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Abstract 

In high-dimensional genome-wide (GWA) data, a key challenge is to detect genomic variants 

that interact in a nonlinear fashion in their association with disease. Identifying such genomic 

interactions is important for elucidating the inheritance of complex phenotypes and diseases. In 

this paper, we introduce a new computational method ,  called   Informative Bayesian Model 

Selection (IBMS)  that leverages correlation among variants in GWA data due linkage 

disequilibrium to identify interactions accurately in a computationally efficient manner. IBMS 

combines several statistical methods including canonical correlation analysis, logistic regression 

analysis, and a Bayesians statistical measure of evaluating interactions. Compared to BOOST 

and BEAM that are two widely used methods for detecting genomic interactions, IBMS had 

significantly higher power when evaluated on synthetic data. Furthermore, when applied to 

Alzheimer’s disease GWA data, IBMS identified previously reported interactions. IBMS is a 

useful method for identifying variants in GWA data, and software that implements IBMS is 

freely available online from http://lbb.ut.ac.ir/Download/LBBsoft/IBMS.  

 

 

Keywords: single nucleotide polymorphisms; genetic interactions; epistasis; genome-wide 

association studies; canonical correlation analysis; logistic regression; Bayesian model selection 
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Background  

 The elucidation of genetic variants that underlie complex phenotypes and diseases such as 

Alzheimer’s disease remains a challenging problem .  The most common type of genetic variation 

is the single nucleotide polymorphism (SNP) that results when a single nucleotide is replaced by 

another in the DNA sequence. The development of high-throughput genotyping technologies that 

simultaneously measure many thousands of SNPs have resulted in more than 600 genome-wide 

association (GWA) studies. However, many of the identified SNPs in GWA studies have only a 

small to moderate effect on the susceptibility of the disease (1, 2) . One possible explanation for 

this observation is that interactions among SNPs including non-linear interactions may account 

for stronger effects. Non-linear interactions among genetic variants including SNPs are also 

known as epistatic interactions, and some progress has been made in recent years in developing 

computational and statistical methods for identifying such interactions in GWA data (2, 3) .   

Methods that identify epistatic interactions in high-dimensional data such as GWA data have to 

address several challenges such as multiple testing ,  low power , and false positive rates. In typical 

GWA studies that measure more than a million SNPs ,  the number of potential epistatic 

interactions grows exponentially in the number of SNPs (4)  and any interaction detection method 

has to address the problem of examining such a large number of potential interactions in an 

efficient fashion. 

A characteristic of GWA data is the presence of extensive correlation among SNPs  due to linkage 

disequilibrium (LD). Exploiting this correlation can help in reducing the number of SNPs to be 

examined for potential interactions.   Two general categories of methods for reducing the number 

of variables (such as SNPs) are often used , namely,  variable selection and variable extraction (5) . 

Variable selection methods such as filter and wrapper methods select an optimal subset of 
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variables from the original set of variables. In contrast, variable extraction methods such as 

principal component analysis transform the original variables into a smaller set of more 

informative variables that retain the greatest amount of variation (6, 7) . 

 Variables selection methods can be categorized into univariate and multivariate methods. 

Univariate variable selection methods have been used in analyzing GWA data (8)  because they 

are computationally efficient. These methods primarily identify main effects of SNPs and ignore 

correlations or interactions among them.  Multivariate variable selection methods such as Relief 

have been applied to GWA data too because of their ability to consider additional effects beyond 

main effects (9-11). While being effective in discarding irrelevant SNPs, Relief is unable to 

eliminate redundant SNPs. Thus, an important drawback of currently used variable selection 

methods for GWA data is that they may select a subset of correlated SNPs (1, 12, 13) .  

Computational methods including combinatorial methods have recently been developed to 

identify and characterize epistatic interactions (14). Combinatorial methods search over all 

possible combinations of SNPs to identify combinations that are predictive of the phenotype of 

interest. Multifactor dimensionality reduction (15-17) and the Bayesian combinatorial method 

(BCM) (18) are examples of combinatorial methods that identify associations between multiple 

SNPs and a phenotype by examining higher-order interactions among SNPs in case-control data. 

However, such methods that examine all possible subsets of SNPs can be applied only to data 

that consist of a few SNPs and are impractical for high-dimensional GWA data. 

In this paper, we develop and evaluate a computationally efficient method called Informative 

Bayesian Model Selection (IBMS) that detects both SNP-SNP interactions and interactions 

between two groups of SNPs (e.g., a group may consist of SNPs that map to a gene). Given 
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grouped SNPs, this method consists of two main stages: 1) calculate group interactions that lead 

to weighting the two groups and their corresponding SNPs, and 2) identify interacting SNPs 

using the weights and a stochastic search strategy. IBMS combines canonical correlation 

analysis, logistic regression analysis, and BCM to efficiently identify epistatic SNPs in GWA 

data . Using synthetic data,  we compare IBMS to two powerful and widely used methods for 

detecting genetic interactions ,  namely BOOST and BEAM . Furthermore, we apply IBMS to a 

late-onset Alzheimer's disease GWA dataset that contains over 300,000 SNPs. 

Methods and Materials 

Algorithmic Methods  

This section provides background information on the Bayesian combinatorial method (BCM) 

which uses a Bayesian statistic for measuring genetic interactions, and canonical correlation 

analysis (CCA) which measures the linear relationship between two multidimensional variables. 

It then describes the informative Bayesian model selection (IBMS) method which is based on 

BCM, CCA and logistic regression analysis (LRA). 

Bayesian Combinatorial Method 

 BCM searches over combinations of SNPs to identify combinations that have a strong statistical 

association with the phenotype. Specifically, it exhaustively searches over all possible 

combinations of SNPs and identifies combinations with a high posterior probability using a 

Bayesian statistical method (18). BCM has several advantages including the ability to handle 

sparse and unbalanced data ,   ability to deal with nonlinear interactions, and is computationally 

efficient . 
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In BCM, an interaction model M is defined as a set of probabilities  that is represented as  

 for phenotype Z, given a combination of SNP genotypes g.  For a 

given g value,  a multinomial distribution is assumed for Z (binomial ,  if Z has only two states) . 

Assuming that the parameters   of all multinomial distributions i.e.  a priori follow a Dirichlet 

distribution, a posterior estimate for   is obtained .  The Bayes theorem is used to compute the 

score of an interaction model as follows : 

      (1) 

where  is the prior probability of model , which is assumed to be uniform over all models 

and    is the marginal likelihood, which is evaluated with the following equation : 

  (2) 

where  is the distribution of the data for a given genotype-phenotype table. 

Figure 1 presents an example of a genotype-phenotype table that gives counts obtained from data 

for an interaction model with two SNPs (denoted SNP1 and SNP2) and a binary phenotype (e.g., 

case and control).  

[Figure 1] 

A binomial distribution for each column (i.e., the combination of genotypes for SNP1 and SNP2) 

is assumed. Thus, is obtained by multiplying nine independent binomial 

distributions in Figure 1. 

The closed form for  is given by the following equation and was originally derived 

by Cooper and Herskovits (19): 
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   (3) 

where  are the hyperparameters of a Dirichlet distribution with .  is the number of 

genotype combinations (e.g. ,  nine for a model with two SNPs) ,  is the number of phenotype 

states (e.g. ,  two for case-control data) ,  is the number of samples for a given genotype 

combination of an epistatic model, and    is the number of samples for a given phenotype state 

j and genotype combination i of a model . Assuming that the prior distribution  is uniform 

over all possible models and the hyperparameters of the Dirichlet distribution are all set to 1, the 

following expression gives the score that is used by BCM for an interaction model: 

   (4) 

BCM produces a posterior probability of association of a combination of SNPs of interest with 

the phenotype. The higher this probability the stronger is the interaction model’s association with 

the phenotype. If it is desired to obtain a small list of high probability combination of SNPs pairs 

a threshold of posterior probability ≥ 0.95 may be used. A major limitation of BCM is that it 

searches exhaustively over all possible combinations of SNPs and hence it does not scale up to 

high-dimensional data . The IBMS method overcomes this limitation by computing an 

informative prior over models (instead of the uniform prior used in BCM) and by performing 

stochastic search over combinations of SNPs (instead of the exhaustive search used in BCM). 

Canonical Correlation Analysis 

Canonical correlation analysis (CCA) was developed by Hotelling (20, 21) for characterizing 

relationships among multiple dependent and independent variables.  Given two sets of variables , 
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  and  that are measured on the same set of  objects ,  CCA 

constructs pairs of new variables as linear combinations of X and Y such that the correlation in 

the new pair is maximized.  The new variables are defined in such a way that they explain the 

largest amount of variance in the data.   CCA outputs a number of estimated equations called 

canonical functions; each canonical function provides two canonical variants representing the 

optimal linear combinations of X and Y, and the canonical correlation coefficient  which 

represents the linear relationship between them .  The first canonical function identifies linear 

combinations of original variables that yield the largest canonical correlation coefficient; the 

second identifies linear combinations of original variables that are not correlated with the first 

pair of canonical variants and yield the second largest canonical correlation coefficient ;  and so 

on .   The output of CCA include (1) canonical weights  that are  defined as coefficients that are 

assigned to the original variables ( also called standardized coefficients) ,  (2) canonical loadings  

that are defined as correlations between the original variables and their corresponding canonical 

variants , and (3) canonical cross-loadings  that are defined as  the correlation between original 

variables of one set X and canonical variants of the other set  Y. In multivariate analysis ,  when the 

original variables increase in their correlation with each other  canonical loadings and canonical 

cross-loadings are more often employed in interpreting the results (22).   

  CCA has several characteristics that make it appropriate to be used as part of IBMS .  The 

problem of multiple testing is mitigated by CCA by limiting the inflation of Type I error.  IBMS 

creates groups of SNPs (a group of SNPs is defined as a set of SNPs that map to a particular 

gene or a set of SNPs that are in LD in a genomic region) and performs CCA on every pair of 

groups. In IBMS , we use canonical cross-loadings and canonical loadings to measure the 

significance of each SNP in its group. CCA helps to identify significant gene-gene or region-
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region interactions, which in turn avoids testing the large number of all possible SNP-SNP 

interactions . This is described in detail in the next section. 

Informative Bayesian Model Selection 

 The IBMS method combines CCA and LRA with the interaction model score used in BCM.  

IBMS uses a two-stage approach to first identify pairs of groups of SNPs that interact and then 

identifies individual SNPs across a pair of groups that interact .  This approach achieves 

computational efficiency by partitioning SNPs into groups and then selecting SNP combinations 

from highly weighted groups to be evaluated with the BCM score. 

After grouping SNPs (two approaches to grouping are described in the next section), in the first 

stage we use CCA to measure the informativeness of each SNP using the loading and cross-

loading values. Then we use LRA to identify group-group interactions that are significantly 

associated with the phenotype .  A weight is assigned to each group by calculating the frequency 

of having significant interactions with the remaining groups .  Therefore ,  assuming Group as a 

random variable ,  a discrete probability distribution is obtained . In the second stage, IBMS  

stochastically searches the space of interaction models using an Independent Metropolis-

Hastings algorithm to identify significant SNP-SNP interactions .  In the following sections we 

describe the IBMS method in more detail (see Figures 2 and 3). 

Grouping of SNPs 

We use two ways to partition SNPs: 
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1. Partition SNPs according to their associated genes  such that SNPs on a gene are in a 

single group.  This grouping leads to identifying gene-gene interactions prior to 

identifying SNP-SNP interactions . 

2. Partition SNPs based on LD so that SNPs in a group have high LD. Typically, such a 

group contains SNPs that lie adjacent to each other in some genomic region. This 

may be approximated by grouping together a constant number of SNPs successively 

along the genome.  

Determining which partitioning scheme to use depends on the goals of the analyses and the 

computational costs. If the goal is to identify gene-gene and SNP-SNP interactions, then 

partitioning SNPs according to genes is used. If the goal is to identify only SNP-SNP 

interactions, then partitioning SNPs based on LD is preferred.  

In addition, a partitioning scheme should balance the sample size (i.e., total number of cases and 

controls) and group size (i.e., number of SNPs or variables in each group). In CCA, the ratio of 

sample size to the number of variables plays an important role in the significance of statistical 

findings. Very small ratios will not represent the correlations well, thus obscuring any 

meaningful relationships. Very large ratios, on the other hand, may lead to inflated statistical 

significance. Since, our main focus was to develop a procedure of detecting interaction effects 

rather than proposing a specific procedure to partition SNPs, we selected the partitioning method 

and its parameters based on limited analyses of synthetic data. However, in order to 

comprehensively consider the effect of these parameters, sensitivity analysis should be 

performed. 
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Other ways of partitioning SNPs can also be considered. For instance, similarity of genes based 

on function and biological process (as defined, e.g., by the gene ontology), genes grouped by 

biological pathways (as defined, e.g., in the KEGG knowledge base), can be used to group SNPs.  

Stage 1: Weighting 

We use a novel approach for weighting SNPs and groups of SNPS using a combination of CCA 

and LRA (see Figure 2). The steps used in deriving the weights are as follows: 

1. Let ) be the set of all SNPS in the data. Partition S into m groups  

such that: 

   ,   

2. Apply CCA to every pair of groups .  Each application of CCA  results in a set of 

canonical variables for each group.  Select the first optimal canonical variable for 

each group, namely,  and  which account for the largest amount of variation. Then 

apply LRA and perform the Wald test for a single coefficient in order to test 

interaction of groups (i.e..,  ) in association with the phenotype as follows:  

    (5) 

3. From the LRA tests , for a group  use the frequency of statistically significant 

interaction effects to determine a weight of informativeness using the following 

expression:  

      (6) 

where Iij is an indicator variable that signifies whether the null hypothesis  

is rejected (i.e., Iij = 0) or not. 
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4. For  calculate :   

     (7)
 

    

(8) 

where  is a measure of informativeness for the th SNP in the th group, 

when CCA is applied to  and   The canonical loading and canonical cross-

loading for the th SNP in the th group, when CCA is applied to  and , are 

denoted as  and  respectively.  

Stage 2: Stochastic Search  

In the second stage, using the outputs from the first stage, we use stochastic search to score a set 

of interaction models (see Figure 3). The steps in the search are as follows:  

1. For a predefined  to construct -way interaction models ,  start the Metropolis 

algorithm by sampling  different groups  from all the groups using the 

probability distribution given by Equation 6. 

2. Choose  SNPs ,  ,  ,  one SNP from each group, as elements of the first 

interaction association model . Then calculate the model probability using the 

probability distribution from the previous stage as follows :  

   (9) 

  (10) 
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where   is a constant that represents the sum of weights for any possible -way 

model in the data. Determining this value can be ignored , since in the following steps 

it appears both in the numerator and the denominator of the fraction . 

3. For a defined value of c, the stochastic search will consider c groups. Accordingly, the 

search method will need the results of the weighting stage of   analyses 

(i.e., one CCA for each pair of groups) to assign weights to the SNPs of the selected 

groups. Each CCA calculation outputs two sets of weights such that each set contains 

the weights for the SNPs of a group. Hence,  columns of weights are reported. 

This means that c-1 weights are assigned for every SNP in its group. The total weight 

of a SNP is computed as the sum of the c-1 weights, which forms the numerator in 

Equation 10. 

4. Sample  SNPs        from the selected groups in step 1, one SNP from 

each group,  as the elements of the next interaction association model . Then 

calculate the following ratio :  

5.    (11) 

 where  is the BCM score given by Equation 4, and  is the 

prior probability of an interaction model given by Equation 10. 

6. If :  update model:   , else, update model   with the probability   . 

7. Repeat steps 3-4 until the number of predefined within-group iterations is reached. 

Then report the last k resulting interaction models. 
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8. Repeat steps 1-5 until the number of predefined among-groups iterations is reached. 

9. Compare all the resulting interaction models obtained from step 5 using steps 3-4, and 

report the final k interaction models.    

Experimental Methods  

This section provides details of the synthetic and the GWA datasets and the comparison 

algorithmic methods used in our experiments. 

Synthetic SNP data 

The synthetic datasets that we used were generated from a set of 70 epistatic models which were 

previously developed (17) and used in evaluating interaction detection methods (17, 23-25) . The 

models have two minor allele frequency (MAF) values of 0.2 and 0.4 and seven heritability (H) 

values of 0.01, 0.025, 0.05, 0.10, 0.20, 0.30, and 0.40 (Velez et al., 2007 provides a detailed 

description of these genetic models). 

For each model, 100 datasets were generated for each of four sample sizes (200, 400, 800 and 

1600) where each dataset contains equal number of case and control samples. The epistatic 

models were used to generate a pair of epistatic SNP values, and a set of 18 SNPs that were 

assigned random values was appended to simulate SNPs that are non-informative with respect to 

the case/control status. Thus, each sample contained values for 20 SNPs of which only two SNPs 

were functionally related to the case/control status. These synthetic datasets are available online 

at  http://discovery.dartmouth.edu/epistatic_data/#VelezDataModels . 

Alzheimer’s Disease GWA data 
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Alzheimer’s disease (AD) is the commonest neurodegenerative disease associated with aging and 

the commonest cause of dementia (26).  AD affects about 3% of all people between ages 65 and 

74 ,  about 19% of those between 75 and 84 ,  and about 47% of those over 85 .  AD is characterized 

by adult onset of progressive dementia that typically begins with subtle memory failure and 

progresses to a slew of cognitive deficits like confusion ,  language disturbance and poor judgment 

(27). 

   AD is typically divided into early-onset Alzheimer’s disease (EOAD) in which the onset of 

disease is before 65 years of age and late-onset Alzheimer’s disease (LOAD) in which the onset 

is at 65 years of age or later .  EOAD is rare and exhibits an autosomal dominant mode of 

inheritance .  The genetic basis of EOAD is well established ,  and mutations in one of three genes 

(amyloid precursor protein gene ,  presenelin 1 ,  or presenelin 2) account for most cases of EOAD 

(28). 

    LOAD is widespread and is estimated to affect almost half of all people over the age of 85 . 

 LOAD is believed to be a disease with both genetic and environmental influences ,  and 

elucidating the role of genetic factors in the pathogenesis and development of LOAD has been a 

major focus of research for more than a decade .  One genetic risk factor for LOAD that has been 

consistently replicated is the apolipoprotein E (APOE) locus (29) determined by the combined 

genotypes at the loci rs429358 and rs7412 .  In the past few years ,  GWASs have identified several 

additional genetic loci associated with LOAD . 

The LOAD GWA data we used were collected and analyzed originally by Reiman et al. The 

genotype data collected about 1411 samples that contained 861 cases diagnosed with late-onset 

Alzheimer’s disease (LOAD) and 550 controls; 644 were APOE ε4 carriers (one or more copies 
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of the ε4 allele) and 767 were non-carriers. Of the 1411 samples, the status of case/control was 

neuropathologically determined from brain tissue in 1047 samples and was determined clinically 

in 364 samples. In this dataset, 61% (861 of 1411) had LOAD. For each individual, the genotype 

data consist of 502,627 SNPs that were measured on an Affymetrix chip; the original 

investigators analyzed 312,316 SNPs after applying quality controls. We used those 312,316 

SNPs, plus two additional APOE SNPs from the same study namely, rs429358 and rs7412. 

Evaluation of IBMS 

We evaluated three aspects of IBMS on synthetic data. First, we assessed its ability to correctly 

rank SNPs in data generated from different genetic models and of varying sample sizes .  Second , 

 we compared the performance of IBMS with BCM on the hardest to detect interactions that are 

generated by genetic models that have low H and low MAF values . Third ,  we compared the 

performance of IBMS to two commonly used genetic interaction methods, namely,  BEAM and 

BOOST.  Although several other methods for detecting genetic interactions have been described 

in the literature ,  we restricted our evaluation to BEAM and BOOST, since these methods have 

been shown to be superior and scalable over other methods.  

   BEAM is a Bayesian-based epistasis detection method that partitions genetic markers into three 

categories (30) .  The first category contains markers assumed to have no impact on the 

phenotype, the second category contains associated markers that are assumed to have main 

effects, and the third category contains markers that are assumed to have main and interaction 

effects. BEAM uses  a novel Bayesian statistic to exhaustively score interactions among markers. 

The   BEAM software is available from http://www.fas . harvard.edu/~junliu/BEAM.    
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   BOOST is an exhaustive search method that identifies two-locus interactions in GWA data using 

log-linear models .  It proposes an upper bound for the likelihood ratio test statistic to prune 

insignificant epistatic interactions. This procedure approximates the test statistic which reduces 

the computational cost to a considerable degree.  Moreover,  it uses a Boolean representation of 

the genotype data which allows efficient collection of counts for genotype-phenotype tables 

using logic operations (31).  The BOOST software is available from 

http://bioinformatics.ust.hk/BOOST.html.    

   Results 

 This section describes the results obtained from applying IBMS and the comparison methods to 

synthetic data and the results obtained from applying IBMS to the LOAD GWA data. 

Synthetic data results 

 Using the synthetic datasets we examined the highest scoring two-locus interactions using IBMS 

and two comparison methods, namely, BOOST and BEAM .  Figure S1 gives the detailed results 

for 70 pure epistasis models without main effects .  For each genetic model ,  we defined power of 

the method as the proportion of the 100 replicate datasets for which the method ranked the two 

interacting SNPs as the top two SNPs.   For a small number of models ,  such as the models with H 

and MAF both set to 0.2 ,  the statistical power of BOOST is slightly higher than IBMS .  This 

almost always happened with stochastic search methods compared to exhaustive search methods . 

For all other genetic models IBMS outperforms both BOOST and BEAM .  The power of all 

methods was affected by H and MAF in that lower values resulted in  lower power .  However , 
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when the values for H and MAF are low (e.g.,  H = 0.01 ,  MAF = 0.2) IBMS has nearly double 

the power as BOOST or BEAM .     

   The average power of the three methods over all 70 genetic models shows that IBMS performs 

better than the two comparison methods (see Table 1) .  In particular , at low sample sizes BOOST 

and BEAM had lower power compared to IBMS .  This is due to the nature of IBMS which 

provides a complementary combination of a SNP-weighting linear function and a Bayesian 

scoring non-linear function .    

All experiments were conducted with a desktop computer with a 2.26 GHz CPU and 4 GB of 

RAM. Table 2 gives the average running time for each method on 100 datasets with 20 SNPs and 

different sample sizes. The average running times of IBMS are the lowest among all methods. 

BEAM has higher running times compared to other two methods. It is possible to reduce the 

running time of BEAM by adjusting its MCMC parameters, but reducing the running time 

typically leads to lower power. On the other hand, BOOST has lower running times due to its 

pruning and Boolean operation techniques.  

       We also compared the performance of IBMS to that of BCM on the five most challenging 

genetic models, namely, models 55-59 that have low H and low MAF values. The powers of the 

two methods on these models are shown in Table 3, and the running times for the two methods 

are shown in Figure 2. The results show that IBMS achieves higher power with lesser lower 

running times compared to BCM. The reduced running time is due to IBMS examining fewer 

interaction models compared to BCM. The higher power is because of the non-constant value of 

the interaction model probability which makes IBMS scoring function distinct from that of 

BCM.    

Page 18 of 35Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 Since ,  the weighting stage is the critical component of IBMS ,   we evaluated IBMS in its ability 

to rank SNPs .  For this analysis,  we used the synthetic datasets with different combinations of H 

and MAF values .  First ,  we partitioned a dataset into two groups such that each group contained 

one of the interacting SNPs .  Then ,  we applied CCA and obtained weights for all SNPs in either 

of the two groups and ranked SNPs according to their weights such that a SNP with the highest 

weight was assigned a rank of one and so on . After examining 100 datasets of each genetic 

model ,  we determined the average rank for each of the two interacting SNPs over 100 runs (see 

Figure 4) .  The results show that the interacting SNPs are highly weighted on the whole .  This 

becomes more pronounced as the sample size grows .  For instance ,  IBMS achieves excellent 

performance in ranking SNPs for the sample size of 1600 with an average rank of close to one 

for the interacting SNPs . 

[Figure 4] 

LOAD GWA data results 

 We used a LOAD GWA dataset to demonstrate the application of IBMS on a genome scale 

dataset. This dataset contained 234,665 SNPs from 861 cases and 550 controls. We used 

IMPUTE (http://mathgen.stats.ox.ac.uk/impute/impute.html) for imputing the missing genotypes. 

We applied the genotypic test using the chi-square statistic with 2 degrees of freedom using the 

PLINK software, and retained 76,755 SNPs with p-values less than 0.2 for further analysis. 

To identify potential epistatic interactions ,  we applied IBMS to identify pairs of interacting 

SNPs .  In the first stage ,  we partitioned the SNPs into 295 groups with each group containing 260 

adjacent SNPs (with the exception that the last group contained 315 SNPs) .   CCA was applied to 

every pair of groups. Then, the first canonical variables, one for each one group, was extracted 
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and analyzed with LRA to detect group-interactions.  The LRA model contained two SNP 

variable terms and one SNP interaction term, and a t-test was performed on all pairs of group-

variables (i.e., canonical variables) to statistically test the interaction term. After Bonferroni 

correction for multiple testing, we used a p-value threshold of 

0.05

(295

2 )  to reject or accept the 

interaction term. The application of the first stage showed that there was a significant interaction 

between the groups containing SNPs mapped to the APOE and GAB2 genes. This interaction 

was previously reported by the original authors (34).  The APOE group of SNPs obtained a higher 

weight than the GAB2 group. 

In the second stage,  the stochastic search identified several SNPs that interact with rs7412 which 

is a well characterized SNP on the APOE gene that is associated with LOAD (32-34).  Table S1 

gives the top 50 high scoring SNPs that interact with SNP rs7412. In particular, five previously 

reported SNPs namely rs901104 ,  rs4291702 ,  rs71158590 ,  rs4945261 , and  rs2510038 in the 

GAB2 gene obtained low ranks and high interaction scores (see Table S1). 

The running time for the weighting stage was approximately 4 hours on a desktop computer with 

a CPU of 2.66 MHz and RAM of 4 GB running the 32-bit Windows 7 operating system.  The 

running time for the stochastic search stage was approximately 17 hours. 

Discussion 

 A range of methods have been described in the literature to identify true disease associated 

genetic variants in high-dimensional GWA data that contain a large and highly redundant set of 

SNPs. Such data present several analytic challenges especially in the detection of interacting 

SNPs.   In this paper , we described and evaluated a computationally efficient method called 
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IBMS that identifies SNP-SNP interactions and interactions between two groups of SNPs in 

high-dimensional GWA data. The IBMS method is a two-stage method that combines CCA, 

LRA, and BCM to detect epistatic SNPs. 

The results demonstrate the utility of IBMS in identifying epistatic interactions. Compared to 

existing methods such as BOOST and BEAM, IBMS performed better in identifying interacting 

SNPs. Moreover, it is computationally efficient for application to high-dimensional GWA data.  

The IBMS method can be considered as a variable selection method. Most existing variable 

selection methods that are applied to SNP data focus on identifying a subset of SNPs with good 

classification accuracy, and are typically guided by the main effects of the individual SNPs. 

IBMS, however, weights SNPs based on their main effects as well as on their interaction effects. 

Thus, SNPs that are selected by IBMS may provide even better classification accuracy by the 

inclusion of interaction effects.  

   A key advantage of IBMS is in addressing the multiple-testing problem .  In GWA data, as the 

number of SNPs increases, the number of tests for association of single SNPs or their 

combinations with the disease becomes astronomical.  Therefore, the results become unreliable 

because of the large number of false positives .  In IBMS we tackled this problem by partitioning  

 the SNPs into groups, and reduced the number of tests to a great degree by performing analyses 

for only two-group interactions .  By grouping SNPs based on adjacency on the genome we take 

advantage of the correlation due to LD between nearby SNPs .   By grouping SNPs into groups 

according to their associated genes ,  and weighing the informativeness of each group ,  we can 

identify more informative groups of SNPs that can facilitate the selection of candidate genes for 

future biological experiments .  
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Partitioning of SNPs into groups plays an important role in IBMS, and one limitation of our 

method is that we have considered only two simple approaches for grouping SNPs. In future 

work, we plan to explore new approaches for grouping SNPs based on combining different 

sources of biological data. Such new grouping methods have the potential to further improve the 

performance of IBMS.   

Another limitation of IBMS is that although the interaction scoring function is non-linear, the 

CCA function is linear. Thus, IBMS considers only linear relations for group-group interactions . 

In future work, we plan to extend IBMS to use non-linear canonical correlation methods.  

In conclusion, we have developed a computationally efficient and accurate method for detecting 

interactions among genomic variants in high-dimensional data. We hope that researchers will 

find IBMS to be a useful tool in the analyses of GWA data and that future extensions will lead to 

additional improvements. 
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Table 1. Average power of the three interaction methods obtained by averaging over 70 genetic 

models.  

Sample size IBMS BOOST BEAM 

1600 

800 

400 

0.96 

0.90 

0.84 

0.94 

0.85 

0.69 

0.67 

0.64 

0.41 

 

 

 

Table 2. Average running times in seconds for 100 datasets for the three interaction methods. 

Sample size IBMS BCM BOOST BEAM 

1600 

800 

400 

11 s 

7 s 

5 s 

17 s 

11 s 

8 s 

11 s 

8 s 

6 s 

150 s 

85 s 

55 s 
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Table 3. Comparison of the power of IBMS and BCM on the five most challenging synthetic 

genetic models. 

Sample size            Method          Model 55         Model 56        Model 57     Model 58     Model 59 

1600 

 

800 

 

400 

 

     IBMS               0.67                0.75                0.72              0.97               0.51 

     BCM                0.66               0.71                0.68               0.96                0.51 

     IBMS               0.31                0.34                0.27               0.64               0.21    

     BCM                0.27                0.29                0.28               0.56               0.19                

     IBMS               0.13                0.12                0.12                0.27              0.10 

     BCM                0.07                                       0.11                0.10                0.27             0.05 
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Figure Legends 

Figure 1. An example of genotype-phenotype table with 2 SNPs and a phenotype with two states 

(e.g., case and control). The counts in the table are obtained from a dataset of genotypes that 

have been measured on a group of cases and controls. 

Figure 2. Flowchart showing the weighting stage of IBMS. 

Figure 3. Flowchart showing the stochastic search stage of IBMS. 

Figure 4. Performance of IBMS in ranking SNPs on synthetic data using the first stage of the 

method. It gives the average rank of the interacting SNPs ,  namely SNP1 and SNP2 over 100 

datasets under different genetic models.  The lower the average rank value ,  the higher the 

informativeness the SNP. 
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Figure 2 
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Figure 3 
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Figure 4 
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