classifiers. 

An MLP was used as meta-learner to combine the base 

classifiers’ predictions in order to produce final output. The 

results show the satisfactory prediction performance of our 

method, the method achieved an accuracy of 0.83, a specificity 

of 0.94, and a sensitivity of 0.79 in a 10-fold cross validation 

analysis on our benchmark dataset. In addition, in an 

independent test set achieved an accuracy of 0.84, a specificity 

of 0.92 and a sensitivity of 0.73. The results revealed the better 

performance of the proposed method in comparison with the 

current state-of-the-art method. According to our analysis, 

amino acid composition and post-translational modification 

contribute most in predicting PPIs between human and HCV. 

The proposed method can be extended to predict other host–

pathogen PPIs. 
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