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Abstract 

Coding and non-coding RNAs associate with proteins to perform important functions in 

the cell. Protein-RNA complexes are essential components of the ribosomal and 

spliceosomal machinery, are involved in epigenetic regulation and form non-membrane-

bound aggregates known as granules. Despite the functional importance of 

ribonucleoprotein interactions, the precise mechanisms of macromolecular recognition are 

still poorly understood.  

 

Here, we present the latest developments for experimental and computational 

investigation of protein-RNA interactions. We compare performances of different 

algorithms and discuss how predictive models allow the large-scale investigation of 

ribonucleoprotein associations. Specifically, we focus on approaches to decipher 

mechanisms regulating the activity of transcripts in protein networks. Finally, the 

catRAPID omics express method is introduced for the analysis of protein-RNA expression 

networks.  
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Introduction 

Recent approaches based on nucleotide-enhanced UV crosslinking and 

immunoprecipitation (CLIP) identified a number of previously unknown proteins with an 

RNA-binding activity 1,2. As RNA-binding proteins (RBPs) orchestrate many post-

transcriptional events and influence gene expression by acting at various steps of RNA 

metabolism 3, protein-RNA associations could be important players in regulatory networks 

4 . Intriguingly, only a fraction of the genome (i.e. about 1.4% in humans) is translated 

into proteins, while > 50% of the mammalian genome is predicted to be transcribed, 

which suggests that a large number of RNAs might contribute to biological processes by 

associations with RBPs 5–7.  

 

Despite the increasing amount of high-throughput data, basic questions regarding remain 

to be addressed: How do protein and RNA recognize each other? What are the 

mechanisms leading to formation of assemblies such as ribonucleoprotein aggregates? Is 

it possible to build models to predict protein-RNA associations and exploit theoretical 

frameworks to investigate functional and dysfunctional complexes?  

 

Here we present state-of-the-art experimental and computational approaches to 

investigate protein-RNA associations. We describe predictive models for the 

characterization of ribonucleoprotein complexes and introduce the latest developments in 

the field including catRAPID omics express. Finally, we discuss future challenges for the 

prediction of RNA structure and propensity to form ribonucleoprotein aggregates. 

 

Quantitative approaches to detect protein-RNA interactions 

 

Detection of RNA targets and identification of binding sites is usually based on in vitro 

and in vivo experiments such as systematic evolution of ligands by exponential 

enrichment (SELEX) 8 and immunoprecipitation (IP) 9,10. Although accurate, these 

approaches require considerable amount of work for the optimization of experimental 

conditions 11,12:  

• RNA immunoprecipitation (RIP) is the most common approach to reveal 

interaction between proteins and ribonucleic acids. To perform RIP, it is necessary 

to use an antibody directed against the RNA-binding protein of interest to pull 

down associated RNAs from cellular extracts. RNA sequences are identified using 
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qPCR, microarrays and next-generation sequencing 13. Two relevant issues limit 

the application of the method: i) the low resolution (i.e., the binding sites cannot 

be identified) and high propensity to include indirect interactions; ii) the 

propensity of protein-RNA complexes to re-assemble after cell lysis, which might 

introduce artifacts 14. A RIP variant is being developed to detect RNA interactions 

with nuclear chromatin. In this case, the approach exploits a formaldehyde 

fixation step to lock RNA-chromatin interactions. The crosslinking method allows 

identification of indirect protein-RNA interactions as well as detection of higher 

molecular weight macromolecular complexes.  

 

• CLIP 15 exploits crosslinking and nuclease digestion, enabling stringent purification 

of RNA-protein complexes through size separation by gel electrophoresis to reveal 

which RNAs are bound and where on the sequence the interaction occurs. A 

variant of this technique, called individual-nucleotide resolution CLIP (iCLIP) 

allows detection of RNA-protein interactions with single-base precision 16. Two key 

differences between CLIP and RIP are the crosslinking and gel-purification steps. 

The RNA molecules in the RNA-protein complexes are radioactively end-labeled, 

resolved by SDS-PAGE and transferred to a membrane, which enables 

visualization of the complex and ensures that no non-specific RNA is co-purified.  

 

• ChIRP (chromatin isolation by RNA purification), CHART (capture hybridization 

analysis of RNA targets) and RAP (RNA antisense purification) exploit biotinylated 

oligonucleotides complementary to the RNA of interest as a way to pull down 

associated proteins 17,18. Mass spectrometry and next-generation sequencing are 

employed to identify proteins associated with RNA and genomic locations at which 

those interactions occur. 

The field of protein-RNA interaction is evolving rapidly thanks to high-throughput 

technologies 16 and the basic principles regulating the formation of ribonucleoprotein 

complexes are starting to be elucidated. Nevertheless, a number of crucial questions are 

emerging from experimental works 19,20: How many proteins have RNA binding abilities 2 

? Do non-canonical RNA-binding regions occur more often than previously thought 1 ? 

What is the role of RNA structure in macromolecular recognition 21,22 ? Are there special 

RNA-mediated mechanisms regulating cell homeostasis 23,24 ?  
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Computational methods for prediction of protein-RNA interactions 

 

Physico-chemical properties are particularly useful to identify binding regions in protein 

and RNA molecules. A number of algorithms, such as RNABindR 25, SCRPRED 26 and the 

cleverSuite 27, have been trained to predict the RNA-binding propensity of proteins using 

primary structure information. Recent computational methods focus on the simultaneous 

predictions of contact regions for both protein and RNA, which is essential to capture the 

specificity of ribonucleoprotein complexes. 

 

In 2011 the catRAPID algorithm was released to predict protein associations with coding 

and non-coding transcripts 28. The method was trained on 858 not redundant protein-RNA 

complexes available in the Protein Data Bank (http://www.rcsb.org) to discriminate 

interacting and non-interacting molecules using the information contained in primary 

structure. catRAPID was tested on the non-nucleic-acid-binding proteins (NNBP) dataset 

(area under ROC curve of 0.92) 29, the non-coding RNA and protein interactions (NPInter) 

database (area under the ROC curve of 0.88) 30, and a number of interactions validated 

by RIP and CLIP approaches (RNase P and MRP complexes, XIST network and RBP-

associated transcriptomes) 23,24,31,32.  

 

At the same time catRAPID was published, Pancaldi and Baehler introduced an approach 

based on Support Vector Machine (SVM) and Random Forest (RF) to predict RBP targets 

in yeast 33. To rationalize the factors contributing to the formation of ribonucleoprotein 

complexes, the authors studied untranslated region (UTR) properties, RNA structures, 

expression levels, gene ontology (GO) associations and physico-chemical features. A 

subset of 40 RBPs along with the corresponding experimental targets for a total of 12000 

interactions were used to validate the method. The findings of this analysis can be 

summarized as follows: 

 

• High nitrogen content and high isoelectric point discriminate RBPs from other 

proteins; 

• A significant correlation between RNA length and relative amount of Glycine, 

Isoleucine and Valine has been reported; 

• Proteins with high-isoelectric points tend to bind to long mRNAs containing a large 

number of stem-loops; 

• RBPs sharing common targets often interact with each other and bind to the 

mRNAs of their interaction partners, building an auto-regulatory system. 
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To test the predictive power of the method, the authors performed cross-validation and 

reported accuracy of 0.69, an Area Under the ROC Curve of 0.77 and sensitivity and 

specificity around 0.7. SVM performed better than RF, but only 14 out of 76 RBP targets 

could be well discriminated. The approach presented in this study is not available in form 

of web-server / source-code, which limits its use. 

 

Always in 2011, Muppirala et al. developed RPIseq to predict protein-RNA associations 

using SVM and RF approaches 34. In contrast to Pancaldi and Baehler, RPIseq predictions 

are based on primary structure. In RPIseq, RNA sequences are encoded with the 

normalized frequency of nucleotide tetrads (total of 256 characteristics), while protein 

sequences are represented using conjoint triad (total of 343 characteristics): 

 

• The nucleotide tetrads are 4-mer combinations of [A,C,G,U];  

• The protein triad divides the 20 amino acids in 7 classes: [A,G,V], [I,L,F,P], 

[Y,M,T,S] , [H,N,Q,W], [R,K], [D,E]  and [C].  

 

RPIseq 34 training has been performed on two different datasets obtained from Protein-

RNA Interface Database (PRIDB)35: a larger set containing ribosomal complexes and a 

smaller set without ribosomal proteins-RNA associations. On both sets, RF outperforms 

SVM in both accuracy and true positive rate. Both methods show good performances on 

the dataset containing ribosomal information (SVM: accuracy=0.87; RF: accuracy= 

0.89). The algorithms have been additionally applied to predict protein interactions with 

non-coding RNAs downloaded from NPInter 30. When trained on the larger dataset, RF 

correctly predicted 80% of NPInter interactions, while SVM only 66%.  

 

In 2012, Wang et al. 36 developed a sequence-based Naïve Bayes classifier to predict 

interactions between RBPs and non-coding RNAs. Three different datasets were used to 

validate the method: PRIDB35 with and without ribosomal complexes and NPInter30. The 

following features are used as input: 

 

• RNA sequences are analyzed using 3-mer occurrence of [A,C,G,U]; 

• Four classes [D,E], [H,R,K], [C,G,N,Q,S,T,Y]  and [A,F,I,L,M,P,V,W] are employed 

for amino acid frequencies. 

 

In a 10-fold cross validation, Naïve Bayes and extended Naïve Bayes classifiers obtained 

similar results with accuracies around 0.7, specificities of 0.9 and sensitivities of 0.3-0.4 

on all the datasets.  
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A major advantage of catRAPID 28 and RPIseq 34 is their online availability,  whereas the 

algorithms by Pancaldi and Baehler 33 and Wang et al. 36 are not publicly available.  

 

The catRAPID modules 

 
 

In the last years, a number of algorithms have been implemented to investigate 

mechanisms associated with protein-RNA interactions.  We focused on large-scale 

predictions and comparison with experimental data technologies such as CLIP. The 

catRAPID modules to compute protein-RNA interactions are available at our group 

webpage http://service.tartaglialab.com/page/catrapid_group. At present, 4 algorithms 

are available: catRAPID graphic, catRAPID fragments, catRAPID strength, catRAPID omics. 

Here, an overview is provided of the different modules with related examples (Table 1). 

 

catRAPID graphic. The contributions of secondary structure, hydrogen bonding and van 

der Waals’ are combined together into the interaction profile: 

 

Φ����� � ��H����	�
W�����	��S���	         (1) 

 

where the variable � indicates RNA (� � �) or protein (� � �). The S�� term designates the 

profile associated with secondary structure occupancy of each nucleotide (or amino acid) 

in RNA (protein) sequence: 

 

�� � ��, ��, … , �������         (2) 

The RNAplot algorithm is employed to generate secondary structure coordinates of a 

number of models 37. Using the nucleotide coordinates, we define secondary structure 

occupancy by counting the number of contacts made by each nucleotide within the 

different regions of the chain (Figure 1). High values of secondary structure occupancy 

indicate that base pairing occurs in regions with high propensity to form hairpin-loops, 

while low values are associated with junctions or multi-loops. Similarly, H��� represents the 

hydrogen-bonding and W���� the van der Waals’ profile 38. The interaction propensity � is 

defined as the inner product between the protein propensity profile Ψ����� and the RNA 

propensity profile Ψ����  weighted by the interaction matrix I: 

� � Ψ�����I	Ψ����            (3) 
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The matrix I has been derived using a Montecarlo approach to guarantee optimal space 

sampling in the parameters space. The algorithm predicts the interaction propensity of a 

protein-RNA pair reporting the discriminative power DP, which is a measure of the 

interaction potential with respect to the training sets 29. DP ranges from 0% (the case of 

interest is predicted to be negative) to 100% (the case of interest is predicted to be 

positive). In general, DP values above 50% indicate that the interaction is likely to take 

place, whereas DPs above 75% represent high-confidence predictions. The catRAPID 

graphic module predicts the interaction propensity of a protein-RNA pair reporting the DP 

and a heatmap of the interaction scores along the sequences. The module accepts protein 

sequences with a length ranging between 50 and 750 amino acids and RNA sequences 

between 50 and 1200 nucleotides and is more accurate on small transcripts 32.  

 

catRAPID strength. This module calculates the interaction of a protein-RNA pair with 

respect to a reference set 32. Random associations between polypeptide and nucleotide 

sequences are used for the reference set. Reference sequences have the same lengths as 

the pair of interest to guarantee that the interaction strength is independent of protein 

and RNA lengths 32. The interaction strength ranges from 0% (no interaction) to 100% 

(strong interaction). Interaction strengths above 50% indicate a high propensity to bind 

(Figure 2). In a previous study, it has been observed that the strength correlate with 

chemical affinities 32, which suggests that the interactions propensity can be used to 

estimate the strength of association. It is important to mention that the interaction 

strength provides a better estimate of the binding than the discriminative power, as it is 

evaluated on a larger set of interactions and excludes potential biases arising from 

protein/RNA sequences lengths. 

 

catRAPID fragments. Due to the conformational space of nucleotide chains, prediction of 

RNA secondary structures is difficult when RNA sequences are > 1200 nucleotides and 

simulations cannot be completed on standard processors (2.5 GHz; 4 to 8 GB memory). 

To overcome this limitation, a procedure called fragmentation was introduced. This 

involves the division of polypeptide and nucleotide sequences into fragments followed by 

prediction of the interaction propensities 31,32. Two types of fragmentation are possible: 

 

• Protein and RNA uniform fragmentation (for transcripts smaller than 10000 

nucleotides) 31: The fragmentation approach is based on the division of protein and 

RNA sequences into overlapping segments. This analysis of fragments is particularly 

useful to identify protein and RNA regions involved in the binding 23,31. 
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• Long RNA weighted fragmentation (for transcripts larger than 10000 nucleotides) 

32: The use of RNA fragments is introduced to identify RNA regions involved in 

protein binding (Figure 3). The RNALfold algorithm from the Vienna package is 

employed to select RNA fragments in the range 100-200 nucleotides with predicted 

stable secondary structure 32. 

 

catRAPID omics. We have recently developed an algorithm to allow fast calculation of 

ribonucleoprotein associations in Caenorhabditis elegans, Danio rerio, Drosophila 

melanogaster, Homo sapiens, Mus musculus, Rattus norvegicus, Saccharomyces 

cerevisiae and Xenopus tropicalis 39. The algorithm computes the interaction between a 

molecule (protein or transcript) and the pre-compiled reference library (transcriptome or 

proteome) for each model organism. In addition to the interaction propensities, 

discriminative power and interaction strength, the approach allows detection of RNA-

binding regions in proteins and recognition motifs in RNA molecules. The method has 

been validated on Photoactivatable-Ribonucleoside-Enhanced Crosslinking and 

Immunoprecipitation (PAR-CLIP) data and predicts associations with high significance (p-

values < 0.05).  

 

Examples of predictions and comparison between predictive methods 

 

In a recent study, the catRAPID approach has been employed to investigate the 

occurrence of ribonucleoprotein associations in biological pathways 23. In this analysis, 

the interaction potential was computed for 295 × 106 protein-RNA pairs reported in 

Reactome 40 and 65 × 106 associations available from NCI-Nature Pathway Interaction 

Database (NCI-PID) 41. One of the main results of this study is that around 1000 genes 

encoding aggregation-prone and structurally disordered proteins have a high propensity 

to interact with their own mRNAs (autogenous interactions). Here, experimental evidence 

available in literature is used to compare catRAPID performances with other 

computational methods (Table 2)42–48 on autogenous interactions: 

• Heterogeneous nuclear ribonucleoprotein L hnRNP-L is able to induce non-sense 

mediated decay by binding to its own mRNA 48. Our predictions, carried out with 

catRAPID fragments (“Long RNA” fragmentation option 32; see Methods, catRAPID 

fragments) indicate that hnRNP-L interacts with its own transcript within three 

different intronic regions located between exons 1-2, 6-7 and 9-10, which is in 

agreement with experimental evidence 48. More specifically, hnRNP-L is predicted to 

bind with strong propensity to the 3’ CA cluster 6A (interaction strength = 84 %; 
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Figure 3; Table 2) of the hnRNP-L RNA (intron 6 of transcript ENST00000221419 

corresponding to nucleotides 39332858-39332174 of NC_000019.9) and not to 

sequence 6A (position 39332443-39332174; interaction strength = 1 %; Figure 3; 

Table 2), which is in agreement with the in vitro assays performed by Rossbach et al. 

48. Similarly to our calculations, RPIseq predicts region 39332858-39332174 to be 

interacting with hnRNP-L (RF score = 0.75 and SVM score = 0.88), while fragment 

39332443-39332174 has RF score = 0.85 and SVM score = 0.77. 

 

As reported in Table 2, RPIseq shows excellent true positive rate and high false positive 

rate. It is likely that, due to the heterogeneous composition of training datasets, 

algorithms show different predictive power. Nevertheless, it is advisable to use all the 

available methods, as comparative analyses provide precious information for the 

designing of new experiments. 

 

The examples used here (Table 2) refer to interactions occurring between transcriptional 

and translational products of the same gene. catRAPID predictions indicate that a large 

number of proteins undergo autogenous associations in intronic/UTR regions 23. As the 

maximum levels of mRNA expression are intrinsically correlated with the aggregation 

rates of encoded proteins 49,50, autogenous interactions could represent a homeostatic 

mechanism to regulate expression via feedback loops, thus limiting protein production 

and the tendency of proteins to aggregate 51,52. In this regards, it is likely that 

autogenous interactions play a major role in regulation the expression of dosage-

sensitive genes 53,54. At present, we do not know if self-regulatory mechanisms represent 

a way of avoiding production of highly concentrated and potentially toxic protein products 

23 or derive from a primordial and ribosomal-independent mechanism of translation 55.  
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catRAPID omics express 

 

catRAPID omics express (http://service.tartaglialab.com/page/catrapid_express_omics_group) is 

a recent implementation of our catRAPID omics 39 algorithm to investigate the connection 

between expression networks and interaction propensities of protein-RNA pairs 24 (Table 

1). Our algorithm allows the calculation of both interaction propensities and expression 

patterns for a given protein with respect to the human transcriptome (or given RNA with 

respect to the human nucleic-acid binding proteome). Using this approach, we found that 

interaction between RBPs and mRNAs is with high statistical significance related to the 

probability that the two molecules have linked patterns of expression in a number of 

human tissues 24. More specifically, it has been observed a strong enrichment in functions 

related to cell-cycle control for positively correlated patterns and survival, growth and 

differentiation for negatively correlated patterns. Intriguingly, about 90% of genes in 

both categories are listed in the gene index of the National Institutes of Health’s Cancer 

Genome Anatomy Project, with a large number of tumor suppressors featuring in the 

former category and many transcription regulators appearing in the latter. Our analysis 

reveals that modifications in the expression network could trigger aberrant interactions 

that lead to pathogenic events, including cancer 24.  

 

To show the performance of catRAPID omics express, which is here released with a web 

service interface, we collected recent CLIP experiments 56–60 and assessed the ability of 

the algorithm to predict interactions between RBPs and their targets with available 

expression data (Figure 4). catRAPID omics express predictions achieves significant 

performances (p-values < 0.05; Fisher’s exact test) in  remarkable agreement with 

genome-wide experimental data.  

 

In these calculations, expression profiles are derived from RNA sequencing data in 14 

human tissues (ArrayExpress: E-MTAB-513) 61. The normalized relative abundances are 

assigned respectively to proteins and RNAs using a homology-based criterion 24. 

Pearson’s coefficient calculated across expression levels for all the tissues represents the 

correlation of the constitutive expression levels associated with every protein-RNA pair. 

The absolute value of expression correlation is added to the sum of interaction propensity 

values to rank the results 39. Quantitative predictions on the binding propensities of full-

length proteins (alternatively, nucleic acid binding regions) and transcripts (alternatively, 

predicted stable secondary structure fragments) are provided as output.  

Page 12 of 28Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 12

 

Concluding remarks 

 

The field of protein-RNA interactions is moving fast and a number of fascinating 

hypotheses have been recently formulated on the evolution of ribonucleoprotein 

complexes 1,62. Computational models represent an important source of information that 

can be exploited to identify trends, understand the principles of molecular recognition and 

design new experiments. Indeed, improvement of theoretical models and subsequent 

validation of predictions is crucial to achieve a better description of the role of coding and 

non-coding RNAs in protein networks, especially in human disease 63. As shown for 

catRAPID omics express, computational methods greatly benefit from integration with 

experimental data coming from different sources, including lncRNAdb (repository for long 

noncoding RNAs) 64, UNRED  (database long noncoding RNA expression) 65,  UNONCODE  

(integrated knowledge dataset of non-coding RNAs) 66, UHMDD (human microRNA 

disease database) 67, UOMIM (list of human genes and genetic disorders) 68 and UGAD 

(Genetic Association Database) 69. 

 

Synergy between computational and experimental approaches is expected to improve our   

understanding of ribonucleoprotein networks. At present, two important challenges can 

be identified for future research: i) development of methods to accurately predict RNA 

structure; ii) integration of existing tools to elucidate mechanisms leading to formation of 

complexes such as ribonucleoprotein aggregates.  

 

Structural models. catRAPID calculations rely on the Vienna algorithm to generate 

accurate predictions of secondary structure ensembles 70. In the future, it will be crucial 

to improve performances of computational approaches to achieve a more accurate 

characterization of RNA regions involved in protein binding. At present, classical 

experimental methods for RNA structure determination include X-ray crystallography, 

NMR, cryo-electron microscopy and chemical and enzymatic probing. However, these 

methods are only applicable to analyze a single RNA per experiment and constrained by 

the length of probed transcripts.  

 

A relatively new and promising large-scale technique for structure determination is 

Parallel Analysis of RNA Structure (PARS), which is based on deep sequencing of precise 

RNA fragments generated by single strand specific enzyme S1 and double-strand specific 

enzyme V1 71.  A similar approach exploits high-throughput sequencing of fragments 

generated by single-strand specific nuclease P1 and has been applied to non-coding RNAs 
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in different cells 72. In this case, the Selective 2’-Hydroxyl Acylation analyzed by Primer 

Extension (SHAPE) chemistry, combined with multiplexed bar coding and next generation 

sequencing, was able to measure the structures of a complex pool of RNAs 73.  

 

Methods based on technologies such as PARS and SHAPE could be very useful for 

investigation of RNA structure and will provide new data to train predictive algorithms. 

Nevertheless, it is important to mention that the structure measured with PARSE and 

SHAPE could be significantly different from that observed in vivo 74, as proteins  are 

known to influence RNA folding. 

 

 

Ribonucleoprotein aggregates. Using catRAPID to investigate protein-RNA 

associations, it has been observed that several proteins including Muscle-blind-like 

MBNL1 and the heterogeneous nuclear ribonucleoproteins hnRNP-A1, hnRNP-A2/B1, 

hnRNP-C, hnRNP-D, hnRNP-E, and hnRNP-G, bind to CGG repetitions in the 5’ UTR of 

FMR1 31. These ribonucleoprotein associations are particularly relevant because they 

occur in a neurodegenerative disorder called Fragile X-associated tremor/ataxia 

syndrome 75,76.  

 

How often do RNA molecules promote sequestration of proteins in the cell? Previous 

studies have reported cases of phase separation in cytoplasm and nucleoplasm, which, 

similarly to lipid-raft formation in membranes, results in the formation of droplets 77. 

These droplets define specific, non-membrane-bound accumulations rich in proteins and 

RNA (examples include nucleoli, stress granules and Cajal bodies), and are in many cases 

known to be the sites of mRNA storage, processing, and decay 78,79. Intriguingly, it has 

been proposed that the packaging of cytoplasmic mRNA into discrete ribonucleoprotein 

granules regulates gene expression by delaying the translation of specific transcripts 80. 

At present, it is not possible to state if ribonucleoprotein granules are functional 

assemblies or pathological transitions to amyloid structures 79. As a matter of fact, recent 

experiments showed that several disease-related mutations of TDP-43 and FUS promote 

granule formation 81.  

What are the molecular features underlying the formation of ribonucleoprotein 

aggregates?  Theoretical approaches for prediction of protein aggregation could provide 

insights into this mechanism 76–78. Indeed, aggregation can be predicted with high 

accuracy using physico-chemical features such as hydrophobicity, secondary structure 

propensity and solvent accessibility 85.  According to our calculations, structural disorder 
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regions of proteins interact with RNA 24 and this could have a strong impact on 

aggregation 86 and toxicity 87. It is possible that stable RNA secondary structures, 

especially those enriched in GC content, contribute to the spatial rearrangement of 

disordered regions of proteins 23. We envisage that the simultaneous investigation of 

RNA-binding ability and aggregation propensity of proteins will be key to understand 

pathogenesis of several disorders, including neurodegeneration and cancer 62.  

In conclusion, the methods and ideas discussed here have been developed in an exciting 

moment of the post-genomic era 61. For the very first time, experimental and 

computational approaches have started to unveil the complexity of our genomes and 

protein-RNA emerged as key players in a large number of regulatory processes 88.  It is 

our hope that the works presented hereby will inspire other researchers to validate the 

large-scale models and generate new hypotheses.  
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Table 1. catRAPID modules. Synopsis of catRAPID algorithms, their use and related 

examples 23,24,31,32. 

 

Table 2. Predictions and comparison between predictive methods. Interaction scores of 

known associations (bold characters) and negative controls. The catRAPID 32 and RPIseq 

34 performances are compared on autogenous interactions 89.  

 

Figure 1. Secondary structure occupancy. A) Example of secondary structure prediction 

for the non-coding RNA BC1 as predicted by Vienna RNAfold (centroid model) 90. B) High 

values of the secondary structure occupancy profile 28 indicate that base pairing occurs in 

regions with high propensity to form stem loops (blue box), while low values are 

associated with loops or junctions (pink region).  

 

Figure 2. Interaction strength. In agreement with experimental evidence 91,92, we predict 

that the N-terminus of fragile X mental retardation protein FMRP  (amino acids 1-217) (A) 

binds to the 5’ stem loop of BC1 transcript (nucleotides 1-75), (B) does not interact with 

the loop region of BC1 transcript (nucleotides 76-127). Here, the interaction strength 

algorithm is used to estimate the interaction propensity of the protein-RNA pair 31. 

 

Figure 3. Long RNA fragmention. A) Using the catRAPID fragments algorithm 23,28, we 

are able to reproduce experimental evidence on the interaction of hnRNP-L with its own 

transcript 48. Our predictions indicate that the binding occurs in three different intronic 

regions located between exons 1-2, 6-7 and 9-10, in agreement with experimental 

evidence 48; B) We predict that hnRNP-L protein binds with high affinity (interaction 

strength = 84%) to the 3’ CA cluster 6A of the hnRNP-L gene and not to C) the control 

6A (interaction strength = 1%), as shown by in vitro splicing assays performed by 

Rossbach et al. 48. 

 

Figure 4. catRAPID omics express. We show performances of our new algorithm 

catRAPID omics express 24 on  the interactomes of IGF2B1 (Insulin-like growth factor 2 

mRNA-binding protein 1), TIA1 (T-cell-restricted intracellular antigen-1), FUS 

(Translocated in liposarcoma protein), MSI (RNA-binding protein Musashi homolog 1) and 

PTBP1 (Polypyrimidine tract-binding protein 1 PTB1) 9,57–60. The significance of our 

predictions was assessed using Fisher’s exact test (dashed line corresponds to p-value = 

0.1) and 0.9-quantile of rank score distribution as performance measure. (FUS: 1030 

interactions; MSI: 352 interactions; PTBP1: 1567 interactions; TIA1: 1237 interactions; 

IGF2BP1-3: 3299 interactions). 
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Secondary structure occupancy. A) Example of secondary structure prediction for the non-coding RNA BC1 
as predicted by Vienna RNAfold (centroid model) 90. B) High values of the secondary structure occupancy 
profile 28 indicate that base pairing occurs in regions with high propensity to form stem loops (blue box), 

while low values are associated with loops or junctions (pink region).  
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Interaction strength. In agreement with experimental evidence 91,92, we predict that the N-terminus of 
fragile X mental retardation protein FMRP  (amino acids 1-217) (A) binds to the 5’ stem loop of BC1 

transcript (nucleotides 1-75), (B) does not interact with the loop region of BC1 transcript (nucleotides 76-
127). Here, the interaction strength algorithm is used to estimate the interaction propensity of the protein-

RNA pair 31.  
138x58mm (300 x 300 DPI)  
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Long RNA fragmention. A) Using the catRAPID fragments algorithm 23,28, we are able to reproduce 
experimental evidence on the interaction of hnRNP-L with its own transcript 48. Our predictions indicate that 
the binding occurs in three different intronic regions located between exons 1-2, 6-7 and 9-10, in agreement 

with experimental evidence 48; B) We predict that hnRNP-L protein binds with high affinity (interaction 
strength = 84%) to the 3’ CA cluster 6A of the hnRNP-L gene and not to C) the control 6A (interaction 

strength = 1%), as shown by in vitro splicing assays performed by Rossbach et al. 48.  
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catRAPID omics express. We show performances of the algorithm catRAPID omics express 24 on  the 
interactomes of IGF2B1 (Insulin-like growth factor 2 mRNA-binding protein 1), TIA1 (T-cell-restricted 
intracellular antigen-1), FUS (Translocated in liposarcoma protein), MSI (RNA-binding protein Musashi 

homolog 1) and PTBP1 (Polypyrimidine tract-binding protein 1 PTB1) 9,56–59. The significance of our 
predictions was assessed using Fisher’s exact test (dashed line corresponds to p-value = 0.1) and 0.9-

quantile of rank score distribution as performance measure. (FUS: 1030 interactions; MSI: 352 interactions; 
PTBP1: 1567 interactions; TIA1: 1237 interactions; IGF2BP1-3: 3299 interactions).  

127x79mm (300 x 300 DPI)  
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Type of Analysis Algorithm Features Result Examples 

The protein-RNA pair of 

interest are < 750 aa 

and 1200 nt in length 

catRAPID graphic and 

strength modules 

The graphic module calculates 

the interaction propensity of 

a  protein-RNA pair. The 

strength module computes 

the interaction propensity 

with respect to a reference 

set. 

The score will provide 

the propensity to 

interact as well as an 

estimate of the 

strength of interaction 

RNAse P, HOTAIR [28] 

The protein (or RNA) is 

larger than 750 aa (1200 

nt) 

catRAPID fragments 

(protein and RNA option) 

The algorithm  automatically 

divides protein and RNA 

sequences into fragments and 

predicts interaction 

propensities. 

The binding sites of 

both molecules are 

ranked and visualized 

FMRP, TDP43 [31] 

The RNA is > 10000 nt 

and the protein < 750 aa 

Fragment module 

(long RNA option) 

The algorithm divides the 

protein sequence into 

fragments. The entire protein 

is used to calculate the 

interaction propensity against 

the most stable local 

structures of the RNA. The 

interaction propensity is 

calculated between the 

protein and each RNA 

fragment. 

The binding sites of 

the protein on the 

RNA sequence are 

provided 

Xist [32], hnRNP-L  

What are the protein 

(transcript) partners of 

an RNA (protein) of 

interest? 

catRAPID omics 

The algorithm omputes the 

interaction between a protein 

(or transcript) and the 

transcriptome (or nucleotide-

binding proteome) of a 

organism. 

Propensity, strengths, 

binding motifs are 

ranked in a table 

SRSF1, FUS [39] 

What are the interacting 

protein (transcript) 

partners that are co-

expressed in human 

tissues? 

catRAPID omics express 

The algorithm allows 

identification of co-expressed 

protein and RNA pairs in 

human tissues. 

Propensity, strengths, 

binding motifs and 

correlations of 

expression patterns 

are shown 

TIA1, QKI [24] 

 

Page 27 of 28 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



 

protein RNA 
catRAPID 

(interaction strength) 

RPIseq 

(RF score) 

RPIseq 

(SVM score) 
Reference 

FMRP 
FMR1 

(XM_005262323.1) 

3‘UTR 

(1744-1844) 
81% 0.60 0.43 

[42] 
3‘UTR 

(224-877) 
1% 0.75 0.95 

SRSF2 
SRSF2 

(NM_003016.4) 

region I/II of terminal exon 

(2521-2591) 
84% 0.15 0.16 

[43] 
3‘UTR 

(2592-2959) 
0% 0.80 0.88 

TDP-43 
TARDBP 

(XM_005263435.1) 

CDS 

(2271-2366) 
99% 0.60 0.90 

[44] 
CDS 

(2838-3321) 
21% 0.70 0.97 

TYMS 
TYMS 

(XM_005258137.1) 

5‘ region 

(15-170) 
99% 0.55 0.52 

[45]  

[46] 3‘UTR 

(994-1289) 
18% 0.70 0.98 

RPS13 
RPS13  

NC_000011.9 

intron1 

(17099186-17098794) 
99% 0.65 0.84 

[47] 
3‘UTR 

(17095974-17095936) 
4% 0.65 0.89 

hnRNP-L 
hnRNP-L 

(NC_000019.9) 

intron 6 

(39332858-39332174) 
84% 0.75 0.88 

[48] 
intronic region 6A 

(39332443-39332174) 
1% 0.85 0.77 
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