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Abstract 

A potent Jak2 inhibitor could solve numerous diseases which includes hypertension and 

cardiovascular diseases, myeloproliferative neoplasms, polycythemia vera, essential 

thrombocythemia, primiray myelofibrosis, psoriasis and rheumatoid arthritis. So, identifying a 

potent Jak2 inhibitors are of great interest to the researchers and pharmaceutical companies. 

Virtual screening and molecular docking are important tools for structure based drug discovery 

but selecting an appropriate method to calculate the electrostatic potential is critical. In this 

study, four semi empirical (AM1, RM1, PM3, and MNDO) and two empirical (DFT, HF) 

charges were investigated for their performance on the prediction of docking pose using Glide 

XP. The result shows that AM1 has the best charge model for our study. Further, we performed 

3D-QSAR study of 76 decaene derivatives. Since 3D-QSAR methods are known to be highly 

sensitive to ligand conformation and alignment method, we did comparative 3D-QSAR study of 

AM1 charge docked pose alignment based QSAR (structure based) and pharmacophore based 

QSAR. We found a better QSAR model in structure based method. Hence, the result clearly 

demonstrate that selecting an appropriate method to calculate the electrostatic potential for 

docking studies and a good alignment of ligand for 3D-QSAR is critical. Finally, extensive 

pharmacophore and e-pharmacophore based virtual screening followed by subsequent docking 

studies identifying 27 lead molecules which could be a potent Jak2 inhibitor.  

Key words: Jak2, 3D-QSAR, AM1, Docking, Pharmacophore  
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Introduction  

Jak kinases are a family of intracellular nonreceptor tyrosine kinases which includes 

Jak1, Jak2, Jak3 and Tyk2 and that are transduce cytokine-mediated signals via the JAK-STAT 

pathway.1 It is playing a significant role in myeloid cell development, proliferation and survival, 

as well as for the initial stages of the immune response.2 Jak2 causes effects on signaling process 

and it is associated with single chain hormone receptors, the common β chain family and certain 

members of the class II receptor cytokine family for signaling process.3 Recently, Guilluy and 

colleagues explained that the Jak2 is involved in the Ang II-mediated activation of the Rho 

exchange factor, Arhgf1, leads to enhanced vasoconstriction.4 Reactive oxygen species (ROS) 

signaling pathway is implicated in hypertension and vascular pathology5,6 and Ang II is the 

mediator of oxidative stress and oxidant signaling.7-10
 The Jak2 is essential for mediating ROS 

dependent vascular smooth muscle cells (VSMC) proliferation11 and their activation results in 

higher levels of ROS and Jak2 inhibition leads to a dramatic reduction in oxidative stress.12 The 

Jak2-V617F causes constitutive activation of Jak2 and thus increases the levels of ROS within 

cells and also the inhibition of Jak2 leads to reduction of ROS in these same cells.12,13  

Jak2 inhibitors could be an important drug for various diseases like myeloproliferative  

neoplasms, polycythemia vera, essential thrombocythemia, primiray myelofibrosis14, psoriasis15-

17, rheumatoid arthritis18, hypertension and cardiovascular diseases.19 So, finding a potential 

inhibitor for Jak2 could be a Jackpot for pharmaceutical industries since it can be used in the 

treatment of several diseases. Numerous Jak2 inhibitors are in phase I/II clinical studies at 

present.14 Recent reports were also observed that structure activity relationship (SAR) study 

using crystal structure of protein-ligand complex could improve the activity and ADME 

(Absorption, Distribution, Metabolism, and Excretion) of the compounds.20,21 The present study 
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is aimed to explore the SAR of decaene derivatives through ligand based and structured based 

approach (protein-ligand complex using molecular docking). 

In the present study, we used decaene derivatives as multikinase inhibitor for 3D-QSAR 

studies. In this study, we focus on the effect of six different electrostatic potential on Jak2 

inhibitors. Several charge calculation methods are available but their fundamental differences in 

algorithms can result in significant differences in the electrostatic assignments for various atoms. 

It should be noted that the charge models could have effect on not only the docking 

energy/scores, but also the docking conformations, and thus could interfere with the accuracy in 

docking.22 Therefore, we compare six different charge calculation methods to identify the 

accuracy of charge calculation methods among 15 protein-ligand complexes. The ligands were 

extracted from the complexes and then docked with their host protein using Glide, Schrodinger, 

LLC. Then, docking accuracy was evaluated mainly considering the ability to find the correct 

conformations as well as to accurately estimate binding energy. Further, charge were calculated 

for all the 76 decaene derivatives23, 24 and docked with the Jak2 protein. The conformations from 

the docked pose were used for structure based 3D-QSAR generation. The un-charged 

compounds were used for pharmacophore based 3D-QSAR generation. Finally, extensive virtual 

screening was performed against zinc database.   

Materials and methods 

Charge calculation methods 

Jaguar version 7.8 was used to assign the charges for Jak2 inhibitors.25, 26 Electrostatic 

point charges on the atoms of Jak2 inhibitors can be calculated by multiple semiempirical and 

empirical methods. In this study, the semiempirical and emperical charge calculation methods 

were used to calculate the point charges of the compounds. We used 15 ligand bound proteins 

crystal structures for charge calculation and docking studies. These 15 ligand bound proteins 
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crystal structures and their active site residues for Jak2 inhibition were obtained from PDB 

(Protein Data Bank). Ligands were extracted from the complex structures and then charges of the 

ligands have been assigned using semiempirical (AM1, RM1, PM3, and MNDO) and emperical 

(DFT, HF) charge calculation methods. These charged ligands were taken to perform docking 

with Jak2 protein to find correct conformation as well as to estimate accurate binding energy and 

accuracy of charge calculation methods.  

Dataset 

The multi-kinase inhibitors, decaene derivatives were used to understand the mechanistic 

insight into the inhibitory activity of the compounds. The 76 compounds were retrieved from the 

literature.23,24 These 76 compounds were sketched in maestro, Schrodinger, LLC 27 and 

inhibitory activity (IC50) for all the compounds were converted into pIC50 (-logIC50) values 

(Table1-7).  

Structure based 3D-QSAR 

In QSAR studies, a bioactive conformation of the compound is required for accurate 

calculation of 3D descriptors. Hence, the 76 compounds were subjected to energy minimization 

in ligprep module using the OPLS 2005 force field.28 The prepared compounds have been 

assigned their charges using AM1 charge calculation method and these charged compounds were 

allowed to perform docking with Jak2 protein (PDB ID 3E64).  The best docked conformation of 

the ligands were used for direct structure based 3D-QSAR using Phase version 3.4.29-31  

Pharmacophore based 3D-QSAR 

In pharmacophore based 3D-QSAR, the QSAR models were generated based on 

pharmacophoric features such as hydrogen-bond acceptor (A), hydrogen-bond donor (D), 

aromatic ring (R), positively charged groups (P) and negatively charged groups (N) to predict 

common pharmacophore hypothesis. The pharmacophoric sites were created by using following 
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steps. The ligands were divided as active and inactive by giving proper activity threshold value 

based on dataset activity threshold value (5.0-8.15). The threshold value was 7 for active and 6.5 

for inactive ligand. Ligands were chosen to derive a set of suitable common pharmacophore and 

QSAR model building. Details of the methodology are already been explained in our previous 

papers. 32, 33  

Building 3D-QSAR models  

The 3D-QSAR models were generated using the selected hypothesis by dividing the 

dataset into training set (70%) and test set (30%) in random manner. Here, 51 compounds were 

selected as training set and 25 were selected as test set. The training set and test are same for 

structure based QSAR and Pharmacophore based QSAR. The regression is done by constructing 

a series of models with 7 PLS factors.  

 

Validation of QSAR model  

External validation has been carried out to check the robustness of the model and also to 

evaluate the true predictive abilities of the established model. This includes the statistical 

measure of significance including (R2), leave-n-out (LNO), cross-validation coefficient (Q2), 

least squares error (LSE), and lack of-fit measure (LOF) which was developed by Friedman. 

According to literatures, 34-36 3D-QSAR models are accepted if they satisfy all of the following 

conditions: 

[ ] 15.185.0,1.0/)(,6.0,5.0 22222
≤≤<−>> krrrrr ocv  and 2

mr   > 0.5 (1) 

 The r2 value calculated by the following formula, 

∑ ∑
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In these equations, iy  and iy
~  are the observed and predicted activity, oy  and py  are the 

average values of the observed and predicted pIC50 values of the test set molecules. For the ideal 

QSAR model, the r2 value should be close to 1. Meanwhile the regression of y against y through 

origin: i

ro

i yky ~= should be characterized by k close to 1. Slope k is calculated as follow: 

k = 2~

~

i

ii

y

yy

∑

∑

        (3)

 

Another essential parameter c was defined as follow: 

2222 1( om rrrr −−= )                 (4) 

Where, the r2 was the non-cross-validated correlation coefficient obtained from the PLS process, 

and the 2
or was calculated as follows: 
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The ro

iy was obtained by this formula, 

i
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The cross validated co-efficient, 
2
cvr , was calculated using the following equation: 

∑
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r

                                  (8) 

Where, Ypredicted, Yobserved, and Ymean are the predicted, observed, and mean values of the target 

property (pIC50), respectively. 
 

The best validated pharmacophore model was used to screen against zinc database. The 

crystal structure of Jak2 (PDB id: 3E64) was selected for docking studies based on binding 

Page 7 of 39 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



8 

 

affinity. The Jak2 protein was prepared in protein preparation wizard and docking was performed 

against the receptor using the same set of ligands in Schrodinger, LLC, New York, USA. We 

have performed three different level of docking precision including High Throughput Virtual 

Screening (HTVS), Standard Precision (SP) and Extra Precision (XP). 37-40 First, we carried out 

our calculations in HTVS, then in SP and XP mode for further refinement of good ligand pose. 

Prime/MM-GBSA is used to predict the free energy of binding for set of ligands to 

receptor. 41-43 The binding free energy (∆Gbind) is then estimated using equation:  

∆Gbind = ER:L – (ER + EL) + ∆Gsolv + ∆GSA    (7) 

where ER:L is energy of the complex, ER +  EL is sum of the energies of the ligand and apo 

protein, using the OPLS-2005 force field, ∆Gsolv (∆GSA) is the difference between GBSA 

solvation energy (surface area energy) of complex and sum of the corresponding energies for the 

ligand and apo-protein.   

Pharmacophore based virtual screening 

Pharmacophore models containing five sites were generated using 76 decaene 

derivatives, which were reported as potent Jak2 inhibitors. The common hypothetical 

pharmacophores with three and four features were rejected for the study based on the molecule 

occupancy of the pharmacophoric features. The best two hypothetical pharmacophores, ADHRR 

and AAHRR, were selected based on the scoring function for further pharmacophore-based 

screening (Supplementary Figure 1). The selected hypothetical pharmacophore consists of one 

hydrogen bond acceptors (A), one donor (D), one hydrophobic group and two aromatic rings (R) 

for the first hypothesis, and the second hypothetical pharmacophore consists of two hydrogen 

bond acceptors (A), one hydrophobic group (H) and two aromatic rings (R).  
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The validated pharmacophore model was used to search against a 3D database for 

structures that match the pharmacophoric features of the model. Virtual screening was carried 

out using Phase in Schrodinger software that uses the pharmacophore to efficiently search the 

ZINC database of fixed conformers for pharmacophore matches. A molecule which fits well with 

the pharmacophoric features of the ADHRR and AAHRR hypothesis was retrieved as a hit.   

E-Pharmacophores were generated by mapping the energetic terms from Glide XP 

scoring function onto atom centres. The docking pose of protein-ligand complexes were given as 

input for generating pharmacophore sites. The constructed e-pharmacophore was used as a query 

for virtual screening. 44, 45 Phase module of Schrodinger, LLC 29-31 was used for generation of 

pharmacophore sites such as hydrogen bond acceptor, hydrogen bond donor, hydrophobic 

region, positive ionizable region, negative ionizable region and aromatic ring. The screening 

molecules should be match a minimum of 3 sites for a hypothesis with 3 or 4 sites and a 

minimum of 4 sites for a hypothesis with 5 or more sites. For the e-Pharmacophore approach, 

explicit matching was required for the most energetically favorable site, provided that it scored 

better than -1.0 kcal mol-1. Multiple sites were included in cases where more than one site had 

the top score. Screening of compounds was performed against Zinc database.46 Database hits 

were ranked in order of fitness score, a measure of how well the aligned ligand conformer 

matches the hypothesis based on RMSD site matching, vector alignments, and volume terms.  

Finally, the database hits were used for docking calculations and to score the lead like 

compounds. In the first step, Glide was run in high-throughput virtual screen mode. The top 

scoring ligands from High Throughput Virtual Screening (HTVS) were taken for second step, 

Glide Standard Precision (SP) stage. The top-scoring leads from Glide SP were retained and 

docked with Glide extra precision (XP). All the Glide protocols were run using default 

parameters. An extensive search was carried out for generating all possible conformations. Then, 
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we carried out docking using these conformations using default parameters. The schematic 

representation of the workflow is presented in Figure 1.  

Results and Discussion 

Analysis of essential amino acids for Jak2 inhibition 

In this study, 15 ligand bound proteins crystal structures were obtained from PDB 

(www.rcsb.org) and their active site residues were identified by analyzing the protein-ligand 

interactions. Majority of the ligands in the complex structure are interacted with Leu932 and 

Glu930 (Table 8).  

 

The effect of electrostatic potentials on docking accuracy using six types of charges and 15 

ligand bound proteins crystal structures 

In computer aided drug designing, especially in structure based drug design, virtual 

screening and molecular docking can search the preferred orientation and conformation of a 

ligand for its optimal binding to a receptor or enzyme active site but selecting an appropriate 

method to calculate the electrostatic potential is critical.22, 47 So, in this study we have selected 

four different semiempirical and two empirical methods to calculate the electrostatic potential of 

ligands, and their formal charges were investigated for their performance on the prediction of 

docking poses using Glide XP. The complex crystal structures used for this study were extracted 

from PDB (Table 1). RMSD was calculated between top-scoring docked and the complex 

structure ligand pose was evaluated. Usually, an RMSD of 2Å is considered as the cutoff of 

correct docking, probably because the resolution in an X-ray crystal structure analysis is not 

meaningful. 22, 48, 49 The docking was performed for fifteen complex proteins using six different 

charges viz. AM1, RM1, PM3, MNDO, HF, and DFT.  The RMSD < 1Å is considered as the 

best prediction, moderate prediction as 1Å<RMSD<2Å, and the worst prediction as RMSD>2Å. 
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These results show that the AM1 charge model gave the best RMSD value less than 2Å and their 

average RMSD values was comparatively low than others (Figure 2). In order to validate the 

accuracy of those charges, their energy scores after molecular docking were correlated with 

binding free energy. Known dissociation constants (Kd) were retrieved from PDBbind 

database.50, 51 Their binding free energies were calculated using Prime, Schrodinger, LLC. The 

correlation coefficient was calculated between binding free energy and Kd values. Among all six 

charge methods, AM1 has the highest correlation constant (R) in docking (Figure 2). So, the 

result reveals that AM1 charge has lowest average value and highest correlation constant. 

Therefore, our study suggests that AM1 charge could be the best charge model for ligand 

docking with Jak2 protein. The results are consistent with previous reports. 22, 46 

Dataset 

          The Jak2 protein inhibitors, decaene derivatives were collected from the literatures 23, 24. 

From the above result, AM1 was considered as the best charge calculation method. Hence, we 

performed AM1 charge calculation for all 76 compounds and these charged compounds were 

docked using Glide XP in the active site of Jak2 protein.  

Molecular Docking 

The docking was performed with crystal structure of Jak2 (PDB id: 3E64) and a set of 76 

Jak2 inhibitors. The flexible receptor docking was carried out against the receptor with 76 set of 

ligands using Glide XP. The calculation of ligand binding energies and ligand strain energies for 

a set of ligands and a single receptor, we used MM-GBSA method. Here, the inhibitors taken for 

QSAR studies were docked into the active site of Jak2 protein. It shows all the molecules were 

binding in the catalytic amino acid residues. 

Structure based 3D-QSAR 
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         The best conformation from the Glide XP docked pose were used to perform direct 

structure based 3D-QSAR. Additional insight into the inhibitory activity can be gained by 

visualizing the QSAR model in the context of most active and least active compounds. Structure 

based QSAR was performed to know how the 3D-QSAR methods can identify pharmacophoric 

features important for the interaction between ligands and their target protein. The structure 

based QSAR model was generated using 7 PLS factors.  

Based on the overall performance of various models with respect to different statistical 

parameters such as SD, R2, F-value, RMSE, Q2 and Pearson-R and external validation, we have 

selected the best QSAR model. The correlation between observed and predicted activities is 

critical in identifying QSAR models.  

The QSAR model has R2 value of 0.957 and Q2 of 0.841 indicating that the model has 

good predictive model. In addition, this model has a low RMSE value of 0.190 and the highest 

Pearson-r value of 0.931 which also supports this model. 

External validation 

Each of the selected QSAR models was validated internally using the leave-n-out 

technique and externally using the corresponding test set compounds. All the models were also 

validated by the process randomization technique. From the internal validation technique, the 

value of Q2 was determined and from the external validation technique the value of R2
 was 

calculated which were then used as the parameters for determining the model predictivity. The 

established QSAR model using 25 molecules in the test set, gave an excellent r2
cv value of 0.756 

(>0.5), r2
m value of 0.962 (>0.5) as well as high slope of regression lines through the origin (k) 

value of 1.004 (0.85≤k≤1.15), and the non-cross validated correlation coefficient (r2) values of 

0.957 (close to 1), and the calculated (r2 – ro
2
 /r

2) values of -0.048 (<0.1) were obtained. The 

results of the external validation indicated that the QSAR models possessed a high 
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accommodating capacity; they may be reliable for being used to predict the activities of new 

derivatives. Plots of predicted vs. actual pIC50 for training and test set are shown in Figure 3. 

Pharmacophore based 3D-QSAR 

Determination of pharmacophore model and validation 

Pharmacophore models were developed by selecting highly active compounds using 

hydrogen bond acceptor (A), hydrogen bond donor (D), hydrophobic group (H), negatively 

ionizable (N), positively ionizable (P), and aromatic ring (R) as pharmacophoric features. 

Common pharmacophores were identified using a tree-based partition algorithm that groups 

together similar pharmacophores according to their inter site distances.  

The dataset were divided into active and inactive sets in order to find the common 

pharmacophore hypothesis. Molecules with pIC50 values higher than 7.00 were considered to be 

active and those with pIC50 values less than 6.5 were considered to be inactive, whereas those 

pIC50 values in between were considered to be moderately active. Reference relative 

conformational energy (kJ/mol) was included in the score and ligand activity, expressed as pIC50 

was incorporated with a default weight. On applying the scoring function for five-featured 

pharmacophore hypotheses, we ranked the hypotheses considering alignment of site points and 

vectors, volume overlap, selectivity, number of ligands matched, relative conformational energy 

and activity. A total of 27 different variant hypotheses were generated upon completion of 

common pharmacophore identification process. The pharmacophore models whose scores ranked 

in the top1% were selected.52 The top model was found to be associated with the five point 

hypotheses. We have selected the two top-scored hypotheses ADHRR with 3.347 and AAHRR 

with 3.341 survival scores. Training set compounds were aligned on these hypotheses and 

analyzed by taking seven PLS (Partial Least Square) factors. The predictivity of each 

pharmacophore hypothesis was analyzed by the test set compounds. The best QSAR model was 
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selected from ADHRR hypothesis based on survival score.  Hypotheses emerging from this 

process were subsequently scored with respect to the seventeen inactive compounds, using a 

weight of 1.0. The hypotheses that survived the scoring process were used to build an atom based 

QSAR model. 

The goodness of such models is measured in terms of coefficient of determination (R2) 

and cross-validated correlation coefficient (Q2). The R2 values of the model is greater than 0.8, 

the SD values are lower than 0.3 and a good F-test values. This shows that the model interpret 

the SAR of this series of training set compounds satisfactorily.  

According to Tropsha, a high R2 is necessary but not sufficient condition for a predictive 

QSAR model.53 The ADHRR hypothesis has R2 value of 0.93 and Q2 of 0.815 indicating that 

ADHRR is a good predictive hypotheses. In addition, the ADHRR pharmacophore hypothesis 

has a low RMSE value of 0.258 and the highest Pearson-r value of 0.918 which also supports 

this hypothesis.  

The common pharmacophore model alignment of most active compounds on the five-

feature hypothesis ADHRR is shown in Supplementary Figure 1. This hypothesis includes five 

pharmacophoric features with two aromatic rings, one hydrogen bond acceptors, one hydrogen 

bond donor and one hydrophobic centre. This shows that the active compounds have a common 

structural framework with the same binding orientation. Plots of actual versus predicted pIC50 are 

shown in the Figure 4a and 4b for training set and test set compounds. A summary of the QSAR 

results of the two top scored hypotheses ADHRR and AAHRR with structure based QSAR are 

listed in Table 9. 

External validation 

The established QSAR model using 25 molecules in the test set, gave an excellent r2
cv 

value of 0.816 (>0.5), r2
m value of 0.692 (>0.5) as well as high slope of regression lines through 
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the origin (k) value of 0.995 (0.85≤k≤1.15), and the non-cross validated correlation coefficient 

(r2) values of 0.930 (close to 1), and the calculated (r2 – ro
2
 /r

2) values of −0.1402 (<0.1) were 

obtained. The results of the external validation indicated that the QSAR models possessed a high 

accommodating capacity; they may be reliable for being used to predict the activities of new 

derivatives. Hence the hypothesis 1 with one hydrogen bond acceptors (A) and hydrogen bond 

donors (D) and hydrophobic region and two aromatic rings (R) as pharmacophoric feature was 

retained for further QSAR studies. In the pharmacophore mapping study, it was found that the 

major structural factors, affecting the potency of these compounds, are related to the basic 

scaffold. The two hydrogen bond donor sites, together with the acceptor sites, reflect the 

importance of the H-bonding and were consistent with the crystallographic structure Jak2 

protein.  

Analysis of 3D-QSAR model 

Additional insight into the inhibitory activity can be gained by visualizing the QSAR 

model in the context of the most and least active compounds. The contribution maps obtained 

from our result shows how 3D-QSAR methods can identify features that are important for the 

interaction between each ligand and its target protein. Such maps allow the identification of 

those positions that require a particular physicochemical property to enhance the bioactivity of a 

ligand. A pictorial representation of the contours generated for most active and least active 

decaene derivatives are shown in Figure 5. In these representations, the blue cubes indicate 

favorable regions, while red cubes indicate unfavorable regions for activity. Figure 5 compares 

the most significant favorable and unfavorable features that arise when the QSAR model is 

applied to the most active compound (22b) and the least active compound (28b) for Jak2 

inhibition. In the context of most active compound (22b), blue cubes are significantly observed 

in 2-(pyrrolidin-1-yl) ethanol region (R1). Docking result also shows that nitrogen from 2-
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(pyrrolidin-1-yl) ethanol has formed hydrogen bonding with Glu930 (Figure 6a) which is an 

important residue for the inhibition of Jak2 (Table 1). Two methyl group near the pyrrolidine 

group form van der Waal interaction and pyrrolidine forms the electrostatic interaction. The 

result is consistent with the blue colour cubes observed in 3D-QSAR result.  Hence, both QSAR 

and docking result confirms that 2-(pyrrolidin-1-yl) ethanol is an important substituent for the 

activity of the molecule against Jak2. In context of least active compound (28b), red cubes are 

observed on pyrrolidine (R4) and substitution of this functional group could be the main factor 

which could reduce the activity of the molecule. Docking studies also reveals that pyrrolidine has 

not formed any interaction with Jak2 (Figure 6b). Instead, N13 has form hydrogen bonding with 

Asp994 and it has no interaction with Leu932 or Glu930. Highly electropositive substitution of 

pyrrolidine in R4 could pulled the electron density towards the R4 region and reduce the electron 

density in benzene ring. Benzene ring shows van der Waal interaction and dimethyl methane 

region shows electrostatic interaction as few cubes are also seen on these regions.   This result 

clearly reveals that Leu932 and/or Glu930 could be an important residue for the Jak2 inhibition 

as it is also observed in analyzing the crystal structure of Jak2 inhibitors.  

Extensive Pharmacophore based virtual screening  

Pharmacophore based virtual screening and e-Pharmacophore based virtual screening                   

One efficient approach to drug discovery is the virtual screening of the molecular 

libraries. Pharmacophore based database searching is considered as a type of ligand-based virtual 

screening, which can be used efficiently to find novel and potential leads for further 

development. A potent pharmacophore model possesses the chemical functionalities responsible 

for bioactivities of potential drugs; therefore, it can be used to perform a database search by 

serving as a 3D query. 
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The database search studies retrieved all the positive hits and filtered out the inactive 

compounds. Interpretation of how the pharmacophore maps onto the positive hits can provide an 

insight into the structural requirements for inhibition of Jak2 and can act as a guide for further 

modification of the molecules. The generated pharmacophore model (Supplementary Figure 1 

& 2) was used to screen against the zinc database which contains 2, 31,000 compounds.   

For e-pharmacophore, seven pharmacophore sites were predicted for 15 co-crystal 

ligands. But only five pharmacophore sites were chosen based on the score. Supplementary 

Figure 2 illustrates the common pharmacophore sites for co-crystal ligands. Based on these 15 

pharmacophore sites virtual screening was performed against Zinc database. Summary of the 

compound retrieval from e-pharmacophore base virtual screening are shown in Supplementary 

Table 1.  

The compounds retrieved from the pharmacophore based screening were subjected to 

HTVS. Through HTVS, 2140 ligands were identified which bind to the active site of Jak2. For 

further refinement we placed these compounds for Glide SP docking. From Glide SP, 230 

compounds were filtered out and further proceeded for more precise Glide XP docking study. 

Finally, we identified 27 ligands which interact to the active site residues of Jak2. The chemical 

structures of these lead molecules are illustrated in Supplementary Figure 3. All the five 

pharmacophore hypotheses sites are present in our identified compounds (Supplementary Table 

2). The 27 identified compounds were charge with AM1 charge model and redocked to the Jak2 

protein using Glide XP. All the compounds were bind to the active site of Jak2. Further, binding 

energy was calculated for these 27 compounds and MM/GBSA solvation energy (∆Gbind) was 

ranging from −16.48 to −32.15 kcal/mol suggests strong ligand enzyme interactions.  

 

Conclusion 
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The present study deals with the comparison of charge calculation methods such as semi 

empirical (AM1, RM1, PM3, and MNDO) and empirical methods (DFT, HF). Among these 

methods AM1 has the low average RMSD value and high R2 value. Therefore, AM1 is the best 

charge model for our docking calculation. The multi-kinase inhibitor decaene derivatives charge 

were calculated with AM1 for Glide XP docking study and the conformation generated from 

Glide XP docking were used for structure based QSAR and the established model has good R2 

value of 0.955, Q2 value of 0.841 with excellent r2
cv value of 0.756 (>0.5).  In pharmacophore 

based, QSAR model has R2 value of 0.930 and Q2 value of 0.815 with r2
cv value of 0.816 (>0.5). 

From the result, it reveals that structure based QSAR has better model than pharmacophore 

based QSAR. Extensive virtual screening using pharmacophore hypothesis generated from 

decaene derivatives and e-pharmacophore model from 15 ligand bound Jak2 proteins crystal 

structures followed by HTVS, SP and XP against zinc database identified 27 compounds that 

could be a new potential inhibitor for Jak2. This study may provide a valuable benchmark in 

QSAR modeling which will further helpful in the discovery of novel potent inhibitors.  
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Table 1:  Compounds selected (Amide containing linkers) for 3D-QSAR study and their 
measured biological activity and predicted activity.   

 

N

N
N

H

R

 

 

Compound 

No 

R Experimental 

pIC50 value 

Predicted 

pIC50 

value 

Pharm 

set 

26a 

 

5.76 6.05 Training 

26b 

 

5.00 4.93 Training 

26c 

 

5.00 5.05 Training 

26e 

 

5.48 5.61 Training 

26g 1 

 

6.82 6.7 Training 

26h 

 

7.14 6.92 Training 

26i 

 

5.77 6.29 Test 

26j 

 

6.64 6.54 Test 
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Table 2: Compounds selected (Amide substituent) for 3D-QSAR study and their measured 
biological activity and predicted activity. 

N

N
N

H

O

N R
1

 

Compound 

No 

R1 Experimental pIC50 

value 

Predicted 

pIC50 value 

Pharm set 

26g 2 H 6.82 6.69 Training 
 

26h 2 CH3 7.14 6.73 Training 
 

26k 

 

7.05 6.8 Training 

26l 

 

5.82 5.86 Training 

26m 

 

5.82 5.96 Training 

26n 

 

5.00 5.21 Training 

26o 

 

5.87 6.18 Test 

26p 

 

5.80 6.29 Training 

26q 

 

6.14 5.94 Test 

26f 

 

5.00 5.12 Training 

26r 

 

6.92 6.84 Training 
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Table 3: Compounds selected (Amine and Aromatic Ring Substitutions) for 3D-QSAR study 
and their measured biological activity and predicted activity. 

N

N
N

H

O

N

R
1

R
2

R
3

 

Compound 

No 

R1 R2 R3 Experimental 

pIC50 value 

Predicted 

pIC50 

value 

Pharm 

Set 

 

26h 3 
 

Me H H 7.14 6.97 Training  

27a 
 

Me OCH3 H 6.55 6.69 Test  

27b 
 

Me Cl H 7.09 6.75 Training  

27c 
 

Me OCF3 H 6.82 7.07 Training  

27d 
 

Me 
 

H 7.21 7.31 Training  

27e Me 

 

H 7.00 6.95 Test  

27g Me 

 

H 6.96 6.77 Test  

27h 
 

Me 
 

 

H 
 

6.85 
 

7.07 
 

Training  

27i Me 

 

H 7.31 7.22 Training  

27j Me 

 

H 7.32 7.24 Training  

   
 

  

27k Me 
 

 

H 
 

7.25 7.29 Training  
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27n Me 

 

H 6.92 
 

6.97 Test  

  

27o Me 

 

H 6.66 6.82 Training 
 

 

  

27p Me 

 

H 7.21 7.08 Test 

27l 

 

 

H 6.66 6.71 
 

Training 

   

27m 

 

 

H 6.82 7.02 Test  

27q Me 

 

OMe 6.68 6.95 Test  

27r Me H 

 

7.11 7.52 Training  

27s Me H NH2 7.30 7.48 Training  

27t Me H 

 

7.75 8.03 Training  

27u Me H 

 

 

7.36 7.32 Training  
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Table 4: Compounds selected (Aromatic Ring Substitutions) for 3D-QSAR study and their 
measured biological activity and predicted activity. 

N

N
N

H

O

N
CH3

R
5

R
5

R
5

R
4

 

Compound 

No 

R4 R5 R6 R7 Experimental pIC50 

value 

Predicted 

pIC50 

value 

Pharm 

Set 

26h 4 H H H H 7.14 6.61 Training 

28a CH3 H H H 5.00 5.01 Training 

28b 

 

H H H 5.00 5.21 Training 

28c H CH3 H H 6.75 6.84 Training 

28d H H F H 6.80 6.57 Training 

28e H H H OMe 6.29 6.48 Test 
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Table 5: Compounds selected (suitable linkers) for 3D-QSAR study and their measured 
biological activity and predicted activity.  

 

Compound 

No 

-Z- R1 Experimental 

pIC50 value 

Predicted 

pIC50 value 

 

Pharm Set 

16a 
 

H 5.92 6.28 Test 

16b 

 

H 6.64 6.33 Training 

16c 

 

OCH3 6.89 7.26 Training 

16d 

 

OCH3 6.59 6.58 Test 

16e 

 

OCH3 7.16 7.42 

 

Training 

16f 

 

OH 7.28 7.20 

 

Test 
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Table 6: Compounds selected (Solubilizing Groups) for 3D-QSAR study and their measured 
biological activity and predicted activity. 

N

N
N

H

O

O

R
1

R
2

 

Compound 

No 

R1 R2 Experimental 

pIC50 value 

Predicted 

pIC50 

value 

Pharm 

Set 

17a 

 

H 7.22 7.13 Test 

17c 

 

H 7.08 7.12 Test 

17d 

 

H 7.39 7.12 Training 

17e 

 

H 7.08 6.76 Training 

17f 

 

H 6.92 7.07 Training 

17g 

 

H 6.82 6.79 Training 

17h 

 

H 7.11 7.02 Test 

21a 
 

H 6.66 7.32 Test 

21b 

 

H 7.62 7.56 Training 
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21c 

 

H 7.64 7.57 Training 

21d 

 

H 7.82 7.81 Training 

21e 

 

H 7.66 7.84 Training 

21f 

 

H 7.66 7.56 Test 

21h H 

 

7.32 7.24 Training 

21i H 

 

7.02 7.23 Test 

21k H 

 

7.46 7.46 Training 

21l H 

 

7.36 7.33 Training 
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Table 7: Compounds selected (Aromatic Ring Substitutions with Small Groups) for 3D-QSAR 
study and their measured biological activity and predicted activity. 

N

N
N

H

O

O

O

R
2

N

R
3

R
4

R
5

R
6

 

Compound 

No 

R2 R3 R4 R5 R6 Experimental 

pIC50 value 

Predicted 

pIC50 

value 

Pharm 

Set 

22a OCH3 H H H H 7.44 7.41 Training 

22b H CH3 H H H 8.16 7.61 Test 

22c H F H H H 7.77 7.51 Test 

22d H H OCH3 H H 6.48 6.14 Training 

22e H H H F H 7.62 7.52 Test 

22f H H H H OCH3 7.72 7.57 Training 

22g H H H H F 7.60 7.54 Test 
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Table 8.  Analysis of essential residues in Jak2 protein for its inhibition using 15 ligand bound 

proteins crystal structures reported in PDB. 

PDB ID Leu932 Glu930 Glu898 Phe995 Asp994 

2B7A + + - - - 

2W1I + + - - - 

2XA4 + - - - - 

3E62 + + - - - 

3E63 + + - - - 

3E64 + + - - + 

3FUP + + - - - 

3IOK + - - - - 

3JY9 + + + + + 

3KCK + + + + - 

3KRR + - - - - 

3LPB + - - - - 

3Q32 + - - - - 

3TJC + + - - - 

3TJD + + - - - 

 

  

Page 31 of 39 Molecular BioSystems

M
ol

ec
ul

ar
B

io
S

ys
te

m
s

A
cc

ep
te

d
M

an
us

cr
ip

t



32 

 

Table 9. Summary of QSAR analysis of Pharmacophore based and structure based methods.  

External validation 

values 

ADHRR AAHRR Structure based 

QSAR 

R2 0.930 0.896 0.957 

Q2 0.815 0.724 0.841 

SD 0.226 0.275 0.179 

F 208.300 135.200 292.700 

RMSE 0.258 0.315 0.190 

Pearson 0.918 0.867 0.931 

r
2
-r0

2
/r
2
 -0.140 -0.215 -0.048 

rm
2 0.692 0.614 0.962 

r
2

pred 0.998 0.998 0.790 

r
2

cv 0.816 0.825 0.756 

K 0.995 0.995 1.004 
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Figure Legend 

Figure 1. Schematic representation of the workflow.  

Figure 2. Correlation co-effecient (R2) for the experimental value and predicted ∆Gbind , and 

average RMSD of the 15 co-crystal ligands after docking.  

Figure 3. Graph of actual versus predicted pIC50 of the training set and the test set using 

Structure based QSAR. (a) Training set and (b) Test set. 

Figure 4. Graph of actual versus predicted pIC50 of the training set and the test set using 

Pharmacophore based QSAR. (a) Training set and (b) Test set. 

Figure 5. Pictorial representation of the cubes generated using the QSAR model. Blue areas 

indicate favourable regions, while red areas indicate unfavourable regions for the activity. 

The structure based 3D-QSAR model visualized in the context of most active compound 

(a) and least active compound (b). The Pharmacophore based 3D-QSAR model 

visualized in the context of most active compound (c) and least active compound (d). 

Figure 6. The binding mode of most active compound (a) and least active compound (b) inside 

the catalytic site of Jak2 protein.  
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Figure 1. Schematic representation of the workflow.  
447x284mm (300 x 300 DPI)  
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Figure 2. Correlation co-effecient (R2) for the experimental value and predicted ∆Gbind , and average RMSD 
of the 15 co-crystal ligands after docking.  
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Figure 3. Graph of actual versus predicted pIC50 of the training set and the test set using Structure based 
QSAR. (a) Training set and (b) Test set.  
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Figure 4. Graph of actual versus predicted pIC50 of the training set and the test set using Pharmacophore 
based QSAR. (a) Training set and (b) Test set.  
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Figure 5. Pictorial representation of the cubes generated using the QSAR model. Blue areas indicate 
favourable regions, while red areas indicate unfavourable regions for the activity. The structure based 3D-
QSAR model visualized in the context of most active compound (a) and least active compound (b). The 

Pharmacophore based 3D-QSAR model visualized in the context of most active compound (c) and least 
active compound (d).  
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Figure 6. The binding mode of most active compound (a) and least active compound (b) inside the catalytic 
site of Jak2 protein.  
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