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Ordinary differential equations (ODEs) are widely used to model dynamic properties of biological networks. Due to the complex-
ity of biological networks and limited quantitative experimental data available, estimating kinetic parameters for these models
remains challenging. We present a novel global optimization algorithm, differential simulated annealing (DSA), for estimating
kinetic parameters for biological network models robustly and efficiently. DSA was tested on 95 models sizing from a few to
several hundreds of parameters from the BioModels database1 and compared with other five widely used algorithms for pa-
rameter estimation, including both deterministic and stochastic optimization algorithms. Our study showed that DSA gave the
highest success rate in the whole dataset and performed especially well for large models. Further analysis revealed that DSA
outperformed the five algorithms compared in both accuracy and efficiency.

1 Introduction

Mathematical modeling of biological processes such as
metabolism, gene regulation and cellular signaling plays an
important role in systems biology. There are various ways to
delineate the dynamics of a biological system, and the most of-
ten used form is ordinary differential equations (ODEs), which
can balance the trade-off between efficiency and accuracy for
most biological systems. An ODEs description of a biological
network can be written in the form below:

dx
dt

= f(x,p, t) (1)

In which x stands for the current state of the system and p
is a vector of kinetic parameters. Knowledge about values of
the parameters is indispensable for obtaining the dynamical
behavior of the system and making reliable predictions. Al-
though a fraction of the parameters can be directly measured
by experiments, most of them are not known or difficult to be
measured. Moreover, the internal sloppy property of parame-
ter space of biochemical models makes it more complicated,
since measurement error introduced by experiments can fall
on stiff directions, thus bringing more uncertainty to the model
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10.1039/b000000x/
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Stable Species, and Peking-Tsinghua Center for Life Sciences at College of
Chemistry and Molecular Engineering, Peking University, Beijing 100871,
China. Tel: 010-62757486; E-mail: lhlai@pku.edu.cn

predictions2. Therefore in most cases parameters are estimat-
ed by optimization algorithms minimizing an objective func-
tion which quantifies the difference between the model outputs
simulated according to values of model parameters and corre-
sponding experimental measurements. This objective function
can be defined as the weighted sum of squared errors between
measured time-series profiles and output of the parameterized
model:

F(p) =
1

mn

m

∑
i=1

n

∑
t=1

[wit(xit(p)− xexp
it )]2 (2)

where xexp
it stands for the value of the ith measurement on

time t, xit(p) means the corresponding simulated value and
wit means the weight coefficients.

Traditional gradient-based methods usually fail to find well
fitting parameters due to the multimodal property of the objec-
tive function. Various global optimization algorithms, includ-
ing genetic algorithm (GA), evolutionary strategy (ES), dif-
ferential evolution (DE), simulated annealing (SA) and scat-
ter search metaheuristics (SSm) have been applied in param-
eter estimation of biological models3,4. In some applications
a local optimizer is embedded into these global optimization
algorithms to improve their efficiency and accuracy. SRES5

was claimed to be the most effective algorithm in a compar-
ative study on an artificial small network published in 20036.
However, the task of parameter estimation remains challeng-
ing because of the rapidly increasing size of kinetic models
and the inner property of parameter estimation problem, which
is actually a nonlinear least squares fitting problem. Studies of
model manifold of nonlinear least squares problems show that
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the vector of best fitting parameters often lies in a long and
narrow canyon2,7, making it easy for optimization algorithm-
s to get lost in badly fitting area. Though many algorithms
were developed to solve this problem8–13, most of these algo-
rithms were tested on small networks with a few to less than
30 parameters, thus presenting little evidence about their a-
bility to deal with larger models. On parameter estimation
of larger networks, Nim et al. presented SPEDRE14, an al-
gorithm based on derivatives evaluation by spline fitting and
belief propagation. This method showed good performance
in large low-degree networks with enough experimental data,
but it still cannot handle many real-world networks because in
many pathways not all species are measurable and high-degree
hubs are very common in biological networks15,16.

Simulated annealing (SA)17 is a global optimization al-
gorithm first designed for solving combinatorial optimiza-
tion problems (e.g., the travelling salesman problem). SA
is first developed mainly for solving combinatorial optimiza-
tion problems on discrete sets. It is also useful in optimizing
continuous multi-modal functions by applying self-adapting
step size control strategies18. Improvements of SA in solving
continuous problems involves techniques called basin hopping
and eigenvector following, in which the eigenvector of the
Hessian with the smallest eigenvalue is chosen to form a new
configuration along it. By iteration of this process and combi-
nation with a deterministic minimizer, the annealing schedule
can switch in the set of local minima, thus accelerating con-
vergence19.

In the present study, we developed a novel parameter esti-
mation algorithm based on SA named differential simulated
annealing (DSA). The major innovation of DSA is using all
eigenvectors of the Hessian of the objective function to con-
struct move classes adopting two kinds of strategies for per-
turbation to generate new configurations. This methodology
combined with a deterministic minimizer can obtain high ro-
bustness and efficiency in parameter estimation of biological
networks of various sizes. We also compared DSA with oth-
er widely-used optimization algorithms for parameter estima-
tion on some real-world biochemical computational models
from the BioModels database1. Although our discussion and
comparison are under a framework of parameter estimation of
ODEs-based models, it is obvious that DSA can also be ex-
tended to other nonlinear least squares fitting problems with
box constraints.

2 Methods

The workflow of DSA is shown in Figure 1. By evaluating
the approximate Hessian of the objective function periodical-
ly, DSA constructs a new coordinate system to form the move
class by which new configurations are generated from the old
ones. In generating new configurations, two alternative strate-

gies of perturbation may be adopted according to the direc-
tional derivative on the direction of perturbation. Each step in
the workflow will be described in detail in the following parts.

Fig. 1 Workflow of DSA. N is the number of objective function
value evaluations after which a deterministic minimizer will be
called to find a local minimum. M is the number of objective
function value evaluations after which the coordinate system for
perturbation will be reconstructed.

2.1 Calculate the approximate Hessian

DSA uses local geometric information to guide the Metropo-
lis sampler by adjusting both the coordinate system it moves
along and the mode of step in each movement. Now we con-
sider the general nonlinear least squares fitting problem be-
cause most parameter estimation problems can be written in
this form. The constraints on values of parameters are their
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lower and upper bounds.

argminp{F(p) =
m

∑
i=1

r2
i (p)} (3)

s.t.plb < p < pub (4)

Considering the order-2 Taylor expansion of F(p):

F(p0+dp)=F(p0)+dpT ∇F(p0)+
1
2

dpT H(p0)dp+O(∥ dp ∥2)

(5)
In which p0 denotes the best fit parameters. Note that ∇F(p0)
is a zero vector since p0 is a local minima, the expansion can
be rewritten as

F(p0 +dp) = F(p0)+
1
2

dpT H(p0)dp+O(∥ dp ∥2) (6)

So we can evaluate the increment of objective function on di-
rection dp:

F(p0 +dp)−F(p0)≈
1
2

dpT H(p0)dp (7)

This approximate increment is a quadratic function of dp.
The shape of contour line of such a function is an ellipsoid
centered in p0 and long axis on the eigenvector of H(p0) cor-
responding to its smallest eigenvalue. This ellipsoid-like ge-
ometry is illustrated in Figure 2A.

Calculating H(p0) is a time-consuming task when the num-
ber of parameters to be evaluated, N, is large. The time com-
plexity of this problem is O(N2). In order to save time spent
on the Hessian evaluation, we use the Fisher information ma-
trix (FIM) as an approximation of the Hessian. Consider the
sum of squares form of F(p) we have:

∂ 2F(p)
∂ pi∂ p j

= 2
m

∑
k=1

(
∂ rk(p)

∂ pi

∂ rk(p)
∂ p j

+ rk(p)
∂ 2rk(p)
∂ pi∂ p j

) (8)

In a small residue (rk(p)≈ 0) condition, the second term in the
equation above can be ignored. So the Hessian can be approx-
imately represented by two folds of the product of Jacobian
matrix’s transposition and itself:

H ≈ 2(
∂r
∂p

)T (
∂r
∂p

) (9)

Using this approximation the time cost will be reduced to
O(N). The approximate Hessian will be calculated after ev-
ery M steps of Metropolis sampling.

2.2 Generate directions for perturbation

By eigenvector decomposition of the approximate Hessian, a
set of directions representing the axes of the ellipsoid-like con-
tour can be generated. In DSA, these eigenvectors are adopted

as new coordinate system instead of the Cartesian coordinate
system to form the move class of simulated annealing. Figure
2A shows the eigenvectors of the Hessian of a 2-dimension
objective function. The advantage of taking such a coordinate
system is that it separates directions with tiny and huge direc-
tional derivatives to the largest extent. With different strategies
suitable for movements in directions with large or small direc-
tional derivatives, we expected that this choice of coordinate
system would lead to more significant improvement of perfor-
mance of simulated annealing than any other coordinate sys-
tems with relatively narrowly distributed directional deriva-
tives on the axes. The strategies of perturbation on both kinds
of directions will be described in detail in the next subsection.

Fig. 2 A two-dimensional illustration of local quadratic
approximation and different perturbation strategies. (A) Contour of
the quadratic approximation of objective function. v1 and v2 are two
eigenvectors of the Hessian. (B) Global perturbation on direction v2.
The bold red line stands for the range where the new trial solution
can lie. (C) Local perturbation on direction v1. (D) The distribution
to sample the new trial solution. It is a uniform distribution on
[LeftBound, RightBound] according to the perturbation strategy
adopted.

2.3 Perturbation strategies

Two different perturbation strategies are adopted in DSA to
accelerate its convergence and improve the efficiency of sam-
pling. Which strategy to choose in a certain step relies on the
current direction ri of perturbation: global strategy for sloppy
directions and local strategy for stiff directions. ‘Sloppy’ or
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‘stiff’ describes eigenvectors with smaller or bigger direction-
al derivative, respectively. When a global strategy is chosen,
the new solution will be sampled from uniform distribution
on the intersection of the line representing current direction of
perturbation and the box restraining the values of parameters,
or it will be sampled from a small neighbor [xi − εri,xi + εri]
of the old solution on the direction. Figure 2B and 2C shows
the two perturbation strategies. DSA uses a threshold λ0 to de-
cide between the two perturbation strategies: if the eigenvalue
is larger than λ0 the relevant direction of perturbation is con-
sidered to be stiff and a local perturbation is carried out. Oth-
erwise, if the eigenvalue of current direction is smaller than
the threshold, a global perturbation is adopted.

Choice of λ0 affects the proportion of global perturbations
in the optimization process. There will be no global perturba-
tions if the value of λ0 is negative. We also want the choice
between local and global perturbation strategies to be adap-
tive to the cooling of temperature. In ‘hot’ systems where it
is much easier to accept new trial solutions, we want a big-
ger global/local ratio to enhance the movement of solution in
the parameter space. Because both the temperatures during
annealing and the eigenvalues of FIM distribute over a wide
range crossing many magnitudes, we can directly set a con-
nection between them. In hotter temperature, namely lower β ,
we use a higher threshold to enable more global perturbation-
s. The choice of λ0 is coupled with the cooling of the system
temperature β using a reciprocal relationship:

λ0 =
c
β

(10)

2.4 Set initial conditions

Similar to original SA, DSA needs careful choice of param-
eters involving initial temperature, number of samplings un-
der one temperature, and the annealing schedule. It has been
proved that the annealing schedule should be slower than log-
arithmic to guarantee global convergence20, but such an inef-
ficient annealing schedule is not practical at all since time cost
of this process will be longer than that of complete enumer-
ating all available solutions. Decision of these parameters is
actually another optimization algorithm. Here we introduce
some empirical rules to help choose them. By scaling with
the dimension of the problem and sampling the whole region
of feasible solutions, DSA tries to set appropriate values for
some of them. A Latin hypercube sampler21 is called first,
generating a set containing m solutions uniformly distributed
in the feasible region. Values of objective function for these
diverse solutions are then calculated and ranked. The maxi-
mum value among them is used to set the initial temperature
according to the equation below:

β0 =
−ln0.99

f sam
max

(11)

Initial temperature chosen in this way can ensure that more
than 99% of newly generated trial solutions will be accepted
under it, given that the real maximum value of objective func-
tion in the feasible region, fmax, is not higher than f sam

max . Gen-
erally speaking, f sam

max will be closer to fmax if we choose larger
sample size m, but it may also result in longer time of com-
putation due to smaller β0. In logarithmic annealing schedule
the performance of DSA will not depend on the choice of ini-
tial solution, but we still need to be cautious in decision of it
since the annealing schedule adopted in DSA is much faster
than logarithmic (exponential as default) thus cannot guaran-
tee global convergence. In order to avoid beginning from a bad
solution trapped in the neighborhood of a local minimum, D-
SA ranks the solutions sampled by Latin hypercube sampling
by their corresponding objection function values, then picks
the solution with the lowest ‘fitness’ (i.e. the largest objective
function value). More local minima will be found by DSA
using such ‘non-greedy’ choice of initial guess. Some default
values of parameters for DSA are shown in Table 1.

Table 1 Default values for control parameters of DSA
c NMC NT s0 N M

1.03 50
√

dim 50
√

dim 0.05 500
√

dim 100dim
Meaning of the parameters: c is the cooling factor of annealing:
βn+1 = cβn. NMC means number of Monte Carlo samplings under
one temperature. NT is number of trial solutions sampled by Latin
hypercube sampling before annealing. s0 means the initial step size
of local perturbation. N is the number of objective function value
evaluations after which a deterministic minimizer will be called to
find a local minimum. M is the number of objection function value
evaluations after which the coordinate system for perturbation will
be reconstructed.

2.5 Local search

The local solver embedded in DSA will be called in two con-
ditions. First it will be called periodically during the anneal-
ing process, after every N steps of Metropolis sampling. The
solution returned by the local solver called in this condition
will only be accepted if its objective function value is smaller
than any solution found before. In order to find as many lo-
cal minima as possible, the local solver will also be called if
the current value of objective function is the smallest value ev-
er found. We chose Levenberg-Marquardt algorithm22 in our
work because of its wide application in solving nonlinear least
squares problems, but other choices will also be suitable.

2.6 Stop criterion

DSA will terminate if at least one of the conditions below is
satisfied:
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• No new trial solution is accepted under one temperature;

• The value of objective function reaches or is better than
expected global optimum;

• The maximum number of objective function evaluation
is exceeded;

• The maximum time of computation is exceeded.

3 Results

3.1 Case studies

We chose 95 models from the BioModels database1 to test
the performance of DSA. These models scale from very s-
mall networks with less than 10 nodes to large ones with up
to 76 nodes and 234 parameters. Detailed information about
these models are listed in supplementary information†. Five
other algorithms are also taken into comparison: simulated
annealing (SA)17 18, differential evolution (DE)23, stochastic
ranking evolutionary strategy (SRES)5,24, scatter search meta-
heuristics (SSm)25 and multi-start Levenberg-Marquardt algo-
rithm (LM)22. These algorithms have all shown promise in pa-
rameter estimation of biological networks. Among these algo-
rithms SA, DE, SRES, SSm are stochastic algorithms and LM
is deterministic. Parameters for these algorithms are shown in
Table 2.

It is worth notice that combination with local minimiz-
ers can improve efficiency of those global algorithms24,25.
The four global algorithms compared are all combined with
Levenberg-Marquardt algorithm to form hybrid algorithms.
The way to combine the global and local optimizer is the same
as that in DSA, in which the local algorithm is called either af-
ter N iterations in the global algorithm or when a new optimum
is found.

First we created artificial experimental measurements by
simulating the models using their published values of kinetic
parameters attached in the model files. Two conditions were
considered: one is the noise-off condition in which simulated
concentrations for all the species in the model were directly
taken as experimental data, the other is the noise-on condi-
tion in which 5% Gaussian noise was added to each simulat-
ed data point. The time of simulation was carefully chosen
according to the original publications to ensure that simula-
tion during this time can afford enough information about dy-
namics of the systems. For each species, 50 points uniform-
ly distributed in the time range of simulation were taken as
time point of experimental measurements. The artificial time-
course concentration profile of one of the models (BioModels
ID BIOMD0000000228) in both noise-off and noise-on con-
dition is shown in Fig 3. We used weighted sum of squared

Table 2 Control parameters for SA, DE, SRES, SSm and LM in the
comparative study
Algorithm Control parameter Value

tmax 200h
Universal f opt

off < 10−4

f opt
on < 1.01 f real

on
SA Same as DSA Same as DSA

x best
y 2

DE z bin
F 0.5

CR 1
NP 10×dim

SRES λ 10×dim
µ λ/7

Ndiv 10×dim
SSm Nref dim

p 4
LM NSP 50×dim

Meaning of the control parameters for the algorithms: Universal (pa-
rameters shared by all algorithms): tmax is the maximum computa-
tional time, f opt

off and f opt
on is the expected optimum value of the objec-

tive function under noise-off and noise-on conditions, respectively.
f real
on is the value of objective function yielded by the published value

of the parameters under noise-on condition. For definition of the two
conditions and the objective function, see the following paragraph-
s. DE: x means the way to choose a vector to be mutated, y is the
number of difference vectors used, z denotes the crossover scheme,
F is the amplification factor, CR is the crossover constant and NP is
the number of solution vectors in the population. dim is the dimen-
sion of the problem, which is the number of kinetic parameters in the
case studies. SRES: λ is the number of off-springs created in one
generation and µ is the number of individuals joining production of
the next generation. SSm: Ndiv is the number of diverse vectors and
Nre f is the size of refset. LM: NSP is the number of starting points in
the multi-start algorithm. The starting points were sampled by Latin
hypercube sampling method.

errors averaged over all data points as the objective function:

F(p) =
1

mn

m

∑
i=1

n

∑
t=1

[
(xit(p)− xexp

it )
1
n ∑n

t=1 xexp
it

]2 (12)

Kinetic parameters in these models can be grossly classi-
fied into three categories: coefficients, orders and qualitative
parameters. Coefficients are those parameters which are added
or multiplied to variables or other parameters in the equation-
s. These parameters must have non-zero ‘true’ value in order
to be significant in the model. For these parameters the range
is a randomly generated region containing its published value
covering 4 magnitudes. The purpose of randomly generating
lower and upper bounds for these parameters is to avoid the
tendency of all ‘real’ solution to be in the center of the plau-
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Fig. 3 Artificial time-course concentration profile of one model for
performance test of DSA and other algorithms. (A) The noise-off
condition. (B) The noise-on condition in which 5% Gaussian noise
was added to the data points generated by simulation.

sible region. Orders are parameters appearing in the exponen-
t (e.g., the Hill coefficients in gene regulatory models). For
orders the lower bounds were 0 and the upper bounds were
10. Qualitative parameters are parameters which are not or-
ders and have zero published values. These parameters are
often used in order to exclude some flux or interaction from
the original models, thus forming alternative models. Range
of these parameters was set to [-2, 2] since we do not know
the sign of the excluded interactions.

3.2 Result of comparison

First of all we compared the overall success rates of the six
algorithms over all models. In the noise-off condition, an al-
gorithm is considered to be successful if the weighted sum of
squared error averaged over all data points (i.e. the objective
function) is less than 10−4, which means that the difference
between observance and simulation is less than 1%. In the
noise-on case, successful parameter estimation is defined as
those who find values for the parameters which yield objec-
tive function value less than 101% of that yielded by the ‘real’
values of parameters. Maximum number of objective function
evaluations for the six algorithms were all set to 105 × dim,
where dim means the number of parameters to be evaluated.

Success rates of DSA and the other five algorithms in both
noise-on and noise-off conditions are shown in Figure 4 (the
grey bar). These results show that DSA has higher success
rate than all other five algorithms in both noise-off and noise-
on conditions, which indicates that DSA is a very robust algo-
rithm for parameter estimation.

3.3 Model size effect

In order to test the effect of model size on the performance of
DSA and the other five algorithms, we divided the 95 models
into two classes according to their size (number of parameters
to be evaluated). The threshold to distinguish small and large

Fig. 4 Success rates of DSA, SRES, SSm, DE, SA and LM. The
grey bars stand for success rates among all networks and the black
and white bars for success rates in big (not less than 30 parameters)
and small (less than 30 parameters) networks, respectively. (A)
Noise-off condition. (B) Noise-on condition.

network models was set to 30, which gives 57 small models
and 38 large models. The success rates of the six algorithms
when applied to small models and large models are shown in
Figure 4. The success rate of DSA is the highest among the
five algorithms, which shows similar performance for small
and large models. All the other five algorithms give signifi-
cantly lower success rate for the large models either with or
without noises, indicating that these algorithms cannot effec-
tively deal with large models with up to hundreds of param-
eters. One possible reason for the performance deterioration
in large models is that they do not take into consideration any
information about the size and dimensionality of parameter s-
pace, which makes the movement of trial solutions in parame-
ter space even more inefficient in high dimensional space. But
for DSA, because of the skewed distribution of eigenvectors
of the Hessian, its efficiency of movement during global per-
turbation will increase with dimensionality, thus breaking the
curse of dimensionality to some extent.

3.4 Mean rank score for algorithm performance

In addition to overall success rates, more indices are also nec-
essary to judge performance of DSA and the other five algo-
rithm compared. We chose four indices to comprehensive-
ly evaluate performance of the six algorithms: computation
time (time), number of objective function evaluations (N), Eu-
clidean distance (dis) between the best solution found by the
algorithm and the real solution, and optimum value of objec-
tive function (val). For each model we ranked the indices of
all six algorithms in increasing order with algorithms succeed-
ed always prior to those failed, then calculated the mean rank
of each algorithm over the 95 models. Since smaller value of
the indexes indicates less computational cost or smaller de-
viation, algorithms with smaller mean rank score will be a
better choice considering its performance over the 95 models.
The mean rank scores for DSA and the other five algorithms
are displayed in Figure 5. DSA exhibits smaller mean rank
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Fig. 5 Mean rank scores for DSA, SRES, DE, SSm, SA and LM.
Lengths of the error bars denote the standard deviation. (A)
Noise-off condition. (B) Noise-on condition.

scores than other five algorithms in all four indices, which
reveals its advantages over them in both efficiency and ac-
curacy. Complete results for the six algorithms under both
noise-off and noise-on conditions are listed in the supplemen-
tary information†.

3.5 Failures

DSA failed in finding proper parameters in 19 models un-
der noise-off condition and 18 models under noise-on con-
dition. Parameter estimation of these models is very dif-
ficult no matter which algorithm is used: other algorithm-
s compared also failed in treating these models, except for
BIOMD0000000105 under noise-on condition, in which S-
RES, DE and SSm successfully achieved well fitting param-
eters. This implies that these models may suffer from some
intrinsic difficulty in parameter estimation.

In order to find what factors may affect the difficulty in pa-
rameter estimation, we first manually checked the dynamical
properties of all the 95 models and classified them into two
categories according to whether concentrations of species in a
model oscillate. There are 26 oscillators in the 95 models and
DSA failed in 10 of them under both noise-off condition and
noise-on condition. Failures in parameter estimation of os-
cillating systems constitutes the majority of all failures under
both condition (11 out of 19 under noise-off condition and 12
out of 18 under noise-on condition). It seems that oscillation,
as appearance of limit cycles in a dynamic system, introduces
more strict constraints on values of parameters, hence hinders
most optimization algorithms from successful parameter esti-
mation. However, DSA still outperformed the other five al-
gorithms in parameter estimation of these oscillating system-
s (Figure S5, supplementary information†) with significantly
higher success rates under both noise-off and noise-on condi-
tions.

Furthermore, we found that the difficulty of parameter esti-
mation for some models can be elucidated by local geometry
near the global minimum, which can be quantitatively mea-
sured by using quadratic approximation. Under such approxi-

mation the region containing all well fitting parameter vectors
around the global minimum is a hyper-ellipsoid with semi-

principal axes of length
√

fm
λi

located on eigenvectors of the
Hessian, where fm is the largest tolerable objective function
value for well fitting parameter vectors and λi is the corre-
sponding eigenvalue. Volume of this hyper-ellipsoid can be
calculated as below:

Vn =
2πn/2

nΓ(n/2)

n

∏
i=1

√
fm

λi
(13)

In which Γ(n/2) is the Gamma function:

Γ(s) =
∫ +∞

0
xs−1e−xdx (14)

We calculated the proportion of this well fitting ellipsoid in
the box containing all available parameter vectors for the 95
models under noise-off condition: rn =Vn/Dn, where D is the
length of edges of the available box. Intuitively, it will be easi-
er for parameter estimation algorithms to find the global mini-
mum if the well-fitting ellipsoid occupies larger fraction of the
available box. This is the fact: the values of rn in models that
DSA failed are significantly smaller than in those models that
DSA succeeded (p=0.0028). For more information, see Figure
S1 in supplementary information†. This reveals that the degree
of difficulty in parameter estimation largely depends on the lo-
cal geometry of objective function. The analysis also provides
a new way of optimal experimental design, that is, maximizing
the proportion of well fitting ellipsoid while maintaining pa-
rameter identifiability, thus facilitating the searching of global
minimum.

4 Implementation details

Programs implementing SA, DE, SSm, SRES, LM and D-
SA were all written in C++. Models downloaded from
the BioModels database were translated to C++ codes us-
ing SBML translator in Systems Biology Workbench (S-
BW)26. Some data structures and functions from the
GNU Scientific Library (GSL)27, including the ODEs solver
gsl odeiv2 msbdf, the eigenvalues and eigenvectors calcula-
tor for real symmetric matrixes, the random number gener-
ator, were used in the codes. Jacobians of the ODEs were
symbolically calculated by scripts based on SymPy, a Python
library for symbolic mathematics28. The SRES program
was written based on a published C library of this algorithm
named libSRES29. The local optimizers in all programs us-
ing Levenberg-Marquardt algorithm were implemented mak-
ing use of MPFIT30, a C library for both constrained and un-
constrained nonlinear least squares fitting.

We also developed two packages, libDSA and DSA Matlab,
to help users with different demands solve their own prob-
lems with DSA. libDSA is a static library written in C++.
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It allows users to tune control parameters of DSA by them-
selves to maximize efficiency and adapt to different prob-
lems. On the other hand, DSA Matlab is a MATLAB pack-
age which is very easy to use but sacrifices some control-
lability by users. These two packages can be download-
ed from: http://mdl.ipc.pku.edu.cn/mdlweb/
register.php?id=15. For more details about how to use
these two packages, see the README documents attached to
them.

5 Conclusions

This work presents DSA as a new global optimization algo-
rithm for solving nonlinear least squares problems and demon-
strates its higher effectiveness in parameter estimation of bio-
chemical models than SA, DE, SRES, SSm and multi-start
LM via a comparative study on 95 ODEs models covering net-
works of different sizes. By using local geometric information
to guide movements of trial solution in parameter space, DSA
can find parameters satisfyingly fitting experimental observa-
tion for most models. DSA shows high robustness and good
efficiency in parameter estimation, especially in treating large
models. Furthermore, DSA is easy to programme and paral-
lelize due to its similarity to the original simulated annealing
algorithm.

As we are gaining more and more knowledge about the
molecular mechanisms of biological processes and the avail-
ability of high throughput experimental data, the necessity to
build large, multiscale models to quantitatively describe dy-
namics of living systems is becoming even more significan-
t. There already exists some primary attempts in whole-cell
modeling of model organisms31, but effective ways to param-
eterize these huge models are still lacking, partly because of
the high dimensionality of parameter space. Although some
parameters can be obtained from existing researches, databas-
es, direct measurements or manual adjustment, this will be a
very time-consuming task and can introduce additional bias.
As the present study shows that DSA performs well in large
models, we hypothesize that it can be widely used in compre-
hensive and detailed dynamical modeling of biological sys-
tems in the future.
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