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Rapid and sensitive detection of waterborne pathogens in drinkable and recreational water 

sources is crucial for treating and preventing the spread of water related diseases, especially  in 

resource-limited settings. Here we present a field-portable and cost-effective platform for 

detection and quantification of Giardia lamblia cysts, one of the most common waterborne 

parasites, which has a thick cell wall that makes it resistant to most water disinfection 

techniques including chlorination. The platform consists of a smartphone coupled with an 

opto-mechanical attachment weighing ~205 g, which utilizes a hand-held fluorescence 

microscope design aligned with the camera unit of the smartphone to image custom-designed 

disposable water sample cassettes. Each sample cassette is composed of absorbent pads and 

mechanical filter membranes; a membrane with 8 µm pore size is used as a porous spacing 

layer to prevent the backflow of particles to the upper membrane, while the top membrane with 

5 µm pore size is used to capture the individual Giardia cysts that are fluorescently labeled. A 

fluorescence image of the filter surface (field-of-view: ~0.8 cm2) is captured and wirelessly 

transmitted via the mobile-phone to our servers for rapid processing using a machine learning 

algorithm that is trained on statistical features of Giardia cysts to automatically detect and 

count the cysts captured on the membrane. The results are then transmitted back to the mobile-

phone in less than 2 minutes and are displayed through a smart application running on the 

phone. This mobile platform, along with our custom-developed sample preparation protocol, 

enables analysis of large volumes of water (e.g., 10-20 mL) for automated detection and 

enumeration of Giardia cysts in ~1 hour, including all the steps of sample preparation and 

analysis. We evaluated the performance of this approach using flow-cytometer-enumerated 

Giardia-contaminated water samples, demonstrating an average cyst capture efficiency of 

~79% on our filter membrane along with a machine learning based cyst counting sensitivity of 

~84%, yielding a limit-of-detection of ~12 cysts per 10 mL. Providing rapid detection and 

quantification of microorganisms, this field-portable imaging and sensing platform running on 

a mobile-phone could be useful for water quality monitoring in field and resource-limited 

settings. 

 

Introduction 

Providing access to safe drinking water, supplying adequate 

sanitation services, and promoting better hygiene practices are 

important goals to eliminate water-related diseases worldwide1.  

Despite tremendous improvements over the past several 

decades, there are still more than two billion people who lack 

access to improved sanitation facilities and more than half a 

billion people who live with unimproved drinking water 

sources, especially in developing parts of the world2, which 

account for more than one-third of the total world population3.  

Moreover, even developed countries are facing emerging 

problems such as limited financial resources, urbanization, and 

population growth that altogether increase the occurrence of 

waterborne diseases. Accordingly, waterborne pathogens (e.g., 

bacteria, viruses, and parasites) pose significant risks to human 

health worldwide, primarily through diarrhea (affecting four 

billion people each year), and can impose significant economic 

burden and increased healthcare costs on countries4. Therefore, 

rapid, sensitive, and cost-effective detection of contaminated 

water sources is an important step to prevent waterborne 

diseases and their spread5. 

 Among various waterborne pathogens, Giardia lamblia (G. 

lamblia) is one of the most common intestinal protozoan 
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parasites that remains difficult to eliminate using traditional 

methods (e.g., chlorination)6,7 due to its thick cell wall. 

Conventional methods commonly used in water analysis 

laboratories for detection and enumeration of this parasite 

depend on filtration of several liters of water, immunomagnetic 

separation of cysts from debris, and fluorescence detection of 

cysts using bench-top microscopes8. These methods offer high 

sensitivity and specificity but are time-consuming (requiring 

e.g., 1-2 days), need trained specialists to operate bulky and 

relatively expensive equipment, and are prone to human errors.  

Various other detection methods9–18 such as e.g., Polymerase 

Chain Reaction (PCR)9,12, flow cytometry12, and hollow-fiber 

ultrafiltration in combination with heat dissociation16, have also 

been developed to partially mitigate some of these 

disadvantages. These methods, however, are either too complex 

to operate in a field-portable design or cannot process large 

sample volumes (e.g., 10 mL) and therefore, they are 

impractical to use in resource-limited environments for rapid 

analysis of large volumes of water samples. 

Here we present an alternative smartphone-enabled platform 

for rapid (i.e., ~1 hr) detection and counting of intact G. lamblia 

cysts in water samples. In this work, we focused on intact cyst 

capture and counting rather than detection of cyst fragments 

since the ingestion of intact cysts causes Giardiasis. The opto-

mechanical attachment to the smartphone weighs only 205 g 

and is composed of a disposable custom-designed sample 

cassette capable of holding large volumes (i.e., 20 mL) of water 

sample to be analyzed, and a cost-effective mobile fluorescence 

microscope that has a wide FOV of ~0.8 cm2 (see Figure 1). 

This fluorescence microscope component consists of a 3D-

printed housing that aligns with the existing camera module of 

the smartphone, an external lens, an excitation filter, an 

emission filter, eight light-emitting-diodes (LEDs), a 

mechanical z-stage, and two batteries. The main components of 

our sample cassette consist of absorbent pads and two different 

filter membranes, with 8 µm and 5 µm pore sizes, respectively 

(see Figure 1d). The larger pore membrane works as a spacing 

layer to prevent the backflow of particles native to the 

absorbent pads to the upper membrane, while the smaller 5 µm 

pore size membrane is used to capture the labeled Giardia 

cysts. For a given water sample of interest, our sample 

processing starts with fluorescently labeling the test solution, 

and then filtering it through our custom-designed cassette, after 

which the cassette is placed at the back of our smartphone 

microscope attachment for fluorescent imaging. Giardia cysts 

that are captured at the surface of the filter membrane are 

illuminated by eight LEDs, uniformly exciting the entire 

membrane as illustrated in Figure 1e. After its capture, the 

fluorescence image is wirelessly transmitted using a custom-

designed smart application (Giardia Analyzer) to our servers 

for rapid and automated counting of the labeled cysts. The 

digital analysis of the mobile-phone image is based on a 

machine learning algorithm that is trained on statistical features 

of Giardia cyst images so that it can automatically and 

specifically recognize cyst signatures from other 

(auto)fluorescent micro-objects that are non-specifically 

captured on the filter membrane. The result of this machine 

learning based analysis of each fluorescence image is returned 

back to the same mobile-phone within ~2 min, and is displayed 

to the user through the same Giardia Analyzer smart 

application.   

We tested the performance of this automated detection 

 
Fig. 1  (a - b)  Digital photographs of our smart-phone based fluorescent microscope, including a disposable sample cassette.  

(c) Schematic illustration demonstrating the dimensions of the detection platform.  (d) Expanded view of the design.  (e) 

Schematic illustration of the illumination/excitation path. 
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platform using flow cytometer-enumerated G. lamblia-spiked 

water solutions, where each test takes ~1 hour to run, including 

labeling, filtering, imaging and cyst counting steps. Our 

experiments demonstrated an average cyst capture efficiency of 

~79% along with an automated cyst counting sensitivity of 

~84%, which together yielded a limit of detection (LoD) of ~12 

cysts per 10 mL. This field-portable fluorescent microscopy 

platform that is integrated on a mobile-phone, together with its 

machine learning based digital image processing framework, 

can provide a valuable solution for automated and rapid 

detection of various waterborne pathogens, in addition to 

Giardia cysts, even in remote and resource limited settings.  

 

Materials and Methods 

Materials   

 

Hydrophilic polycarbonate black filter membranes (pore size = 5 

µm) (product no.  PCTB5013100) were purchased from Sterlitech 

Corp. (Kent, WA, U.S.A.). Nuclepore track-etched polycarbonate 

membranes (pore size = 8 µm) (product no. 110414) were purchased 

from GE Healthcare Life Sciences (Pittsburgh, PA, U.S.A.). The 

absorbent pads (product no. 28297-988) were purchased from VWR 

(Visalia, CA, U.S.A.).  Black masking tape (product no. T743-1.0) 

and lens tube (product no.  SM1L03) were purchased from Thorlabs 

(Newton, NJ, U.S.A.). Luer caps (product no. FTLLP-1) were 

purchased from Value Plastics (Fort Collins, CO, U.S.A.).  

Disposable syringes with BD Luer-LokTM tip (product no.  309604) 

were purchased from BD Company (Franklin Lakes, NJ, U.S.A.).  

Sprayon® epoxy paint (product no. 4190965) was purchased from 

Chase Products Co. (Broadview, IL, U.S.A.). 

Tween® 20 (product no. P9416) and reagent water (product no. 

320072) were purchased from Sigma Aldrich (St. Louis, MO, 

U.S.A.). Isopropanol (product no.  A416P-4) was purchased from 

Fisher Scientific (Pittsburgh, PA, U.S.A.). Anti-Giardia reagent 

fluorescein labelled stain (product no.  Giardia-a-GloTM, A300FLK-

20X), bulk parasite suspension (1% formalin fixed) (product no.  

P101), Giardia spiked suspensions enumerated by flow cytometer 

and fixed using 1% formalin (product no. PACIR), wash buffer 

(product no. WB101), dilution buffer (product no.  B100-20), anti-

fading mounting media (product no. M101), and counterstain 

(product no. C101) were purchased from Waterborne Inc. (New 

Orleans, LA, U.S.A.) and stored at 4 oC. The aspherized achromatic 

lens (f = 30 mm) (product no. 49-662) was purchased from Edmund 

Optics (Barrington, NJ, U.S.A). The long-pass filter (product no.  

FF01-500/LP-23.3-D) was purchased from Semrock Inc. (Rochester, 

NY, U.S.A.). LEDs (product no. 516-2800-1-ND) and double sided 

adhesive tape (product no. 3M9720-ND) were purchased from Digi-

Key Corporation (Thief River Falls, MN, U.S.A.). Excitation filter 

(product no.  ET470/40x) was purchased from Chroma Inc. (Bellows 

Falls, VT, U.S.A.). 

 

Preparation of solutions   

 

Before preparing water samples for analysis, we need to prepare two 

solutions for our experiments: a diluted antibody-based fluorescein-

labelled stain and a 0.01% Tween® 20 solution in reagent water. The 

diluted stain solution is used for labeling of the Giardia cysts in the 

water sample while the Tween® 20 solution is used to reduce the 

adhesion of the Giardia cysts onto the walls of the delivery syringe 

barrel in order to increase the Giardia cyst recovery rate of our 

system. 

To prepare the diluted stain, a concentrated anti-Giardia 

reagent fluorescein labelled stain (i.e. 20X) is diluted to 1X using the 

dilution buffer provided by the manufacturer with a ratio of 19:1 in 

an Eppendorf tube and mixed. In order to prepare 0.01% Tween® 20 

solution, 5 µL of Tween® 20 is added into 50 mL of reagent water 

in a falcon tube and dissolved by vortex mixing at 10,000 rpm for 

five minutes. All solutions require storage at 4 oC following their 

 

Fig. 2  (a) Schematic illustration of our disposable sample cassette design.  (b) A chart lists all the steps involved in sample collection, 

labeling, filtration, and optical imaging.   

Page 3 of 9 Lab on a Chip

La
b

on
a

C
hi

p
A

cc
ep

te
d

M
an

us
cr

ip
t



ARTICLE Lab on a Chip 

4 |Lab on a Chip, 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 2012 

preparation. 

 

Sample cassette assembly and preparation 

 

To be able to process large volumes of water samples, we designed a 

disposable sample holder that can be easily fabricated in large 

quantities using low cost materials including e.g., cotton absorbent 

pads and porous filter membranes. This sample holder (Figure 2a) 

consists of a custom-designed and 3-D printed casing, absorbent 

pads, a porous spacing layer, a black filter membrane, and tape.  The 

lower and upper casings of the disposable sample holder were 

printed on a 3-D printer (Stratasys, Dimension Elite) using 

acrylonitrile butadiene styrene (ABS) material. The lower casing 

contains holes to increase airflow and allow the absorbent pads to 

more quickly soak up the water sample of interest. We use the lower 

casing as the housing of the interior components of the sample 

holder and the upper casing as a cap to fix the sample holder to the 

backside of the smartphone microscope attachment. By increasing or 

decreasing the number of pads used, it is possible to change the 

volume of sample water that can be processed using this sample 

holder. For example, in our design we use seven absorbent pads as a 

waste reservoir to hold ~20 mL of liquid. We also use black porous 

filter membranes with 5 µm pore size as our cyst-capturing surface; 

this membrane has extremely low auto-fluorescence and facilitates 

the counting of Giardia cysts by increasing the contrast between the 

cysts and the membrane surface. In our cassette design, an additional 

filter membrane with 8 µm pore size is also used as a porous spacing 

layer and is placed below the black filter membrane to prevent 

backflow of particles to the cyst capture surface19 (see Figure 2).   

Prior to the assembly of the sample holder cassette, the 

absorbent pads are cut into square pieces (i.e., 4.1 cm × 4.1 cm) and 

patterned using a laser-cutting device (Versa Laser, Model No 2.30) 

to align the membranes and the tape onto the pad. We covered 

double-sided adhesive tape with a black masking tape and cut a hole 

with a diameter of one centimeter using the laser-cutter. We covered 

these tape pieces with five thin layers of black epoxy paint in order 

to decrease their auto-fluorescence and let them dry at room 

temperature under laminar airflow.   

To assemble the sample cassette, we first place seven layers of 

absorbent pads into the lower casing of the sample holder cassette.  

The porous spacing layer is then immersed into the 0.01% Tween® 

20 solution (prepared in reagent-grade water) and is placed on top of 

the upper absorbent pad. The black filter membrane is rinsed with 

isopropanol and deionized water to decrease the number of 

extractable objects on the membrane. Subsequently, the membrane is 

immersed into the 0.01% Tween® 20 solution to make it hydrophilic 

and is placed on top of the porous spacing layer. Then, the previous 

tape covered with epoxy paint is applied to the membrane to fix the 

position of the black membrane on the absorbent pad and to define 

the boundaries of the cyst capture area. Lastly, the disposable 

cassette is covered with the 3D-printed upper casing (Fig. 2a).  

 

Water sample preparation 
 

The sequence of steps for sample collection, labeling, filtration and  

optical imaging is summarized in Figure 2b. The method of direct 

labeling is used to label the Giardia cysts in the water sample with a 

fluorescent stain. First, 200 µL of the diluted stain is added to 10 mL 

of the water sample under test in a falcon tube and the tube is 

covered with aluminum foil to prevent light exposure. After mixing 

the sample gently for ~10 seconds, the sample is incubated at room 

temperature for ~35 minutes for labeling. To reduce the number of 

cysts adhering to the syringe barrel, a 10 mL syringe barrel is filled 

with 0.01% Tween® 20 solution and incubated at room temperature 

for about 20 minutes. After removal of the Tween® 20 solution from 

the syringe barrel, the sample is poured into the syringe barrel with a 

Luer cap on the other end, the piston of the syringe is replaced, and 

the Luer cap subsequently removed. The water sample is then 

dispensed onto the black membrane until it is completely absorbed 

by the pads through capillary force, without the need for an 

electrically driven flow. To wash out the remaining sample in the 

sample tube, the tube is refilled with 5 mL of reagent-grade water 

and shaken vigorously for 15 s, and this tube liquid is then collected 

into the syringe and dispensed directly onto the filter membrane. 

This step is repeated twice to completely wash out the test tube. A 

total of 100 µL of washing buffer and 200 µL of counterstain 

(diluted in washing buffer at a 3:1 ratio) are then dispensed onto the 

cyst capture membrane. The counterstain is used to enhance contrast 

and to reduce the auto-fluorescence of the absorbent pad. Lastly, we 

cover the membrane with droplets of anti-fading mounting medium 

to decrease photo bleaching of the fluorescent stain. The total 

amount of time that is required for all these steps is less than 1 hour 

as detailed in Fig. 2b. 

 

Design of the smartphone-based fluorescence microscope   
 

Nokia Lumia 1020 is used in the design of our smartphone-based 

fluorescence microscope. This cell phone allows the capture of 

38MP raw format (i.e., digital negative (DNG)) images at a 4:3 

aspect ratio with a pixel size of 1.12 µm20,21. The built-in objective 

lens of the cellphone has a focal length, f of 7.2 mm and a relative 

aperture of f/2.2. Using the Nokia camera application settings, we 

are also able to adjust a variety of camera parameters (i.e., white 

balance, focus, ISO speed, exposure value, and contrast) for optimal 

image capture. 

For fluorescence excitation, eight blue LEDs powered with two 

AA alkaline batteries are distributed evenly at each side to uniformly 

excite the cysts captured on the membrane of the sample holder (see 

Figure 1). The emission spectrum of each LED is also filtered using 

an excitation bandpass filter with a center wavelength of 470 nm and 

bandwidth of ~40 nm. An aspherized achromatic lens with a focal 

length, f2 of 30 mm is used to create a magnification factor of 0.24 

(i.e., f/f2) between the sample plane and the CMOS sensor-chip of 

the mobile-phone, which helps us achieve a large sample FOV (~0.8 

cm2) per image, without any mechanical scanning. To adjust the 

depth of focus of our microscope we have placed a z-stage between 

the external lens and the excitation LEDs. To block the excitation 

light, a long-pass emission thin-film filter with a cut-off wavelength 

of 510 nm is placed between the existing cell phone lens and our 

external lens. The custom-designed opto-mechanical housing of our 

fluorescence microscope attachment is also 3D-printed (Stratasys, 

Dimension Elite) using ABS thermoplastic material. 

  

Digital analysis of fluorescent images and automated cyst 

counting using machine learning 
 

Digital image processing and machine learning algorithms are 

applied to detect and count G. lamblia cysts captured on the filter 

membrane as illustrated in Figure 3. In order to automatically detect 

and specifically count the cysts, the raw format (i.e., DNG) 

fluorescence image is uploaded to our servers using our Giardia 

Analyzer application (see Figure 3). On the server side, this DNG 

image is converted into TIFF format and the Bayer pattern image is 

retrieved. After a simple masking step, the inner part of the filter 

membrane image is cropped as our target region of interest (ROI). 

The green channel image of our ROI is then converted into a binary 

image based on a threshold value of 0.02 (maximum intensity: 1), 

following subtraction of the background intensity. The obtained 
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binary image contains not only the fluorescent particles (i.e., cyst 

candidates) but also noise. Our algorithm eliminates some of this 

noise related artifacts by discarding each connected component on 

the image that exhibits an area substantially smaller than the size of 

an intact Giardia cyst. For each one of the remaining cyst candidates 

within our ROI, we automatically generate a list of spatial features 

such as area, eccentricity, orientation, and equivalent diameter, 

among others. To increase the sensitivity of the differentiation of 

cysts from other (auto)fluorescent particles, we add more features to 

each particle’s feature list by extracting intensity information (e.g., 

average intensity (Iave), minimum intensity (Imin), and maximum 

intensity (Imax)) of circular regions at each particle position with a 

three-pixel radius for not only the red, green, and blue channels of 

the RGB color space, but also their corresponding hue (H), 

saturation (S), value (V) of the HSV color space as well as the luma 

(Y), blue-difference (Cb) and red difference (Cr) of the YCbCr color 

space. Moreover, we include the differences of intensity parameters 

between each channel within a particular color space (e.g., Iave,Y-

Iave,Cr, Imax,Y-Imax,Cr or Imin,Y-Imin,Cr). This entire process creates a 71-

item feature list for each fluorescent particle (or cyst candidate) 

found within our filter ROI.   

Next, we use a custom-developed machine learning algorithm 

to count and differentiate cysts from other unwanted 

(auto)fluorescent micro-objects in our filter ROI. This machine 

learning algorithm utilizes a bootstrap aggregating22–24, or bagging, 

approach to classify particles using the 71 different features 

extracted for each cyst candidate25. Our training data that we used to 

train our machine learning approach to distinguish Giardia cysts 

from other micro-objects were populated by 14 different experiments 

of varying cyst concentrations for a total of 1370 cysts and 1485 

other micro-particles. To create this training data/library, which need 

to be generated only once to statistically learn cyst images on our 

mobile microscope, each particle is labelled as either a cyst (or 

cluster of cysts) or other micro-object by manually determining the 

ground truth under a high-resolution bench-top microscope. Through 

this training process, we observed that the pixel area of the cyst 

clusters is proportional to the number of cysts that form the cluster, 

based on which we generated a linear calibration curve, i.e., Pixel 

area = 10.34 × (Number of cysts) + 9.60, exhibiting a high 

correlation coefficient of 0.9808. This calibration curve is used to 

estimate the number of cysts in each fluorescent cluster/spot that is 

labeled as “cysts” using our machine learning algorithm. 

After this training process, when detecting and counting 

Giardia cysts on new (i.e., blind) test images, fluorescent objects are 

automatically detected, noise-filtered, and the feature lists (each with 

71 entries) for the remaining particles/candidates are digitally 

extracted as described above. Each set of features for a cyst or 

cluster candidate is compared against the training data automatically 

using our machine learning algorithm, classifying them as either 

Giardia cysts or other unwanted micro-objects. The final counting 

result is stored in our server database and is also wirelessly 

transferred to the smartphone through our custom developed 

application (Fig. 3). 

 

Results and Discussion  

Our waterborne pathogen detection platform has some distinct 

features that make it an ideal mobile analysis tool for rapid and 

automated imaging and detection of waterborne pathogens in 

resource limited settings: (1) The smartphone based fluorescence 

microscope has a large FOV of ~ 0.8 cm2, which is more than an 

order of magnitude larger than the FOV of e.g., a 4× or 10× 

objective lens with a numerical aperture of ~0.1-0.2, making it 

possible to image the entire filter membrane surface without the use 

of a mechanical scanning stage; (2) the disposable sample cassette is 

capable of holding large volumes (e.g., 20 mL) of liquid sample and 

a further increase in this volume can be achieved by adding more 

layers of absorbent pads without a change in performance; and (3) its 

design is cost-effective and field-portable, weighing only 205 g, 

excluding the mobile-phone. 

In order to blindly demonstrate the proof of concept of our 

mobile fluorescence microscope (Fig. 1), G. lamblia spiked water 

solutions were used as test samples. Each water sample was prepared 

 
 

Fig. 3  Process flow for automated detection and counting of G. lamblia cysts using our custom developed smart application running on 

a Windows-based mobile phone.  The processed image and cyst counting results are sent back to the mobile phone within less than ~2 

minutes. 
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and processed according to the set of procedures described in Fig. 2 and our Methods Section. Fig. 4a shows a full FOV image captured  

 

Fig. 4  (a) An image taken using our smartphone based fluorescent microscope.  (b) Enlarged view of the region of interest in a single 

image taken using smartphone based fluorescent microscopy.  (c, d, e, and f) (i) Comparison images taken using a 20× objective lens and 

a benchtop microscope with GFP filter (exposure time 5s and gain 1). (ii) Digitally cropped images taken using our smartphone based 

fluorescence microscope. (g) A comparison image showing the entire field of view of the filter membrane, which combines 26 different 

images taken using a 4× objective lens and a benchtop Olympus microscope under bright field illumination. This image is used for 

comparison purposes and illustrates the large FOV of our fluorescent microscope, shown in (b), compared to a standard benchtop 

microscope. (h) (i) Image taken using a 4× objective lens and a bench-top microscope with GFP filter (exposure time 20s and gain 1); 

(ii) Zoomed-in image taken using the smartphone based fluorescence microscope for the same region of interest on the filter membrane 

surface.  
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Fig. 5  Limit of detection (LoD), sensitivity and specificity of our smartphone-based Giardia analyzer determined using known 

concentrations of Giardia at 0, 10, 50, 100, and 500 cysts/mL. Each concentration is measured 3 times. (a) Our cyst recovery rate as a 

function of the cyst concentration, where y = x line defines the ideal recovery curve (100% recovery). (b) Zoomed in version of (a).  (c) A 

plot demonstrating the accuracy of our machine learning based cyst counting algorithm. (d) Zoomed in version of (c). (e) The sensitivity 

of our machine learning algorithm is shown. Sensitivity = TP / (TP+FN), where TP and FN refer to True Positives and False Negatives, 

respectively.  The specificity of our machine learning algorithm is shown. Specificity = TN / (TN+FP), where TN and FP refer to True 

Negatives and False Positives, respectively. (f) The Bland-Altman analysis, comparing smartphone-based measurement results against the 

results of a benchtop fluorescence microscope. 
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using our smartphone-based fluorescence microscope. In the 

zoomed-in image, shown in Fig. 4b, the filter membrane that 

captures the cysts in the water sample forms the inner circle, the 

black masking tape forms the middle circle, and the center part of 

the upper casing of the sample holder forms the outer part. The cyst 

ROI, i.e., the filter membrane with 5 µm pores, has an imaging area 

of ~0.8 cm2.  26 different images taken with a 4× objective lens on a 

regular bench-top microscope were digitally stitched together to 

create a comparison image for this large FOV (as shown in Figure 4g 

– which is only used for comparison purposes).  The insets of Fig. 4b 

(i.e., the regions marked as c, d, e, and f) and Fig. 4g (i.e., the region 

marked as h) illustrate the performance of this mobile platform.  

Panels labeled with (i) in Figures 4c-4f and Figure 4h show the 

images obtained using 20× and 4× objective lenses, respectively, of 

a regular bench-top fluorescence microscope to provide verification 

for (ii)-labeled images that were cropped from the digital image 

taken using our mobile fluorescence microscope. These cropped 

mobile-phone images are in good agreement with conventional 

bench-top microscope images that were captured for comparison, 

and individual as well as clustered cysts can be imaged using our 

mobile microscopy platform.   

To explore the detection limit, sensitivity and specificity of our 

mobile-phone based cyst detection and quantification approach, we 

used flow-cytometer enumerated G. lamblia spiked water samples, 

each 10 mL in volume. Figure 5 summarizes the results of these 

experiments, which were based on five different cyst concentrations 

(i.e., 0, 10, 50, 100, and 500 cysts per 10 mL), with each experiment 

blindly verified using a bench-top fluorescence microscope, 

scanning >25 different ROIs across the filter membrane surface.   

Although on average 79% of G. lamblia cysts that existed in 

our water sample volume (10 mL) were physically captured on the 

filter membrane, we achieved a lower overall cyst recovery as 

illustrated in Figs. 5a-b. The cyst detection efficiency of our system 

is influenced by two independent factors: (1) the partial loss of 

Giardia cysts during the delivery of the water volume of interest 

onto our disposable filter membrane; and (2) inaccurate detection 

and counting of the captured fluorescent objects on the membrane 

surface by our machine learning algorithm. The second issue is 

partially affected by difficulties in digitally differentiating the cysts 

captured at the outer edges of the filter membrane, which exhibit 

stronger auto-fluorescence arising from ABS material of the sample 

cassette. Based on Figs. 5c-d, we can quantify the overall sensitivity 

(i.e., Sensitivity = TP / (TP+FN), where TP and FN refer to True 

Positives and False Negatives, respectively26) of our machine 

learning algorithm as ~84%. In other words, the Giardia cysts that 

are physically captured on the filter membrane can be counted with 

an average sensitivity of ~84% using our machine learning based 

cyst detection algorithm (also see Fig. 5e for our detection sensitivity 

values for different cyst concentrations).   

The LoD of our waterborne parasite imaging platform can be 

estimated as ~12 Giardia cysts per 10 mL based on the mean cyst 

count for the control samples plus 3 times their standard deviation 27 

(see Figures 5a and 5b). Furthermore, the specificity of our detection 

method, (i.e., Specificity = TN / (TN+FP), where TN and FP refer to 

True Negatives and False Positives, respectively26), can be measured 

as 90%, 94%, 94%, and 76% for 10, 50, 100, and 500 cysts per 10 

mL samples, respectively (see Fig. 5e). We further compared the 

performance of our smartphone based detection platform against a 

benchtop microscope using the Bland-Altman analysis, which shows 

a bias of -0.8 cysts per mL, with 95% confidence intervals of -4.2 

cysts per mL and 2.5 cysts per mL (Figure 5f).  These results 

illustrate the success of our machine learning based mobile 

microscopy platform to sensitively and specifically detect and 

digitally separate cysts from other unwanted micro-objects that are 

captured on the filter membrane. 

To further improve our overall cyst detection performance, we 

can target the recovery of the cysts that are lost during the transfer of 

the water from the sample container onto the porous filter surface. 

Potential mechanisms for this partial loss of intact Giardia cysts in 

our sample processing steps include: (i) rupture of the cysts due to 

mechanical forces and the negative pressure that build up during the 

processing of the water sample; (ii) non-specific binding of the cysts 

to the syringe barrel surface or the Luer cap; (iii) dead liquid 

volumes that remain in our sample delivery scheme, which might 

function as reservoirs/traps for some Giardia cysts; and (iv) 

uncontrolled pore size variations or non-uniformities on the filter 

membrane which might allow some cysts to pass through the pores. 

Through a systematic study of these potential sources of cyst losses, 

we believe that we can further improve our cyst capture efficiency 

on the filter membrane to >85-90% from its current value of 79%.  

We can also improve the robustness of our detection platform 

against dirt and undesired large particles/objects that might be found 

in natural water sources using a pre-filtration system. To handle such 

dirty natural water sources and still be able to achieve ~1 cyst/mL 

level of detection limit, we can utilize a series of larger pore filter 

membranes, where at each stage the pore size is gradually decreased, 

for example from 100 µm to 50 µm and then to ~25 µm, before the 

membrane filters that are employed in our current sample holder 

design are used. 

In terms of specificity and sensitivity of cyst detection, our 

machine learning algorithm utilizes a bagging approach to classify 

particles either as a cyst or other micro-object using 71 different 

fluorescent image parameters as detailed in our Methods Section, 

and it was trained with mobile-phone based Giardia images captured 

over a wide range of experiments, involving 1370 individual Giardia 

cyst images. To further improve the performance of our machine 

learning code, we can expand this cellphone based Giardia image 

library by capturing e.g., >10,000 individual Giardia cyst images 

using our mobile microscope. This significant increase in our gold-

standard image database/library should assist us in digitally boosting 

our specificity and sensitivity analysis for the fluorescent objects that 

are captured on our filter membrane area. Especially, this larger 

training dataset of Giardia cyst images should better handle some of 

our current challenges in automated identification/recognition of the 

cysts that are captured at or close to the outer edges of the filter 

membrane, which contain some auto-fluorescence signal due to the 

3D printed plastic material. 

 

Conclusion 

We introduced a hand-held and cost-effective mobile imaging 

platform that is coupled with machine learning for automated 

detection and enumeration of G. lamblia cysts in large volumes of 

water. This platform includes a smartphone-based fluorescence 

microscope for imaging custom-designed disposable water sample 

cassettes that capture fluorescently labeled Giardia cysts over a wide 

filter surface area (~0.8 cm2). A fluorescence image of the entire 

filter area is captured and transferred to our servers using the 

smartphone over a wireless network for remote digital processing to 

automatically detect and count the Giardia cysts captured on the 

filter membrane. The result of this machine learning based analysis 

is transferred back to the smartphone within 2 minutes using our 

custom-developed Windows phone application. Using flow-

cytometer-enumerated Giardia spiked water samples, we 

demonstrated that this platform achieves a LoD of ~12 cysts per 10 

mL, where each experiment takes ~1 hour, including all the steps of 

sample preparation and analysis. This portable system is a promising 
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tool for rapid and cost-effective on-site water quality monitoring and 

spatio-temporal analysis in resource-limited regions. We also believe 

that this machine learning based mobile fluorescent imaging and 

detection platform can be further useful for screening of biological 

liquids of interest (e.g., blood and urine) and for detection and 

quantification of various pathogens including e.g., bacteria, 

parasites, and eggs of parasites.  
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