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Abstract: 

The bacteriophage virion proteins play extremely important roles in the fate of host 

bacterial cells. Accurate identification of bacteriophage virion proteins is very 

important for understanding their functions and clarifying the lysis mechanism of 

bacterial cells. In this study, a new sequence-based method was developed to identify 

phage virion proteins. In the new method, the protein sequences were initially 

formulated by the g-gap dipeptide compositions. Subsequently, the analysis of 

variance (ANOVA) with incremental feature selection (IFS) was used to search for 

the optimal feature set. It was observed that, in jackknife cross-validation, the optimal 

feature set including 160 optimized features can produce the maximum accuracy of 

85.02%. By performing feature analysis, we found that the correlation between two 

amino acids with one gap was more important than other correlations for phage virion 

protein prediction and that some of the 1-gap dipeptides were important and mainly 

contributed to the virion protein prediction. This analysis will provide novel insights 

into the function of phage virion proteins. On the basis of the proposed method, an 

online web-server, PVPred, was established and can be freely accessed from the 

website (http://lin.uestc.edu.cn/server/PVPred). We believe that the PVPred will 

become a powerful tool to study phage virion proteins and to guide the related 

experimental validations. 

Keywords: phage virion protein; feature selection; g-gap dipeptide; feature analysis 
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1. Introduction 

The bacteriophage, also called phage, is a group of viruses that can infect 

bacteria and be replicated in bacteria. They have been the essential tools in the 

development of bacterial genetics for the construction of genetic manipulation tools 
1
. 

Phage virion is a complete fully infectious extracellular phage virus particle which 

mainly consists of two or three parts: genetic material, a protein coat and an envelope 

for some phages 
2
. The genetic material is either DNA or RNA and is protected by the 

protein coat. In some case, the lipids envelope surrounding the protein coat can 

protect the phages when they are outside the cells. After the virion binds to the surface 

of a specific host bacteria cell, its DNA or RNA is injected into the host cell. In the 

lytic state, the virions are replicated with eventual break of the host cell. Subsequently, 

the offspring virions spread and infect other host cells. 

Phage proteins are of great significance to understand the mechanism of 

interaction between the phage and its host bacteria and to develop new antibacterial 

drugs. Due to the relatively limited experimental data, it is difficult to determine the 

function of phage virion proteins from sequence information 
3
. Machine learning 

approaches have been proved to be quite powerful and efficient in dealing with 

various biological problems. Thus, it may be feasible to predict the functions of phage 

proteins with machine learning approaches. 

Actually, Segall et al. 
3
 have developed an Artificial Neural Network 

(ANN)-based method to classify viral structural proteins by using amino acid 

composition and protein isoelectric points. Recently, our group proposed a Naïve 

Bayes classifier with feature selection to identify phage virion proteins by using 

primary sequence information 
4
. Although the aforementioned methods could yield 

encouraging results, the accuracies of these methods were still far from satisfactory. 

Furthermore, no web-server was provided for these methods. Hence, their usage is 

quite limited, particularly for the broad experimental scientists. 

The present study was devoted to enhance the prediction performance and 

quality for identifying the phage virion proteins. Firstly, we introduced a universal 

g-gap dipeptide composition to formulate the protein samples. Secondly, a powerful 

feature selection technique, analysis of various (ANOVA), was proposed to optimize 

the features. Finally, the support vector machine (SVM) was used to perform virion 

protein prediction. The jackknife cross-validation was performed to objectively 

evaluate the anticipated accuracy of the predictor. Prediction results demonstrate that 
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the proposed method is reliable. To deeply understand the composition of phage 

virion proteins, the feature analysis was performed. For the convenience of most 

experimental scientists, a user-friendly web server was constructed based on the 

proposed method. 

 

2. Materials and methods 

 

2.1. Benchmark Dataset 

The original positive and negative dataset used in this study was obtained from 

the Universal Protein Resource (Uniprot) 
5
. The following steps were performed to 

guarantee a high quality dataset. Firstly, the phage proteins whose subcellular location 

is virion were regarded as positive samples (virion proteins), and the phage proteins 

whose subcellular location is not virion were considered as negative samples 

(non-virion proteins). Secondly, the protein sequences which are fragments of other 

proteins were dislodged. Thirdly, if the protein sequences contain nonstandard letters, 

such as ‘B’, ‘U’, ‘X’ or ‘Z’, these proteins were excluded because their meanings are 

ambiguous. As a result, a total of 121 phage virion and 231 phage non-virion proteins 

were obtained. 

Generally, if a predictor is trained and tested by a benchmark dataset with high 

homologous sequences, misleading results with overestimated accuracy will be 

obtained 
6, 7

. To get rid of redundancy and avoid bias, the CD-HIT software 
8
 was used. 

Thus, a cutoff threshold of 40% was imposed to exclude those proteins that are no less 

than 40% sequence identity to any other in a same subset 
9
. Finally, we obtained a 

strict and objective benchmark dataset as formulated by 

virion non-virion= US S S                                               (1) 

where the virionS  contains 99 phage virion proteins and the non-virionS  contains 208 

phage non-virion proteins. The detailed sequences can be freely downloaded from 

http://lin.uestc.edu.cn/server/PVP/data. 

 

2.2. The g-gap dipeptide composition 

In the development of a sequence-based predictor of phage virion proteins, it is 

important to formulate its sequence with an effective mathematical expression that 

can truly reflect the correlation between the intrinsic features of the sequence and the 
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protein types to be predicted. The most straightforward formulation method is to 

formulate the sample of protein P with L residues with its entire amino acid sequence 

as: 

P=R1R2R3R4…RL                                                (2) 

where R1 represents the 1st residue of the protein P, R2 represents the 2nd residue of 

the protein P, and so forth. 

Another common strategy is to formulate protein sequences with amino acid 

composition (AAC). To obtain the sequence-order information, the simple AAC was 

replaced by the adjoining dipeptide composition to represent the sample of a protein 
4, 

10, 11
. However, the adjoining dipeptide composition can only reflect the correlation 

between two adjoining amino acids. In fact, two amino acids with the interval of 

g-gap residues are maybe adjacent in three dimension space. Especially, in some 

regular secondary structures, such as alpha helices and beta-structural form, two 

non-adjoining residues are connected by hydrogen bonds. To search for the important 

correlation, we proposed a universal dipeptide composition, namely, g-gap dipeptide 

composition which was extended from the adjoining dipeptide composition 
12, 13

. Thus, 

protein P can be formulated by 

T

1 2 400[ , , , ]
g g g g

f f f fξ=P L L                                           (3) 

where the 
g

fξ  is the frequency of the ξ-th (ξ=1, 2, …, 400) g-gap dipeptide and 

calculated by 

400

1
/ / ( 1)

g g g g
f n n n L gξ ξ ξ ξξ =

= = − −∑                                     (4) 

where 
g

nξ  denotes the occurrence number of the ξ-th g-gap dipeptide and L is the 

length of the protein P. g=0 is the adjoining dipeptide and indicates the correlation of 

two proximate residues; g =1 describes the correlation between two residues with one 

residue interval; g =2 indicates the correlation between two residues with the interval 

of two residues, and so forth. 

 

2.3. The analysis of variance (ANOVA) 

For economizing run-time and computational resource, a wise strategy is to use 

algorithm to find the optimal features and eventually improve the prediction quality. 

In the present study, we performed feature selection through the analysis of variance 

(ANOVA). ANOVA is a very simple and powerful method to test the difference in 
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means between groups. Due to the following advantages, the ANOVA has been used 

for feature selection 
6, 13, 14

. Firstly, it is robust to most violations of its assumptions. 

Secondly, it is more intuitive for us to analyze the interaction of the two variables. 

Thirdly, it can be used effectively even when the number of observations is different 

in each group. Finally, it is easily generalized to more than two groups without 

increasing the Type 1 error. 

According to the principle of ANOVA 
6, 13, 14

, the score (F) of the ξ-th g-gap 

dipeptide in benchmark dataset can be defined by 

2

2

( )
( )

( )

B

W

s
F

s

ξ
ξ

ξ
=                                                    (5) 

where 2 ( )Bs λ  and 2 ( )Ws λ  denote the sample variance between groups (also called 

Means Square Between, MSB) and sample variance within groups (also called Mean 

Square Within, MSW), respectively, and are calculated by 

2

1 1 12

1

1

( , ) ( , )
( ) /

i im K mg g

K j i j

B i BKi
i ii

f i j f i j
s m df

m m

ξ ξ
ξ = = =

=

=

 
 = −
 
 

∑ ∑ ∑
∑

∑
                       (6) 

2

12

1 1

( , )
( ) ( , ) /

i

i

m g

K m jg

W Wi j
i

f i j
s f i j df

m

ξ

ξξ =

= =

 
 = −
 
 

∑
∑ ∑                            (7) 

where 1Bdf K= −  and Wdf M K= −  are the degrees of freedom for MSB and MSW, 

respectively. K and M represent the number of groups (here K=2) and total number of 

samples (here M=307), respectively. ( , )
g

f i jξ  denotes the frequency of the ξ-th 

g-gap dipeptide of the j-th sample in the i-th group; mi denotes the number of samples 

in the i-th group (here m1=99, m2=208). 

Obviously, a large value of F(ξ) means that the ξ-th feature has a better 

discriminative capability. Hence, all features can be ranked according to their F values. 

Subsequently, the incremental feature selection (IFS) 
15, 16

 was used to determine the 

optimal number of features as described below. Firstly, the feature subset started from 

a feature with the highest F value in the ranked feature set. Secondly, a new feature 

subset was produced when the feature with the second highest F value was added. 

This process was repeated from the higher F to the lower F value until all candidate 

features were added. Thus, for any gap g, the 400 feature subsets will be produced. 

The ε-th feature subset is composed of ε ranked g-gap dipeptides and can be 
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expressed as: 

T

1 2, , ,
g g g g

f f fε ε =  P L     1 400  ε≤ ≤ , 0g ≥                      (8) 

For each of the 400 feature sets, the prediction accuracy of the proposed method was 

examined on the benchmark dataset by using jackknife cross-validation. Then we 

obtained an IFS curve in a 2D Cartesian coordinate system with index ε (the number 

of features) as its abscissa (or X-coordinate) and the overall accuracy as its ordinate 

(or Y-coordinate). If g varies from 0 to gθ, there are gθ+1 IFS curves. The peak (the 

maximum accuracy) can be observed in these curves. Then the optimal feature subset 

with parameters ε0 and gφ can be determined and expressed as: 

0 0

T

1 2 0, , ,            (1 400;   0  )
g g g g

f f f g gφ φ φ φ

ε ε φ θε = ≤ ≤ ≤ ≤ P L               (9) 

where ε0 is the number of optimal gφ-gap dipeptides. 

Based on above processes, the high-dimensional data will be projected into a 

low-dimensional space. The final classifier model was built based on the optimal 

feature subset. 

 

2.4. Support vector machine (SVM) 

SVM has been widely used in bioinformatics 
17-27

 and was adopted as the 

classification algorithm in this work. Its basic principle is to transform the input 

vector into a high-dimension Hilbert space and seek a separating hyperplane with the 

maximal margin in this space by using the decision function: 

)),(sgn()(
1

∑
=

→→→

+⋅=
N

i

iii bXXKyXf α                                    (10) 

where αi is Lagrange multipliers; b is the offset; 
i

X
→

is the i-th training vector; yi 

represents the type of the i-th training vector;  ),(
→→

iXXK  is a kernel function which 

defines an inner product in a high dimensional feature space; sgn is sign function. The 

radial basis kernel function (RBF) )||||exp(),( 2
→→→→

−−= jiji XXXXK γ  was used in the 

current work due to its effectiveness and speed in nonlinear classification process. The 

software toolbox (LibSVM) for implementing SVM can be freely downloaded from 

http://www.csie.ntu.edu.tw/~cjlin/libsvm. A grid search method was used to optimize 

the regularization parameter C and kernel parameter γ through 5-fold cross-validation. 

The search spaces for C and γ are [2
15

, 2
-5

] and [2
-5

, 2
-15

] with the steps of 2
-1

 and 2, 
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respectively. The probability estimates from LibSVM were calculated by the 

Bradley-Terry model 
28

. The guide on how to obtain probability can be obtained from 

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/. 

 

2.5. Performance Evaluation 

In statistical prediction, three cross-validation methods, namely independent 

dataset test, sub-sampling (e.g., 2, 5 or 10-fold cross-validation) test, and jackknife 

test are often used to evaluate the performance of the predicted methods in practical 

application 
13, 14

. Among the three test methods, as elucidated in 
9
 and demonstrated 

by Eq.50 of 
29

, the jackknife test was deemed as the most objective one that can 

always yield a unique result for a given benchmark dataset. Therefore, the jackknife 

test has been increasingly and widely adopted by investigators to test the power of 

various prediction methods (see, e.g. 
30-44

). Thus, the jackknife cross-validation was 

used in this study to examine the anticipated success rates of the predictor. 

Furthermore, to reduce the computational time, the 5-fold cross-validation was used 

to select the parameters C and γ in SVM. 

To provide a simple method to measure the prediction quality, the following 

three metrics: sensitivity (Sn), specificity (Sp) and accuracy (Acc) were used and 

expressed as 

n
Sn

N

+

+
=                                                       (11) 

n
Sp

N

−

−
=                                                       (12) 

n n
Acc

N N

+ −

+ −

+
=

+
                                                 (13) 

where N
+
 and N

-
 denote the number of phage virion proteins and the number of phage 

non-virion proteins, respectively; n
+
 and n

-
 are the number of the correctly recognized 

phage virion proteins and the number of the correctly recognized phage non-virion 

proteins, respectively. 

To describe the performance of models across the entire range of SVM decision 

values, the receiver operating characteristic (ROC) curves were also provided. The 

quality of the proposed method can be objectively evaluated by measuring the area 

under the receiver operating characteristic curve (auROC). 

3. Results and discussion 
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3.1. Feature selection for improving accuracy 

According to the aforementioned g-gap dipeptide composition in Eqs. (3-4), for 

each g parameter, a 400-dimension vector will be produced. The feature dimension is 

much larger than the number of samples (307 samples). Generally, the high dimension 

features would not only lead to the over-fitting problem, but also bring about 

information redundancy or noise 
4, 6, 10, 13, 15, 16

. These would result in low capability in 

the generalization of a predictor and the poor prediction in cross-validation. For 

example, the 400 1-gap dipeptides can only yield the Acc of 77.85% in 5-fold 

cross-validation. Although the low dimension feature can improve the robust of a 

predictor, the number of the selected features is too small to afford enough 

information, thus resulting in the poor predictive accuracy. For example, in 5-fold 

cross-validation, the Acc of 76.9% was obtained by 10 selected 0-gap dipeptides. 

To overcome these disadvantages and deal with the high-dimension disaster, it is 

necessary to pick out informative parameters. This will not only gain a deeper insight 

into the intrinsic properties of phage virion proteins, but also improve the 

understandability and the quality of the predictor. Obviously, the best feature 

combination can be found by examining the performance of all feature sets. However, 

the computation time is so long that it is impossible to investigate the performance of 

all feature sets. Taking the amino acid composition containing 20-dimension feature 

vector as an example, the number of all possible combinations for 20-D vector is 

1 2 19 20

20 20 20 20 1,048,575C C C C+ + + + =L . For a 400-dimension vector, the number of all 

possible combinations will be greater than 2.58×10
120

. 

In order to economize the computational time and source, the ANOVA with IFS 

process was used to search for the optimal feature set with the maximum accuracy. 

We controlled gap g to vary from 0 to 9 and investigated the performances of 

10×400=4,000 feature subsets. And the 10 IFS curves were plotted in Fig. 1. The Acc 

reached its peak (85.02%) when the top ranked 160 1-gap dipeptides (P<10
-5

) were 

used (Fig. 1). With the top ranked 160 1-gap dipeptides as the input parameters of 

SVM, 75.75% phage virion proteins and 89.42% phage non-virion proteins can be 

correctly predicted. The ROC curve was plotted in Fig.2 for investigating the 

performance of the model across the entire range of SVM decision values. The 

auROC reaches 0.899. It should be noted that the number of features (160) are about a 
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half of the number of samples (307), suggesting that the proposed method is reliable 

and efficient. The high accuracy obtained by cross-validation demonstrates that the 

method is robust. 

 

3.2. Comparison with other methods 

It would be instructive to make a comparison between the proposed method and 

other published methods. The comparative results of different methods on the same 

benchmark dataset are listed in Table 1. As we can see from Table 1, although the Sn 

obtained in this paper is equal to that of our previously proposed Naïve Bayes model, 

the Sp, Acc and auROC of the proposed method are all dramatically higher than those 

of Naïve Bayes 
4
. Furthermore, we calculated the Acc achieved by completely random 

guess (CRG) 
45

. Obviously, the Acc achieved by CRG is 50.00%. If considering the 

weight or prior probability, the Acc is [99×(99/307)+208×(208/307)]/307=56.30%. 

These results demonstrate that our method is superior to the published method and 

random guess. 

In addition, we investigated the performances of four state-of-the-art classifiers 

(BayesNet, RBFNetwork, Random Forest and Naïve Bayes) on the same benchmark 

dataset using same feature selection technique. Firstly, we repeated the feature 

selection process in which ANOVA was adopted to optimize g-gap dipeptides. 

Secondly, each feature set was input into the four algorithms. Finally, the maximum 

accuracies of three algorithms were selected for comparison. Comparison in Table 1 

demonstrates that the SVM is the best one among all classifiers for phage virion 

predictions. 

Furthermore, we checked the performance of proposed method for low identity 

datasets using jackknife cross-validation. By use of 25% sequence identity as the 

cutoff, we obtained 278 phage proteins included 87 virion proteins and 191 non-virion 

proteins. The sensitivities of virion proteins and non-virion proteins were 68.97% and 

88.48%, respectively. The overall accuracy of 82.37% with average accuracy of 78.72% 

was achieved. The overall accuracy just decreased by 2.65% with the sequence 

identity decreasing from 40 to 25%. These results demonstrated that the proposed 

model is robust. 

Finally, for demonstrating the prediction capability of the proposed model, we 

built an independent dataset which contained 11 phage virion proteins and 19 phage 
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non-virion proteins. Our model can correctly identify the 9 virion proteins and 17 

non-virion proteins. 

 

3.2. Feature analysis 

The results in Fig.1 also reveal that the correlation between two residues with 

one residue interval (g=1) is more important than other correlations in phage virion 

protein sequences. It is sure that some important 1-gap dipeptides contribute to the 

recognition of phage virion proteins. To provide an overall and intuitive view, the 

following normalized function was introduced to scale the F(ξ) of the ξ-th 1-gap 

dipeptide as follows 

0 1 1min

, ,
max min

( )
( ) sgn

virion non virion

F F
F f f

F F
ξ ξ

ξ
ξ

−

−  = × −
 −

        (14) 

where Fmin and Fmax are the minimum and maximum F values of all the 400 1-gap 

dipeptides. The 1

,virion
fξ  and 1

,non virion
fξ −

 are the average frequencies of the ξ-th 1-gap 

dipeptide in virion proteins and non-virion proteins, respectively; sgn is the sign 

function. Thus, we obtained )1,1-()(0 ∈ξF . If 0)(0 <ξF , the ξ-th 1-gap dipeptide 

prefers phage virion proteins, otherwise it prefers phage non-virion proteins. 

To analyze the contributions of different 1-gap dipeptides to the prediction model, 

a heat map was drawn in Fig.3. In Fig.3, the column and row of the heat map 

represent the first residue and the second residue of 1-gap dipeptides, respectively. 

Each element in the heat map represents a 1-gap dipeptide and is colorized according 

to its )(0 ξF . It is observed that the majority of 1-gap dipeptides have very small 

absolute value of )(0 ξF  (green), indicating that these features are irrelevant with the 

phage virion protein prediction. We also found that the amino acids A, G, P, S, T and 

V (red) as well as their 1-gap correlations often appear in phage virion proteins, 

whereas the amino acids E, K, L and R (blue) as well as their 1-gap correlations are 

not preferred in phage virion proteins. Ala, Gly, Pro, Ser, Thr and Val are small amino 

acids and their side-chain masses are 15.0, 1.0, 42.0, 31.0, 45.0 and 43.0, respectively. 

Glu, Lys, Leu and Arg are big amino acids and their side-chain masses are 73.0, 73.0, 

57.0 and 101.0, respectively 
46

. 

Small amino acids are prone to lead to the conformation transformation, implying 

that small amino acids play important roles in the function of phage virion proteins. 

Coia et al. 
47

 have found that the small amino acid (such as Gly-Lys-Arg) usually 
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occurred in the flanking potential cleavage site in virion proteins. The flexibility of 

the small side chain amino acids is required to accommodate the variation observed in 

the cleavage sites 
48

. Kuzmicheva et al. 
49

 have demonstrated that, to ensure a high 

constant of binding (low dissociation constant), the domain C of phage major coat 

protein must include predominantly small amino-acid residues which possess a 

diminutive positively charged surface and a low energy of the higher occupied 

molecular orbital. Our statistical results coincide with these findings. 

As we can see from Fig.3, the colors of some 1-gap dipeptides are dramatically 

different from that of other 1-gap dipeptides. We cautiously picked out 17 1-gap 

dipeptides (A*G, A*T, A*P, S*T, S*A, V*A, T*S, V*T, G*A, G*G, S*G, V*G, V*I, 

E*L, K*L, K*E, E*E) according to the criteria that the absolute value of )(0 ξF  is 

larger than 0.55. Among the 17 features, 13 features in Fig.3 are marked in red, 

indicating that the occurrence frequencies of these features in virion proteins are 

dramatically larger than that in non-virion proteins. Only 4 1-gap dipeptides in Fig.3 

marked in blue prefer to non-virion proteins. The reason of this phenomenon is that 

non-virion proteins are consisted of phage-secreted proteins and other non-structural 

proteins. The features of different non-virion proteins are annihilated each other. Thus, 

according to the strategy in the promoter prediction
50

, it is better to use multi negative 

sets, in which each negative set has its given type, to train and test the model. 

However, in this study, the currently available data do not allow the strategy. 

Otherwise, the number of proteins for some subsets would be too few to implement 

statistical significance. However, these 17 features do play important roles in virion 

protein prediction and yield the Acc of 78.18% in 5-fold cross-validation, suggesting 

that the ANOVA-based feature selection technique is powerful. 

 

3.3. Web-Server Guide 

Establishing a user-friendly web-server will improve the efficiency and avoid 

repeating a complicated mathematics and program for studying phage virion proteins. 

The predictor established via aforementioned procedures is called PVPred. For the 

convenience of the vast majority of experimental scientists, we provided a guide to 

help experimental scientists to use the web-server to get the desired results. 

Firstly, open the web server at http://lin.uestc.edu.cn/server/PVPred and you will 

see the top page of PVPred on your computer screen, as shown in Fig.4. Click on the 
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Read Me button to see a brief introduction about the predictor and the caveat when 

using it. Click on the Data button to download the benchmark datasets used to train 

and test the PVPred predictor. Click on the Citation button to find the relevant papers 

that document the detailed development and algorithm of PVPred. Secondly, either 

type or copy/paste the query phage peptide sequences into the input box at the center 

of Fig.4. The input sequence should be in the FASTA format. Example sequences in 

FASTA format can be seen by clicking on the Example button right above the input 

box. Thirdly, click on the Submit button to see the predicted result. It should be noted 

that each of the input query sequences should exclude all illegal characters: such as 

‘B’, ‘X’, ‘U’, ‘Z’. 

 

4. Conclusion 

The available evidence indicates that the bacteriophage is a new way to fight 

against bacterial infections. The knowledge for phage virion proteins is conductive to 

the development of antibacterial drugs. Thus, we proposed a feature selection 

technique based on AVONA to discriminate phage virion proteins from phage 

non-virion proteins by using SVM. A high accuracy model was obtained. Results 

demonstrate that the ANOVA can accurately pick out informative features and 

efficiently improve predictive performance. Based on this model, an online predictor 

PVPred was established for identifying phage proteins. We hope that this predictor 

will become a useful tool for phage virion protein analysis and further experimental 

research. Moreover, the method proposed in this study can be generalized to the 

prediction of other proteomics. 
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TABLE 

Table 1 Comparing the proposed method with other methods 

Classifier Sn(%) Sp(%) Acc(%) auROC 

Naïve Bayes(38-D)
4
 75.76 80.77 79.15 0.855 

BayeNet(148-D) 56.57 80.29 72.64 0.776 

RBFNetwork(166-D) 70.71 84.62 80.13 0.806 

Random Forest(160-D) 45.45 93.27 77.85 0.798 

Naïve Bayes(105-D) 75.76 86.06 82.74 0.862 

SVM(160-D) 75.76 89.42 85.02 0.899 
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Figure captions 

Fig. 1. A plot to show the IFS procedure. When the top160 1-gap dipeptides were 

used to perform prediction, the overall success rate reaches IFS peak of 85.0%. 

Fig. 2. The ROC curve for the prediction of phage virion proteins by using 160 

optimal 1-gap dipeptides. The auROC of 0.899 was obtained in jackknife 

cross-validation. The diagonal dot line denotes a random guess with the auROC of 

0.5. 

Fig. 3. A chromaticity diagram for the 400 )(0 ξF  of the 1-gap dipeptides. 

The red elements indicate 1

,virion
fξ > 1

,non virion
fξ −

, whereas the blue elements indicate 

1

,virion
fξ < 1

,non virion
fξ −

 

Fig. 4. A semi-screenshot to show the top page of the PVPred web-server. Its website 

address is at http://lin.uestc.edu.cn/server/PVPred. 
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Fig. 4 
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