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When the effect of the state of one gene is dependent on the state of another gene in more than 

an additive or neutral way, the phenomenon is termed epistasis. In particular positive epistasis 

signifies that the impact of the double deletion is less severe than the neutral combination, 

while negative epistasis signifies that the double deletion is more severe. Epistatic interactions 

between genes affect the fitness landscape of an organism in its environment and are believed 

to be important for the evolution of sex and the evolution of recombination. Here we use large-

scale computational metabolic models of microorganisms to study epistasis computationally 

using Flux Balance Analysis (FBA). We ask what the effects of the environment are on 

epistatic interactions between metabolic genes in three different microorganisms: the model 

bacterium E. coli, the cyanobacteria Synechocystis PCC6803 and the model green algae, C. 

reinhardtii. Prior studies had shown that in standard laboratory conditions epistatic interactions 

between metabolic genes are dominated by positive epistasis. We show here that epistatic 

interactions depend strongly upon environmental conditions, i.e. the source of carbon, the 

Carbon/Oxygen ratio, and for photosynthetic organisms, the intensity of light. By a 

comparative analysis of flux distributions under different conditions, we show that whether 

epistatic interactions are positive or negative depends upon the topology of the carbon flow 

between the reactions affected by the pair of genes being considered. Thus complex metabolic 

networks can show epistasis even without explicit interactions between genes, and the 

direction and scale of epistasis are dependent on network flows. Our results suggest that the 

path of evolutionary adaptation in fluctuating environments is likely to be very history 

dependent because of the strong effect of the environment on epistasis. 
 

 

 

 

 

 

 

 

Introduction 
 

One of the central problems in biology is that of understanding the 

mapping between genotype and phenotype. It is now clear that a 

simple list of active genes do not sufficiently explain phenotype 

since genes interact in myriad intricate ways. The word “epistasis” 

has come to suggest the multiple deviations from mere additive 

effects displayed by genes in an organism. It was first coined by 

Bateson in 1909 as one genetic variant masking the effect of another 

[1]. Broadly speaking, when the effect of the state of one gene is 

dependent on the state of another gene in more than an additive or 

neutral way, the phenomenon is termed epistasis [2,3]. Epistatic 

interactions have been classified in multiple ways. For example 

directional or mean epistasis, also called magnitude epistasis, occurs 

when both mutations are either deleterious or beneficial, and may be 

further classified as either aggravating (negative) or buffering 

(positive) [3]. Aggravating, or negative, interactions between two 

genes lead to a reduction in fitness of the double mutation that is 

greater than that expected by the two single mutations acting 

independently. Buffering, or positive, interactions occur when one 

mutation masks the effect of the other mutation [4]. Sign epistasis on 

the other hand occurs when the effect of one of the mutations 

changes sign in the background of the other mutation. Finally, the 

situation when both the mutations are separately deleterious but 

beneficial when they happen together has been named reciprocal 

sign epistasis [5-7]. 

Epistasis is evolutionarily important since epistatic effects can affect 

the shape of the evolutionary fitness landscape, or the adaptive 

landscape, that maps gene mutations to fitness. Arguments about the 

importance and role of epistatic effects played a major role in the 

debate between Sewall Wright and R. A. Fisher in the 1930s [8]. 

Epistasis is believed to be necessary for the evolution of sex and 

recombination [9]. Adaptive landscapes are typically thought of as 

rugged, with multiple fitness peaks and valleys, and it has been 

shown that a rugged fitness landscape requires the existence of 

reciprocal sign epistasis [5,6].  
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However epistatic effects are hard to uncover experimentally. 

Cellular metabolism is one arena of research that lends itself easily 

to the analysis of some kinds of epistatic interactions since it is 

relatively well understood, and genome-scale constraint based 

models using Flux Balance Analysis (FBA) do a reasonably good 

job in predicting intracellular fluxes [10,11] as well as the effect of 

perturbations [12,13]. A small but significant body of literature has 

emerged that uses these computational methods to search for 

epistatic interactions via gene deletions [4,14-16]. An advantage of 

computational methods is their ability to analyze all putative 

epistatic interactions; however the framework of FBA limits the 

analysis to mean or magnitude epistasis, and sign epistasis cannot be 

studied. Using these methods, it has been shown that metabolic 

networks of yeast and E. coli are characterized by the dominance of 

small positive epistatic interactions [4,14]. Epistatic interactions 

were shown to be largely either positive or negative between 

metabolic subsystems, allowing a redefinition of modularity between 

functional modules of cellular metabolism [4]. A key insight in this 

work was that epistasis in the context of FBA-based computational 

approaches is a consequence of network structure, with linearly 

connected pathways likely to show positive epistasis with each other, 

and branched pathways likely to show negative epistasis [4]. In the 

same work, it was also shown that positive epistasis is higher 

amongst functionally unrelated genes while negative epistasis was 

higher among functionally related genes. It has also been shown in 

later work that epistatic interactions are not absolute, but depend 

upon the effect being considered. For metabolic models this is most 

often a function representing “fitness”, and thus epistatic interactions 

depend upon the particular definition of fitness being used [15], in 

other words, different fitness functions capture different aspects of 

functional relationships between genes.  

However, a phenotype constitutes the observable characteristic of a 

genotype in a particular environment. Relatively few experimental 

studies have analyzed the effect of changing environments on 

epistatic interactions. One paper analyzed a small set of 18 mutations 

showed that about a third of mutations analyzed exhibited the joint 

effect of both the environment and the genetic background [17]. 

Much more recently, a set of 5 beneficial mutations in E. coli were 

analyzed by constructing 32 double mutations and studying them in 

1920 different environments. The effect of both the single mutations 

as well as epistatic interactions were found to be environmentally 

dependent [18]. Another equally recent experiment studied three 

variations of the well-studied Lac operon in E. coli, each of which 

contained three to six point mutations, in the presence or absence of 

IPTG, and again found strong dependence of epistatic effects on the 

environment [7].  

These results suggest that despite their limitations, computational 

studies of epistasis in different environments could yield significant 

insight into the impact of fluctuating environments on the 

evolutionary process. However to date no such studies using 

metabolic models have been carried out. This paper seeks to fill that 

gap by using constraint-based models of metabolism to delineate the 

effects of the environment on epistatic interactions between 

metabolic genes in three different microorganisms, the model 

bacterium E. coli, the cyanobacteria Synechocystis PCC6803 and the 

model green algae, C. reinhardtii. Computational studies of epistasis 

have concentrated on yeast and E. coli. We therefore also present 

here the first computational analysis of epistatic interactions in 

photosynthetic organisms. We also perform a comparative analysis 

of epistasis in the central carbon metabolism between E. coli and 

Synechocystis. 

Epistatic analysis is performed using double gene deletions on these 

three organisms under various different growth conditions. Our 

analysis throws up a number of novel conclusions. Prior work had 

indicated that magnitude epistasis in metabolism is dominated by 

positive interactions in both yeast and E. coli. We show that while 

this remains true in an aerobic environment, epistasis in anaerobic 

conditions is dominated by negative epistasis. More generally we 

show that the increase in the C/O ratio leads to disappearance of 

large number of positive interactions. We find both differences and 

similarities in the epistatic interactions of similar genes between E. 

coli and Synechocystis under heterotrophic conditions, and show that 

these arise out of differences in network flows. We show therefore 

that epistatic interactions are not so much determined by network 

structure as they are by network flows, and E. coli under different 

carbon sources has different epistatic interactions. We find that 

under photoautotrophic conditions, the C/photon ratio affects 

epistatic interactions in the same way as the C/O ratio did in E. coli, 

and under conditions of unlimited light both Synechocystis and 

Chlamydomonas are characterized by the relative disappearance of 

positive interactions between metabolic genes. We thus show that 

the epistatic interactions uncovered by the computational analysis 

are not only dependent on the organization of the metabolic network, 

but also on the environmental conditions. 

 

Results and discussion 

 
Different carbon sources lead to different patterns of fluxes and 

epistatic interactions 

 

To analyze the effect of environmental conditions on fluxes, we 

calculated flux distributions in the 174 different carbon sources 

(substrates) under which E. coli could grow, according to the 

previous model predictions of the model iAF1260 [19]. The 

reactions were assigned ranks in each growth conditions based on 

the absolute value of flux [Figure 1a]. We find that fluxes indeed 

change drastically across different growth conditions as shown by 

the change in the rankings of reactions [Figure 1a]. The magnitude 

of the change can be seen by the wide variations in the coefficient of 

variation of the ranks [Figure 1b and Supplementary Figure 1]. A 

number of reactions also showed flux reversal under different 

environment conditions [Figure 1c]. Taken together the data suggest 

that the topology of carbon flows can change significantly under 

different carbon substrates. 

We chose 9 different carbon substrates to analyze the effect of 

environmental conditions on epistasis in greater depth in E. coli. 

After removing isozymes we generated a list of 93 genes 

[Supplementary Table 1], which were non-lethal and generated a 

flux perturbation in presence of at least one carbon source, and 

constructed 4278 (93 times 92 times half) double deletion mutations. 

We find that substrates with more carbon atoms generally result in a 

greater number of non-zero interactions [Figure 2a]. The only 

exception is Maltotriose which has fewer total interactions than 

Glucose. Note that a core set of negative interactions remain 

conserved under every examined carbon source, thus what is 

changing are positive interactions. The smallest total number of 

positive interactions was observed when the organism was grown in 

presence of formate. During its metabolism formate is used for 

formylation of tetrahydrofolate (THF) and converted to methylene-

tetrahydrofolate (MLTHF). Methylene in MLTHF enriches glycine 

to serine. Serine is then sequentially converted to phosphoenol-

pyruvate (PEP), which feeds gluconeogenic and citric acid pathway. 

Metabolically speaking therefore, formate is quite different from 

glucose. It requires that a larger number of anabolic reactions be 

turned on, compared with glucose which requires decomposition to 

smaller molecules like pyruvate to form higher carbon derivatives. 

To quantify the metabolic distance between glucose and formate, we 

introduce the idea of a “metabolic path length”, which is defined as 
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the minimum number of steps required to form one carbon source 

from another.  We, therefore, hypothesized that average path length 

between two substrates is proportional to the difference between 

numbers of positive interactions under different substrates. Consider 

the case of glucose and sucrose. These two metabolites differ by four 

reactions [Figure 2b], SUCRtex (sucrose transporter), SUCptspp 

(sucrose phosphate), FFSD (β-fructofuranosidase), and (XYLI2: a 

hexose isomerase).  

We manually calculated the shortest path length from glucose to the 

other substrates like formate, formaldehyde, acetate, fumarate, 

ribose, sucrose, trehalose, and maltotriose.  To quantify the notion of 

difference between number of interactions, taking both positive and 

negative interactions into account, we calculated the Root Mean 

Square difference (or the Euclidian distance) between the two 

dimensional vector representing the number of positive and the 

number of negative interactions respectively for pairs of growth 

conditions. In agreement with our hypothesis we find that increase in 

path length leads to an increase in difference of number of 

interactions [Figure 2c]. We find that interactions observed under 

glucose did not change drastically from interactions observed under 

sucrose, trehalose and maltotriose [Supplementary Figure 2]. Thus 

the short RMS distance between interactions in glucose and sucrose 

is due to the metabolic path length of just four reactions mentioned 

above that separate the two metabolites. 

Amongst these 4278 pairs, 150 pairs interacted positively and 22 

interacted negatively, in at least one growth condition. Out of these 

172 pairs with non-zero interactions, interestingly, only one gene 

pair changed sign in different environmental growth conditions, 

b2779 (Enolase, ENO) – b3956 (Phosphoenolpyruvate (PEP) 

carboxylase, PPC). This pair interacted positively in presence of 

sugars (trehalose, ribose, glucose, sucrose, and maltotriose), 

interacted negatively in presence of aldehyde (formaldehyde) and 

did not interact in presence of carboxylate (formate, acetate, and 

fumarate). Analysis of flux distributions revealed that the positive 

interactions are the result of forward flux through ENO (catalyzing 

dehydration of 2-phosphoglycerate (2PG) to PEP). The product of 

ENO is PEP, which is a substrate for PPC (catalyzing carboxylation 

of PEP to oxaloacetate (OAA)). Thus, this linear chain of reaction 

results in positive interactions. However, in presence of 

formaldehyde, ENO has a backward flux (hydrolysis of PEP to 

2PG). The burden of PEP utilization to make important cellular 

biomass components results in a synthetic lethal. Thus, under these 

conditions, the pathway bifurcation occurring due to flow of carbon 

results in negative interaction. In presence of carboxylates (formate, 

fumarate, and acetate), PPC carries no flux because OAA is made by 

TCA cycle. Thus, no interaction occurs between these two genes 

with carboxylates as substrates.  

Interestingly, we find that none of the gene pairs interacted 

positively in all 9 growth conditions, but 5 gene pairs interacted 

negatively in all 9 growth conditions. Further, we find that out of 

these 150 positively interacting pairs, 46% of the interactions occur 

in either one of the growth condition, while only 18% of the 

negatively interacting gene pairs occur in either one of the growth 

condition. Our results indicate that negative interactions, in general, 

are more likely to persist than positive interactions. The list of 93 

genes, and list of positive and negative interactions included in the 

analysis is presented in the Supplementary information. 

 

Positive epistasis dominates Aerobic growth of E. coli and 

Synechocystis  

 

It has previously been shown that metabolic epistatic interactions 

uncovered by flux balance analysis in E. coli and in yeast are 

dominated by positive or buffering interactions [14]. Photosynthetic 

organisms have not been previously analyzed for epistatic 

interactions. We therefore performed a similar analysis on 

Synechocystis under heterotrophic aerobic growth on glucose, to 

compare genetic interactions between metabolic genes of 

Synechocystis with E. coli under similar environmental conditions 

(epistasis in autotrophic conditions is discussed later). For 

completeness, and to validate our method, we repeated the exercise 

for E. coli. A single gene deletion was performed to find all essential 

genes, and a double gene deletion was performed on the remaining 

set of non-essential genes. An essential gene, in our simulations, is 

defined as the gene that leads to a growth rate of less or equal to 

10% of the wild-type growth rate. Epistasis values were calculated 

as shown in Methods section. The histogram of scaled epistasis 

values showed that E. coli and Synechocystis, under aerobic growth 

on glucose, is dominated by positive interactions, which were about 

5-fold [Figure 3a] and 2.5-fold [Figure 3c] more than the negative 

interactions, respectively. When these deletions were categorized as 

a deletion in a particular subsystem of the organism, oxidative 

phosphorylation and glycolysis had the highest number of 

interactions with other subsystems in both the organisms. [Figure 3b 

& 3d]. Note that a previous study on epistasis in metabolic genes 

[14] reported a much larger number of positive interactions since 

they were reporting epistasis due to partial deletion of reactions 

rather than total deletion of genes. 

 

Maximum number of positive interactions corresponds to 

maximum respiratory capacity in E. coli 

 

We next varied the ratio of glucose to oxygen uptake ratio (C/O 

ratio) in E. coli and repeated the epistasis analysis [Figure 4a]. We 

varied the glucose to oxygen uptake ratios by changing the glucose 

uptake rate from 8 mmole/gDW/h to 64 mmole/gDW/h. Using 

experimentally determined specific glucose uptake rate of 8 

mmoles/gDW/h [20], we calculated the maximum specific oxygen 

uptake rate (18.2 mmoles/gDW/h) required by the wild-type cell. We 

call this rate the maximum respiratory capacity of the wild-type cell. 

The simulated C/O ratio (0.4395) under the nominal conditions fell 

within the range of experimentally determined C/O ratios from 

various different experiments, 0.35 – 0.49 [21].  We find that as the 

C/O ratio is increased total number of buffering or positive 

interactions dramatically decrease, while the number of negative 

interactions remain approximately constant [Figure 4a]. We also 

noticed that most of the negative interactions remained robust 

throughout different C/O ratios.  

The increase in the C/O ratio is analogous to the organism shifting 

from aerobic growth to anaerobic growth. This inspired us to 

evaluate the anaerobic condition, which corresponds to a scenario 

where C/O ratio goes to infinity. As E. coli is a facultative anaerobe, 

it is also able to grow under anaerobic conditions. We find that under 

anaerobic condition, the number of positive interactions almost 

vanish, while the negative interactions are unaffected [Figure 4b]. 

Thus environmental conditions resulting in excess of carbon 

substrate (in this case, glucose) help mutations that would otherwise 

be deleterious under maximum respiratory conditions to grow at 

optimal growth rates. In the presence of excess carbon, many 

positively interacting (under nominal conditions) double gene 

deletions do not interact with each other, leading to their 

disappearance.  

 

Dominance of negative epistasis under high light conditions in 

Synechocystis 

 

In order to study the effect of varying light conditions on epistatic 

interactions, we simulated autotrophic growth of Synechocystis 
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under very low to high light conditions. As before non-lethal genes 

(174 in number) which constrained at least one reaction were 

included in the analysis. We find that as the photons absorbed 

increase from 50 mmoles/gDW/h [Supplementary Figure 3e] to 60 

mmoles/gDW/h [Supplementary Figure 3f], the number of positive 

interactions decrease, and under high or unconstrained light 

conditions, the positive interactions disappear entirely [Figure 5b]. 

Further, our analysis showed that except for one weakly interacting 

pair in low light, negative interactions remained unchanged, 

irrespective of the amount of light available to the organism 

[Supplementary Figure 3a-i]. 

We find that fluxes through reactions belonging to the following 

subsystems increase under high light conditions: Oxidative 

phosphorylation, photosynthesis, nitrogen metabolism, glyoxylate 

metabolism, and pyrimidine metabolism.  

To test whether the disappearance of positive interactions is a more 

general property of photoautotrophic metabolism, a similar analysis 

was performed on another single cell photosynthetic organism, C. 

reinhardtii (iRC1080). We find results to be similar for C. 

reinhardtii as for Synechocystis. Under limited light conditions, 

number of positive interactions and negative interactions were 

comparable [Figure 5c]; while under high light, the number of 

positive interactions reduced considerably (~90%) and number of 

negative interactions remained same [Figure 5d].  

Under high light conditions, autotrophic organisms suffer from 

reduced growth rate [22-25] Three main changes that occur during 

such an environmental condition are: (i) reduction in growth rate 

owing to increase in damage and de novo synthesis of photosynthetic 

proteins [23,24], (ii) increase in the photo-respiratory flux [25] and 

(iii) decrease in carbon fixation [25]. This reduction in growth rate is 

not captured in our model due to absence of pathways for damage of 

photosynthetic proteins. However, it must be noted that the model 

does correctly predict an increase in the photo-respiratory flux [26]. 

Since the negative effects of high light cannot be properly accounted 

for under the current model framework, we cannot comment on how 

realistic the results of the FBA optimization under high light are. 

However they do correspond with the case of a high C/O ratio in E. 

coli. Thus similar to excess nutrients, excess light too, leads to a 

reduction in the number of buffering interactions. Note that both E. 

coli growing under Formate, essentially a 1-carbon source, and 

Synechocystis growing under CO2; show the dominance of negative 

interactions. 

Chlamydomonas and Synechocystis had 2 gene pairs and 1 gene pair 

respectively which were weakly negatively interacting under low 

light and non-interacting in high light. In Chlamydomonas, the 2 

pairs belonged to acetyl-CoA transport across various compartments 

and the other gene pair belonged to energy production via ATPase in 

thylakoid membranes. In Synechocystis, the weakly interacting genes 

belonged to ferredoxin oxidoreductase and Glutamate 

dehydrogenase.  

There are three main types of molecules absolutely required for a 

mutant to grow even at sub-optimal growth rates: (i) ATP, (ii) 

electron carriers and (iii) carbon. We hypothesize that these mutants 

were limited by electron carriers and/or ATP when under limited 

light. However, under high light, there would be a relative excess of 

these electron carriers and/or ATP. This enrichment of electron 

carriers and/or ATP under high light helps the organism to grow at 

optimal growth rate. In presence of high light, the carbon fixation 

efficiency (ν(CO2 fixed)/ν(hν utilized)) reduces, as a consequence of which 

mutations tend to be less deleterious and are able to achieve optimal 

growth rate, resulting in no interaction between genes.  
 

Epistatic Interactions are dependent on carbon flow in the 

network  

 

If epistasis in metabolic genes depends on carbon flows in the 

network, identical genes in two organisms should display mostly 

similar epistatic interactions, while the differences should be 

attributable to differences in carbon flow patterns. We compared 

scaled epistasis amongst gene pairs that constrained identical 

reactions in both organisms. Of 74 such gene pairs, we found that 54 

have identical types of epistasis (positive or negative). Out of these 

15 are negatively interacting, while 39 are positively interacting in 

both the organisms. Some interactions which are common to both 

are as follows: positive interactions among Glycolysis and TCA 

cycle, positive and negative interactions within Glycolysis, positive 

interactions among Pentose phosphate pathway and oxidative 

phosphorylation, positive interactions among TCA cycle and 

oxidative phosphorylation [Figure 3b and 3d]. However out of the 

remaining 20 gene pairs, 18 were mismatches. The mismatches 

(positive to negative) occur between succinate dehydrogenase 

(SUCDi), genes belonging to lower glycolysis, and NADH 

dehydrogenase (NADH); while mismatches (negative to positive) 

also occur amongst genes belonging to lower and middle glycolysis 

(Enolase (ENO), phosphoglycerate kinase (PGK), and triose 

phosphate isomerase (TPI)).   

It was not possible to discern the reason for the mismatches from the 

flux distribution of the entire network, due to its complexity. We 

therefore decided to perform a reaction-wise epistasis analysis of a 

subnetwork consisting of reactions involved in 

glycolysis/gluconeogenesis, TCA cycle, and pentose phosphate 

pathway. Here by reaction-wise epistasis we mean the non-additive 

effects of deleting two reactions from the metabolic network. This is 

equivalent to assuming that each reaction is constrained by a 

different gene. In reality gene deletions may constrain more than one 

reaction, making their effect harder to interpret.  This sub-network 

was made up of 33 reactions. It can be seen that large numbers of 

interactions remain the same in both the organisms [Figure 6]. In 

Synechocystis, 25 and 39 reaction pairs interacted positively and 

negatively, respectively. Comparing the positively interacting 

reaction pairs in Synechocystis to E. coli, we found that 18 reaction 

pairs interacted positively, and 7 pairs did not interact in E. coli. 

However on comparing the negatively interacting reaction pairs in 

Synechocystis to E. coli, we found that 25 reaction pairs interacted 

negatively but 14 pairs interacted positively in E. coli.  

We analyzed these 14 mismatches manually and determined that 

they arise due to differences in carbon flow. In E. coli, reactions 

catalyzed by glucose 6-phosphate dehydrogenase (G6PDH2), 6-

phosphogluconolactonase (PGL), and phosphogluconate 

dehydrogenase (GND) interact positively with each of the reactions 

catalyzed by ribose 5-phosphate isomerase (RPI), ribose 5-phosphate 

epimerase (RPE), Transketolase 1 (TKT1), and Transaldolase 

(TALA). In E. coli, any deletion in oxidative pentose phosphate 

pathway (G6PDH2r and PGL) results in the same metabolic flux 

redistribution. In the absence of oxidative pentose phosphate 

pathway, operation of TALA, TKT1 and TKT2 is reversed such that 

ribose 5-phosphate, xylulose 5-phosphate , and ribose 1-phosphate 

(R1P) is produced in both the organism. However, in Synechocystis, 

other than phosphopentomutase (PPM), R1P can only be produced 

by the decomposition of adenosine. There are many other reactions 

that can produce R1P, in E. coli. This is why interaction amongst 

oxidative pentose phosphate reactions and TKT1, RPI, RPE, and 

TALA is positive in E. coli. Similar reasons can be attributed to 

other 4 interactions occurring amongst reactions in glycolysis 

[Figure 3]. The mismatches (epistasis sign-change) account for about 

21% (14/64) of the total interactions which were positive or 

negative. Thus epistatic interactions are affected by metabolic flows, 
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which are in turn affected by the environmental condition of an 

organism.  

 

Experimental 
 

Flux Balance Analysis (FBA) 

 

Flux Balance Analysis (FBA) is a mathematical framework used to 

calculate the flow of the metabolites through the metabolic network 

at steady state [27]. FBA was performed using the COBRA Toolbox 

[28]. In brief, FBA involves writing down an M by N stoichiometric 

matrix, S corresponding to the metabolic reactions for each 

organism. Here M is the number of metabolites and N is the number 

of reactions. Under steady state conditions the system of differential 

equations representing the chemical reaction system become a 

system of linear equations in the fluxes,  

∑
=

=
N

j

jijS
1

0ν      (1) 

Here, ν is a vector of reaction flux and Sij represents the 

stoichiometric coefficient for ith metabolite in jth reaction. To find 

the fluxes an objective function is chosen that is believed to be 

optimized by the organism, such as its growth rate. This makes it a 

linear programming problem (LPP) that can be solved by standard 

techniques by imposing additional constraints, discussed below, in 

addition to Eq. 1 [27,29]. The objective function most commonly 

used for such models is an equation describing the growth rate of the 

organism. Growth rate reactions are described as: 

∑
=

→
N

j

jjc
1

µν      (2) 

In the above equation, cj and νj refer to the weight in final biomass 

and the flux of the product of the jth reaction respectively, and µ 

refers to the growth rate of the organism. Maximization of growth 

rate was used as the objective function for all the simulations 

conducted in this study. Additional constraints are constructed in the 

following way:  

1. Incorporating measured or experimentally estimated uptake and 

secretion rates of metabolites. 

2. Incorporating a global limit on the upper and lower bounds of 

each reaction flux. 

jjj βνα ≤≤      (3) 

αj and βj are the lower and upper limits placed on each reaction flux, 

νj, respectively. Reversible reactions can take either negative or 

positive values of fluxes, while irreversible values were constrained 

to take only positive values. Further, if any reactions were turned off, 

inactivated or deleted, the flux through the reaction was set to zero: 

νj = 0. The linear programming problem was implemented using 

COBRA Toolbox with Gurobi 4.6.1 on MATLAB R2011b [28]. 

 

Simulation of growth conditions in various organisms 

 

For our analyses of different cellular metabolism, we chose genome 

scale models of Escherichia coli K12 MG1655 (iAF1260) [19], 

Synechocystis sp. 6803 (iJN678) [26], and Chlamydomonas 

reinhardtii (iRC1080) [30]. Growth conditions included in the 

analyses were: E. coli (Aerobic: Formate, Formaldehyde, Acetate, 

Fumarase, Ribose, Glucose, Sucrose, Trehalose, Maltotriose, and 

Anaerobic), Synechocystis sp. (Autotrophic: high light, limited 

light, and Aerobic: Glucose), and C. reinhardtii (Autotrophic: high 

light, limited light). For simulation of different carbon sources in E. 

coli, we normalized carbon uptake to 8 mmoles for 6 carbon atoms 

in the molecule. For example, if 8 mmoles/gDW/h of glucose was 

used; then 12 mmoles/gDW/h of fumarate, a four carbon molecule, 

was used. Limited light conditions were simulated by setting the 

maximum light uptake to the optimal value calculated for wild-type 

cells. However, high light conditions were simulated by leaving light 

uptake unconstrained. Non-lethality criterion for a mutant was set to 

more than 10% (or 0.1 times) of wild-type growth rate, correct to 

first order of magnitude.  

For aerobic growth of E. coli (model name: iAF1260) under various 

carbon sources, simulations were performed by applying the 

following constraints: (i) maximum uptake rate of the desired carbon 

substrate (EX_glc(e), EX_sucr(e), EX_for(e), EX_fum(e), EX_rib-

D(e), EX_malttr(e), EX_tre(e), EX_fald(e), or EX_ac(e)) was set to 

8 mmoles/gDW/h per 6 molecules of carbon in the substrate [19], 

while uptake rates of all other carbon sources were set to zero; 

maximum oxygen uptake rate (EX_o2(e)) was left unconstrained 

[19]; and all the other constraints were same as reported in the 

original article of the published model. Heterotrophic growth of 

Synechocystis sp. PCC6803 (model name: iJN678) was simulated by 

setting the maximum glucose uptake rate (EX_glc(e)) to 0.85 

mmoles/gDW/h [31]; leaving maximum oxygen uptake rate 

unconstrained; and setting the uptake rates of other sources of carbon 

and light to zero. Autotrophic growth of Synechocystis sp. PCC6803 

was simulated by setting the maximum carbon dioxide uptake rate to 

3.7 mmoles/gDW/h [26] and uptake rates of other carbon sources to 

zero; while minimum photon uptake uptake rate corresponding to 

maximum growth rate was calculated and subsequently set to 

54.0948 mmoles/gDW/h; and all the other constraints were used 

from the original article where the model was published. Autotrophic 

growth of Chlamydomonas reinhardtii (model name: iRC1080) was 

simulated by utilizing the constraints from the original article where 

the model was published [30]. The default constraints on flux of a 

reversible reaction was [-1000, 1000], and of an irreversible reaction 

was [0, 1000], unless specified here or in the original article where 

these models are published. These constraints are a norm in the field 

and have been used in numerous FBA studies [19,26,30].  

 

Ranking of fluxes 

 

Fluxes for each of the 174 conditions leading to growth as reported 

in the original publication of the E. coli (iAF1260) model [19] were 

simulated and ranked according to flux magnitudes. The 

directionality of reaction was ignored, in case of reversible reaction, 

because enzyme catalyzing the activity will be observed whether the 

reaction was operating in forward or reverse direction. 

 

Calculation of Epistasis 

 

Firstly, a single gene deletion was performed to remove any essential 

genes. Then, a double gene deletion was performed on the remaining 

set of genes. Epistasis values were calculated as shown below [4]. 

The epistasis value for the interaction between gene X and gene Y is 

represented by ε. This value can be calculated by:  

YXXY WWWε −=     (4) 

Here
wtXY

XY

wtX

X WW µµµµ −− == ,  are the fitness 

values for the single mutant and the double mutant, and µwt, µX-, and 

µXY- are growth rates of wild-type, the mutant in gene X, and mutant 

in genes X and Y.  While this is the absolute level of epistasis we 

need to establish a standard to compare it with. We follow Ref. [4] 

and scale the epistasis value given by Equation (4) as follows: 

Page 6 of 16Molecular BioSystems



ARTICLE Molecular BioSystems 

6 | Mol. BioSyst., 2014, 00, 1-15 This journal is © The Royal Society of Chemistry 2014 

    (5) 

 (6) 

 

The unscaled ( )ε  and scaled ( )ε~  epistasis values can be then 

classified as shown in Table 1 below. 

 

Table 1 Classification of different ranges of unscaled and scaled 

epistasis. 

 
Unscaled 

Epistasis 

Scaled 

Epistasis 

No epistasis 0=ε   

Aggravating 0<ε   

Buffering 0>ε   

 

The scaled epistasis (ε~ ) was used to classify the interactions into 

buffering (green) at +>θε~ ; aggravating (red), including synthetic 

lethal at 1~ −=ε and strong synthetic sick at −<θε~ ; and no 

epistasis otherwise. Here we used (θ-, θ+) = (-0.25, 0.85). It must be 

noted here that denominator in Eq. 5 is an absolute value and will 

not change the sign of the epistasis.  

Note that here we characterize the phenotype by the growth rate of 

the organism. Growth rate makes a good choice of phenotype 

because of the role of epistasis in selection dynamics [4], and it can 

be measured accurately using high throughput methods [4,32,33]. 

However, the mathematical framework of Flux Balance Analysis 

(FBA) used here to calculate growth rate requires maximization of 

growth rate. As a result, one is never able to calculate instances 

when the fitness of the mutants is higher than the fitness of the wild-

type organism [15]. This is why sign epistasis cannot be studied 

using FBA. Therefore, we specify that our results are only relevant 

for epistatic interactions relative to growth rate. 

 

Mapping gene pairs from one organism to another 

 

For each of the genes involved in the pair, the E. C. numbers of the 

reactions constrained by the gene were found. These E. C. numbers 

were then searched for in the other organism. All the genes 

associated with the reactions with those E. C. numbers were found 

and pairs were created for the new organism, based on the pairs 

found in the source model. This mapping technique has been 

previously used to investigate the structure of enzyme-reaction 

association in microbial metabolism [34]. 

 

Calculation of RMS difference between interactions 

 

The formula for calculating the root mean square (RMS) distance is: 

22
)'()'( nnpp NNNND −+−=

  (7) 

The meaning of the symbols is as below: 

D = RMS difference between interactions;  

Np, Nn = Number of positive and negative interactions in nominal 

case, respectively 

N’p, N’n = Number of positive and negative interactions in growth 

condition, respectively. 
 

Conclusions 
 

Flux Balance Analysis of large-scale metabolic models is an 

attractive tool for studying epistatic interaction between genes 

computationally. It has been argued earlier that the sign of epistatic 

interactions between two genes gives us information about how the 

genes interact in the metabolic network. If the two genes belong to 

the same subsystem, a positive interaction suggests that they form a 

linear or sequential chain with respect to each other, while a negative 

interaction suggests that they are part of related pathways that form 

the same product [3, 4]. However, previous system-wide 

computational studies of epistasis have not considered the impact of 

environment conditions on predictions of epistatic interactions. Here, 

we systematically generated epistatic interaction network maps 

relative to growth rate for E. coli, Synechocystis sp., and C. 

reinhardtii under various different environmental conditions, by 

which here is meant different substrates on which the organism 

grows. Analysis of these networks revealed that different 

environmental conditions yield different sets of epistatic interactions. 

Epistatic interactions therefore change with time as environmental 

conditions change. 

We show that epistasis in anaerobic conditions is dominated by 

negative epistasis. More generally we show that the increase in the 

C/O ratio leads to disappearance of large number of positive 

interactions. We find both differences and similarities in the epistatic 

interactions of similar genes between E. coli and Synechocystis 

under heterotrophic conditions, and show that these arise out of 

differences in network flows. We find that under photoautotrophic 

conditions, the (CO2/photon) ratio affects epistatic interactions in 

the similar way as the C/O ratio did in E. coli, and under conditions 

of somewhat high light Synechocystis tends to have lower positive 

interactions, and in unlimited light both Synechocystis and C. 

reinhardtii are characterized by a sharp decline in positive 

interactions between metabolic genes.  

We also analyse E. coli under different carbon sources and show that 

it has different set of epistatic interactions, governed primarily by the 

flow of the carbon within the metabolic network. We thus show that 

the epistatic interactions uncovered by the computational analysis 

are not only dependent on the organization of the metabolic network, 

but also on the environmental conditions. 

Our findings suggest that during adaptation in dynamically changing 

environment, the shape of the fitness landscape may be governed by 

the environmental history and the pattern of carbon flow in the 

current state of the metabolic network. Flux flows within similar 

parts of the metabolic network between two organisms under the 

same growth conditions gives rise to generally similar interactions. 

For example, the carbon flow through glycolysis in E. coli and 

Synechocystis sp., under aerobic growth with glucose, will be similar 

(but not identical), and as a result the interactions occurring within 

the glycolysis pathway remain mostly similar as well. In both these 

organisms, under heterotrophic growth one molecule of glucose is 

catabolized to form two molecules of pyruvate, and is converted to 

acetyl-CoA, a precursor to the TCA cycle. However, Synechocystis 

grown photo-autotrophically will yield a different set of gene-gene 

interactions within the glycolysis pathway because these conditions 

require the formation of glucose and pyruvate from 3-

phosphoglycerate.  

A previous study has stressed the significance of the finding, on the 

basis of FBA, that positive epistasis is highly abundant between 

functionally unrelated genes in both E. coli and S. cerevisiae [14]. 

This study explained this phenomenon as occurring due to a second 
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mutation having a relatively smaller effect than the first. However 

we show that while positive epistasis is highly abundant compared 

with negative epistasis in many environmental conditions, in many 

other conditions it is no longer abundant, and in some cases, 

disappears entirely. Negative interactions however, in particular 

synthetic lethals, tend to remain conserved under different 

conditions. As previously noted, Ref. [14] calculate epistasis 

differently from us, i.e. they perform reaction deletions rather than 

gene deletions and they constrain flux through each reaction to 50% 

of its wild-type value rather than setting it to zero. In this paper we 

consider only epistasis due to loss-of-function mutations in genes.  

Previous work has shown that selection pressures exerted due to 

changing environmental background resulted in different fitness 

landscapes. Complementary to these findings, our analysis with 

different growth conditions for E. coli show that positive interactions 

are more likely to change/disappear, while negative interactions are 

likely to stay conserved. 

Our analysis shows that epistasis among metabolic genes that is 

predictable by FBA methods depends upon network flows. 

Therefore positive epistasis is not simply the result of the network 

topology connecting two genes being linear, as suggested in previous 

work, but network flows between two genes forming a linear 

topology. Similarly if network flows between two genes constitute a 

branched topology with the two genes on separate branches, we get 

negative epistasis between their deletions. Since FBA models do not 

have any transcriptional regulation, or nonlinear interactions 

between proteins, it is noteworthy that they show that epistatic 

effects can arise as a consequence of network structure alone.  

We also show that excess nutrient uptake conditions result in a 

decrease in the number of positive interactions. Presumably, the 

excess of nutrient conditions result in enrichment of metabolites that 

under nominal conditions were limiting to the growth. This 

enrichment allows the organism to sustain the carbon, energy or 

electron flow in mutants, thereby changing deleterious mutants 

(under nominal conditions) to fit mutants (under excess of nutrient 

conditions). The behaviour of E. coli under excess carbon mirrored 

the behaviour of Synechocystis and C. reinhardtii under excess of 

light. In the latter case too, we found that formerly deleterious 

mutations become non-deleterious mutations as a result of which the 

most positive epistatic interactions between gene pairs vanish. 

Negative interactions that lead to synthetic lethality remain. 

What is the importance of these epistatic predictions? An organism 

evolved in a specific niche should be, metabolically speaking, 

optimized to live in the niche. It should be expected therefore that 

loss-of-function mutations in metabolic genes are always 

accompanied by a decline in fitness. Given a single gene deletion 

that marginally decreases fitness; a second deletion with positive 

epistasis with the first is more likely to be selected in the population 

than one that further decreases fitness in a neutral way. This suggests 

that mutations during adaptation in varying environments are 

selectively directed by positive interactions occurring amongst 

deleterious mutations. This is in agreement with experimental 

studies that show that mutations that get fixed in populations 

undergoing environmental change, such as during the evolution of 

antibiotic resistance in bacteria, are deleterious in the background 

[35].  

Since network flows can change if different substrates are being 

metabolized, epistatic interactions also change with change in 

substrate metabolized. This prediction agrees with previous 

experimental studies on effect of environment on epistasis and 

fitness landscape [7, 18]. Environmental conditions that change the 

flows can dramatically change the set of epistatic interactions, and 

thus the adaptive fitness landscape of the population. The 

environmental dependence of epistasis makes the task of piecing 

together evolutionary history, and the role of epistasis in it, all the 

more difficult, since the specific evolutionary path followed by an 

organism, during adaption in a variable environment, would be 

therefore highly dependent upon the specific environmental 

fluctuations that it encountered in its evolutionary history.  
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Figure legends 

 

Figure 1: Fluxes change depending upon growth conditions. (A) Flux ranks associated with reactions corresponding to 

the 174 growth (environmental) conditions; the color axis represents the rank of the reaction in any particular environment. 

(B) Coefficient of variation (σ/µ) of the rank calculated across 174 growth conditions for each reaction. (C) Histogram of 

reactions in E. coli , X-axis represents the number of environmental conditions in which a given reaction has positive (blue), 

negative (magenta), or zero (green) flux; the letters (in parentheses) on the Y-axis correspond to subsystems as listed in 

Supplementary Table 4. NOTE: For (C), we had to use reversible model, while (A) and (B), reactions must be irreversible. 

Figure 2: Epistasis under various different carbon sources. (A) Number of positive and negative interactions for E. coli, 

when grown under different carbon sources. The histograms above each bar represents the distribution of epistasis values in 

each of the growth conditions. Pairs with no interaction are not shown for proper visualization of data; these pairs do peak at 

epistasis value of 0 (giving rise to a trimodal distribution).  Red represents negative interactions, green represents positive 

interactions; (B) four reactions defining the path from sucrose to glucose; (C) RMS distance between positive and negative 

interactions varies based on the shortest path length between carbon source mentioned in green and glucose. 

Figure 3: Epistatic interactions maps relative to aerobic growth on glucose for Synechocystis sp. PCC6803 and E. coli. 

(A) histogram of epistasis for E. coli under aerobic growth with glucose; (B) Epistatic map for E. coli; (C) histogram of 
epistasis for Synechocystis under aerobic growth with glucose (heterotrophic); and (D) Epistatic map for Synechocystis. Red 

represents negative interactions, Green represents strong positive interactions, and grey represents weak positive interactions. 

The inset graph in (a) and (c) represents non-interacting pairs (black). The subsystems corresponding to letters is present in 

Supplementary Table 4 & 5. The size of the dots is proportional to the number of interactions (this convention is followed in 

all of these types of plots in the paper). 

 

Figure 4: Epistasis under varying glucose-to-oxygen uptake ratios. (A) Number of positive (green) and negative (red) 

interactions corresponding to each νgluc/νO2 (C/O specific uptake) ratio. The clock diagrams shown in insets represent 

interactions amongst subsystem at (left to right) C/O uptake ratio = 0.4918, C/O uptake ratio = 1.7297, and C/O uptake ratio 

= 3.4595. The letters correspond to subsystems as listed in Supplementary Table 4. The size of the dots pertaining to each 

subsystem indicates the number of epistatic interactions, with Green = positive; Red = Negative and Yellow = mixed (both 

negative and positive). All clock diagrams shown in the paper follow these conventions. (B) Histogram of scaled epistasis of 

E. coli for anaerobic growth with glucose. Histogram is read as distribution of scaled epistasis based on the non-scaled 

epistasis value of the interacting pair. Red represents negative interactions, green represents strong positive interactions, and 

gray represents weak positive interactions. The inset graph represents non-interacting pairs (black). (C) Difference between 

aerobic growth of E. coli (nominal) and anaerobic growth of E. coli, represented by a grey map where darker the value 

higher is proportion of total gene interaction in that category. A perfect black corresponds to all pairs having same type of 

interaction; a perfect white corresponds to no pairs in the region. (D) Clock diagram representing interaction between genes 

belonging to various subsystems in E. coli under anaerobic growth conditions.  

 

Figure 5: Epistasis interactions amongst reactions belonging to three compartments Glycolysis, Citrate cycle, and 

pentose phosphate pathway for cells grown aerobically with glucose. The overall picture represents the flow of carbon in 

E. coli. The black arrows indicate the direction of flow in E. coli and Synechocystis. The yellow arrow indicates reaction 

operating in reverse direction in Synechocystis. The grey arrow indicates significantly less (<10% of proportion of reaction 

flux through E. coli) flux through the reaction in Synechocystis. The orange arrows indicates significantly less (<10% of 

proportion of reaction flux through Synechocystis) flux through the reaction in E. coli. The green lines indicate the 

differences in epistasis which was negative for Synechocystis but positive for E. coli.  

 

Figure 6: Histograms of scaled epistasis for photoautotrophic organisms under limited light and high light conditions. 

For Synechocystis sp. PCC6803, (A) limited light, (B) high light; for C. reinhardtii (C) limited light, (D) high light. Red 

represents negative interactions, green represents strong positive interactions, and grey represents weak positive interactions. 

The inset graph represents non-interacting pairs (black).  
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Figure 4 
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Figure 5 
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Figure 6 
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